In probability theory and statistics, the characteristic function of any realvalued random variable completely defines its probability distribution. If a random variable admits a probability density function, then the characteristic function is the Fourier transform of the probability density function. Thus it provides the basis of an alternative route to analytical results compared with working directly with probability density functions or cumulative distribution functions. There are particularly simple results for the characteristic functions of distributions defined by the weighted sums of random variables.
In addition to univariate distributions, characteristic functions can be defined for vector or matrixvalued random variables, and can also be extended to more generic cases.
The characteristic function always exists when treated as a function of a realvalued argument, unlike the momentgenerating function. There are relations between the behavior of the characteristic function of a distribution and properties of the distribution, such as the existence of moments and the existence of a density function.
The characteristic function provides an alternative way for describing a random variable. Similar to the cumulative distribution function,
(where 1_{{X ≤ x}} is the indicator function — it is equal to 1 when X ≤ x, and zero otherwise), which completely determines behavior and properties of the probability distribution of the random variable X, the characteristic function,
also completely determines behavior and properties of the probability distribution of the random variable X. The two approaches are equivalent in the sense that knowing one of the functions it is always possible to find the other, yet they both provide different insight for understanding the features of the random variable. However, in particular cases, there can be differences in whether these functions can be represented as expressions involving simple standard functions.
If a random variable admits a density function, then the characteristic function is its dual, in the sense that each of them is a Fourier transform of the other. If a random variable has a momentgenerating function , then the domain of the characteristic function can be extended to the complex plane, and
Note however that the characteristic function of a distribution always exists, even when the probability density function or momentgenerating function do not.
The characteristic function approach is particularly useful in analysis of linear combinations of independent random variables: a classical proof of the Central Limit Theorem uses characteristic functions and Lévy's continuity theorem. Another important application is to the theory of the decomposability of random variables.
For a scalar random variable X the characteristic function is defined as the expected value of e^{itX}, where i is the imaginary unit, and t ∈ R is the argument of the characteristic function:
Here F_{X} is the cumulative distribution function of X, and the integral is of the Riemann–Stieltjes kind. If random variable X has a probability density function f_{X}, then the characteristic function is its Fourier transform with sign reversal in the complex exponential,^{[2]}^{[3]} and the last formula in parentheses is valid. Q_{X}(p) is the inverse cumulative distribution function of X also called the quantile function of X.^{[4]}
It should be noted though, that this convention for the constants appearing in the definition of the characteristic function differs from the usual convention for the Fourier transform.^{[5]} For example, some authors^{[6]} define φ_{X}(t) = Ee^{−2πitX}, which is essentially a change of parameter. Other notation may be encountered in the literature: as the characteristic function for a probability measure p, or as the characteristic function corresponding to a density f.
The notion of characteristic functions generalizes to multivariate random variables and more complicated random elements. The argument of the characteristic function will always belong to the continuous dual of the space where random variable X takes values. For common cases such definitions are listed below:
Here denotes matrix transpose, tr(·) — the matrix trace operator, Re(·) is the real part of a complex number, z denotes complex conjugate, and * is conjugate transpose (that is z* = z^{T} ).
Distribution  Characteristic function φ(t) 

Degenerate δ_{a}  
Bernoulli Bern(p)  
Binomial B(n, p)  
Negative binomial NB(r, p)  
Poisson Pois(λ)  
Uniform U(a, b)  
Laplace L(μ, b)  
Normal N(μ, σ^{2})  
Chisquared χ^{2}_{k}  
Cauchy C(μ, θ)  
Gamma Γ(k, θ)  
Exponential Exp(λ)  
Geometric Gf(p) (number of failures) 

Geometric Gt(p) (number of trials) 

Multivariate normal N(μ, Σ)  
Multivariate Cauchy MultiCauchy(μ, Σ) ^{[10]} 
Oberhettinger (1973) provides extensive tables of characteristic functions.
The bijection stated above between probability distributions and characteristic functions is continuous. That is, whenever a sequence of distribution functions F_{j}(x) converges (weakly) to some distribution F(x), the corresponding sequence of characteristic functions φ_{j}(t) will also converge, and the limit φ(t) will correspond to the characteristic function of law F. More formally, this is stated as
This theorem is frequently used to prove the law of large numbers, and the central limit theorem.
Since there is a onetoone correspondence between cumulative distribution functions and characteristic functions, it is always possible to find one of these functions if we know the other one. The formula in definition of characteristic function allows us to compute φ when we know the distribution function F (or density f). If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used.
Theorem. If characteristic function φ_{X} is integrable, then F_{X} is absolutely continuous, and therefore X has the probability density function given by
in multivariate case the pdf is understood as the Radon–Nikodym derivative of the distribution μ_{X} with respect to the Lebesgue measure λ:
Theorem (Lévy).^{[14]} If φ_{X} is characteristic function of distribution function F_{X}, two points a<b are such that {xa < x < b} is a continuity set of μ_{X} (in the univariate case this condition is equivalent to continuity of F_{X} at points a and b), then
Theorem. If a is (possibly) an atom of X (in the univariate case this means a point of discontinuity of F_{X} ) then
Theorem (GilPelaez).^{[16]} For a univariate random variable X, if x is a continuity point of F_{X} then
where the imaginary part of a complex number is given by .The integral may be not Lebesgueintegrable; for example, when X is the discrete random variable that is always 0, it becomes the Dirichlet integral.
Inversion formulas for multivariate distributions are available.^{[17]}
The set of all characteristic functions is closed under certain operations:
It is well known that any nondecreasing càdlàg function F with limits F(−∞) = 0, F(+∞) = 1 corresponds to a cumulative distribution function of some random variable. There is also interest in finding similar simple criteria for when a given function φ could be the characteristic function of some random variable. The central result here is Bochner’s theorem, although its usefulness is limited because the main condition of the theorem, nonnegative definiteness, is very hard to verify. Other theorems also exist, such as Khinchine’s, Mathias’s, or Cramér’s, although their application is just as difficult. Pólya’s theorem, on the other hand, provides a very simple convexity condition which is sufficient but not necessary. Characteristic functions which satisfy this condition are called Pólyatype.^{[18]}
Bochner’s theorem. An arbitrary function φ : R^{n} → C is the characteristic function of some random variable if and only if φ is positive definite, continuous at the origin, and if φ(0) = 1.
Khinchine’s criterion. A complexvalued, absolutely continuous function φ, with φ(0) = 1, is a characteristic function if and only if it admits the representation
Mathias’ theorem. A realvalued, even, continuous, absolutely integrable function φ, with φ(0) = 1, is a characteristic function if and only if
for n = 0,1,2,…, and all p > 0. Here H_{2n} denotes the Hermite polynomial of degree 2n.
Pólya’s theorem. If φ is a realvalued, even, continuous function which satisfies the conditions
then φ(t) is the characteristic function of an absolutely continuous symmetric distribution.
Because of the continuity theorem, characteristic functions are used in the most frequently seen proof of the central limit theorem. The main trick involved in making calculations with a characteristic function is recognizing the function as the characteristic function of a particular distribution.
Characteristic functions are particularly useful for dealing with linear functions of independent random variables. For example, if X_{1}, X_{2}, ..., X_{n} is a sequence of independent (and not necessarily identically distributed) random variables, and
where the a_{i} are constants, then the characteristic function for S_{n} is given by
In particular, φ_{X+Y}(t) = φ_{X}(t)φ_{Y}(t). To see this, write out the definition of characteristic function:
The independence of X and Y is required to establish the equality of the third and fourth expressions.
Another special case of interest for identically distributed random variables is when a_{i} = 1/n and then S_{n} is the sample mean. In this case, writing X for the mean,
Characteristic functions can also be used to find moments of a random variable. Provided that the n^{th} moment exists, characteristic function can be differentiated n times and
For example, suppose X has a standard Cauchy distribution. Then φ_{X}(t) = e^{−t}. This is not differentiable at t = 0, showing that the Cauchy distribution has no expectation. Also, the characteristic function of the sample mean X of n independent observations has characteristic function φ_{X}(t) = (e^{−t/n})^{n} = e^{−t}, using the result from the previous section. This is the characteristic function of the standard Cauchy distribution: thus, the sample mean has the same distribution as the population itself.
The logarithm of a characteristic function is a cumulant generating function, which is useful for finding cumulants; some instead define the cumulant generating function as the logarithm of the momentgenerating function, and call the logarithm of the characteristic function the second cumulant generating function.
Characteristic functions can be used as part of procedures for fitting probability distributions to samples of data. Cases where this provides a practicable option compared to other possibilities include fitting the stable distribution since closed form expressions for the density are not available which makes implementation of maximum likelihood estimation difficult. Estimation procedures are available which match the theoretical characteristic function to the empirical characteristic function, calculated from the data. Paulson et al. (1975) and Heathcote (1977) provide some theoretical background for such an estimation procedure. In addition, Yu (2004) describes applications of empirical characteristic functions to fit time series models where likelihood procedures are impractical.
The gamma distribution with scale parameter θ and a shape parameter k has the characteristic function
Now suppose that we have
with X and Y independent from each other, and we wish to know what the distribution of X + Y is. The characteristic functions are
which by independence and the basic properties of characteristic function leads to
This is the characteristic function of the gamma distribution scale parameter θ and shape parameter k_{1} + k_{2}, and we therefore conclude
The result can be expanded to n independent gamma distributed random variables with the same scale parameter and we get
As defined above, the argument of the characteristic function is treated as a real number: however, certain aspects of the theory of characteristic functions are advanced by extending the definition into the complex plane by analytical continuation, in cases where this is possible.^{[19]}
Related concepts include the momentgenerating function and the probabilitygenerating function. The characteristic function exists for all probability distributions. This is not the case for the momentgenerating function.
The characteristic function is closely related to the Fourier transform: the characteristic function of a probability density function p(x) is the complex conjugate of the continuous Fourier transform of p(x) (according to the usual convention; see continuous Fourier transform – other conventions).
where P(t) denotes the continuous Fourier transform of the probability density function p(x). Likewise, p(x) may be recovered from φ_{X}(t) through the inverse Fourier transform:
Indeed, even when the random variable does not have a density, the characteristic function may be seen as the Fourier transform of the measure corresponding to the random variable.
Another related concept is the representation of probability distributions as elements of a reproducing kernel Hilbert space via the kernel embedding of distributions. This framework may be viewed as a generalization of the characteristic function under specific choices of the kernel function.
This page is based on a Wikipedia article written by authors
(here).
Text is available under the CC BYSA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.