Trái Đất

Trái Đấthành tinh thứ ba tính từ Mặt Trời, đồng thời cũng là hành tinh lớn nhất trong các hành tinh đất đá của hệ Mặt Trời xét về bán kính, khối lượngmật độ vật chất. Trái Đất còn được biết tên với các tên gọi "hành tinh xanh"[note 2] hay "Địa Cầu", là nhà của hàng triệu loài sinh vật,[13] trong đó có con người và cho đến nay đây là nơi duy nhất trong vũ trụ được biết đến là có sự sống. Hành tinh này được hình thành cách đây 4,55 tỷ năm[14][15][16][17] và sự sống xuất hiện trên bề mặt của nó khoảng 1 tỷ năm trước. Kể từ đó, sinh quyển, bầu khí quyển của Trái Đất và các điều kiện vô cơ khác đã thay đổi đáng kể, tạo điều kiện thuận lợi cho sự phổ biến của các vi sinh vật ưa khí cũng như sự hình thành của tầng ôzôn-lớp bảo vệ quan trọng, cùng với từ trường của Trái Đất, đã ngăn chặn các bức xạ có hại và chở che cho sự sống.[18] Các đặc điểm vật lý của Trái Đất cũng như lịch sử địa lý hay quỹ đạo, cho phép sự sống tồn tại trong thời gian qua. Người ta hy vọng rằng Trái Đất chỉ còn có thể hỗ trợ sự sống thêm 1,5 tỷ năm nữa, trước khi kích thước của Mặt Trời tăng lên (Sao khổng lồ đỏ) và tiêu diệt hết sự sống.[19]

Bề mặt Trái Đất được chia thành các mảng kiến tạo, chúng di chuyển từ từ trên bề mặt Trái Đất trong hàng triệu năm. Khoảng 71% bề mặt Trái Đất được bao phủ bởi các đại dương nước mặn, phần còn lại là các lục địa và các đảo. Nước là thành phần rất cần thiết cho sự sống và cho đến nay con người vẫn chưa phát hiện thấy sự tồn tại của nó trên bề mặt của bất kì hành tinh nào khác ngoại trừ sao Hỏa là có nước bị đóng băng ở hai cực.[note 3][note 4] Tuy nhiên, người ta có chứng cứ xác định nguồn nước có ở Sao Hỏa trong quá khứ, và có thể tồn tại cho tới ngày nay.[20] Lõi của Trái Đất vẫn hoạt động được bao bọc bởi lớp manti rắn dày, lớp lõi ngoài lỏng tạo ra từ trường và lõi sắt trong rắn. Trái Đất là hành tinh duy nhất có sự sống.[23]

Trái Đất tương tác với các vật thể khác trong không gian bao gồm Mặt Trời và Mặt Trăng. Hiện quãng thời gian Trái Đất di chuyển hết một vòng quanh Mặt Trời bằng 365,2564 lần quãng thời gian nó tự quay một vòng quanh trục của mình. Khoảng thời gian này bằng với một năm thiên văn tức 365,2564 ngày trong dương lịch.[note 5] Trục tự quay của Trái Đất nghiêng một góc bằng 23,44° so với trục vuông góc với mặt phẳng quỹ đạo,[24] tạo ra sự thay đổi mùa trên bề mặt của Trái Đất trong một năm chí tuyến. Mặt Trăng, vệ tinh tự nhiên duy nhất của Trái Đất, đồng thời cũng là nguyên nhân chính gây ra hiện tượng thủy triều đại dương, bắt đầu quay quanh Trái Đất từ 4,53 tỷ năm trước, vẫn giữ nguyên góc quay ban đầu theo thời gian nhưng đang chuyển động chậm dần lại. Trong khoảng từ 4,1 đến 3,8 tỷ năm trước, sự va đập của các thiên thạch trong suốt thời kì "Công phá Mạnh muộn" đã tạo ra những sự thay đổi đáng kể trên bề mặt Mặt Trăng.

Cả tài nguyên khoáng sản lẫn các sản phẩm của sinh quyển được sử dụng để cung cấp cho cuộc sống của con người. Dân cư được chia thành hơn 200 quốc gia độc lập, có quan hệ với nhau thông qua các hoạt động ngoại giao, du lịch, thương mại, quân sự. Văn hóa loài người đã phát triển tạo nên nhiều cách nhìn về Trái Đất bao gồm việc nhân cách hóa Trái Đất như một vị thần, niềm tin vào một Trái Đất phẳng hoặc một Trái Đất là trung tâm của cả vũ trụ, và một quan điểm nhìn hiện đại hơn như Trái Đất là một môi trường thống nhất cần có sự định hướng.

Trái Đất Ký hiệu thiên văn học của Trái Đất
Hình ảnh Trái Đất nhìn từ tàu Apollo 17 ngày 7 tháng 12 năm 1972.
Bức ảnh Viên Bi Xanh nổi tiếng, chụp từ Apollo 17
Đặc điểm của quỹ đạo (Kỷ nguyên J2000[note 1])
Bán trục lớn 149 597 887 km hay

1,00000011 AU.

Chu vi 940 × 106 km hay

6,283 AU.

Độ lệch tâm 0,01671022
Cận điểm 147 098 074 km hay

0,9832899 AU.

Viễn điểm 152 097 701 km hay

1,0167103 AU.

Chu kỳ 365,25696 ngày hay

1,0000191 năm.

Chu kỳ biểu kiến không áp dụng.
Vận tốc quỹ đạo:
 - trung bình 29,783 km/s.
 - tối đa 30,287 km/s.
 - tối thiểu 29,291 km/s.
Độ nghiêng 0,00005° đối với mặt phẳng hoàng đạo hay

7,25° đối với xích đạo Mặt Trời.

Kinh độ điểm mọc 348,73936°.
Góc cận điểm 114,20783°.
Tổng số vệ tinh 1 – (mặt trăng)
 
Đặc điểm của hành tinh
Đường kính:
 - tại xích đạo 12756,28 km.[1]
 - tại cực 12713,56 km.[2]
 - trung bình 12742,02 km.[3]
Độ dẹp 0,0033528[1]
Chu vi vòng kính:
 - tại xích đạo 40075 km.
 - qua hai cực 40008 km.
Diện tích
toàn bộ bề mặt 510 072 000 km².[4][5][6]
đất 148 940 000 km²(29,2%)
nước 312 369 000 km²(70,8%)
Thể tích 1083,2073 × 109 km³.
Khối lượng 5973,6 × 1021 kg.
Tỉ trọng 5,5153 g/cm³.
Gia tốc trọng trường tại xích đạo 9,780327 m/ hay

0,99732 Gee.[7]

Vận tốc vũ trụ cấp 2 11,186 km/s.
Chu kỳ tự quay 0,99726968 ngày hay

23,934 giờ.[8]

Vận tốc tự quay tại xích đạo 1674,38 km/h.
Độ nghiêng trục quay 23,439281°.
Xích kinh độ cực bắc 0° (0 h 0 m 0 s)
Thiên độ cực bắc 90°
Hệ số phản xạ 0,367[9]
Nhiệt độ bề mặt:

- tối thiểu - trung bình - tối đa

185 K

287 K 331 K

Áp suất khí quyểntại bề mặt 101,3 kPa
 
Cấu tạo của khí quyển
Đạm khí (N2) 78,08%
Dưỡng khí (O2) 20,95%
Argon (Ar) 0,93%
Thán khí (CO2) 0,038%
Hơi nước (H2O) 1% (thay đổi theo điều kiện thời tiết)[9]

Niên biểu

Lịch sử

Các nhà khoa học đã có thể khôi phục lại các thông tin chi tiết về quá khứ của Trái Đất. Những ngày đầu tiên của hệ Mặt Trời là vào khoảng 4,5672[25] ± 0,0006 tỷ năm trước, và vào khoảng 4,54 tỷ năm trước (độ sai lệch nằm trong khoảng 1%)[14][15][16][17] Trái Đất và các hành tinh khác trong hệ Mặt Trời đã hình thành từ tinh vân Mặt Trời – đám mây bụi và khí dạng đĩa do Mặt Trời tạo ra. Quá trình hình thành Trái Đất được hoàn thiện trong vòng 10 triệu đến 20 triệu năm.[26] Lúc đầu ở dạng nóng chảy, lớp vỏ ngoài của Trái Đất nguội lại thành chất rắn trong khi nước bắt đầu tích tụ trong khí quyển. Mặt Trăng hình thành ngay sau đó cách đây khoảng 4,53 tỷ năm,[27] là kết quả của sự va chạm sượt qua giữa một vật thể có kích thước bằng Sao Hỏa (đôi khi được gọi là Theia) và có khối lượng bằng khoảng 10% khối lượng của Trái Đất, với Trái Đất.[28] Một phần khối lượng của vật thể này đã sáp nhập vào Trái Đất, phần còn lại bắn vào không gian theo một quỹ đạo phù hợp tạo ra Mặt Trăng.

Khí thải và các hoạt động của núi lửa tạo ra các yếu tố sơ khai của bầu khí quyển. Quá trình ngưng tụ hơi nước gia tăng bởi băng và nước ở dạng lỏng được cung cấp bởi các thiên thạch và các tiền hành tinh lớn hơn, các sao chổi, và các vật thể ở xa hơn Sao Hải Vương tạo ra các đại dương.[29] Hai giả thiết chính về sự phát triển của các lục địa được đề xuất là:[30] phát triển từ từ cho đến ngày nay [31] hoặc nhanh chóng phát triển trong quá khứ.[32] Các nghiên cứu gần đây cho thấy rằng phương án thứ hai khả quan hơn, với tốc độ phát triển ban đầu nhanh của các lớp vỏ lục địa[33] theo sau bởi một quá trình phát triển diện tích lục địa chậm và dài.[34][35][36] Trong niên đại địa chất, khoảng thời gian hàng trăm triệu năm, bề mặt Trái Đất liên tục thay đổi hình dạng của chính nó dưới dạng các lục địa hình thành và phân rã. Các lục địa di chuyển trên bề mặt, đôi khi kết hợp với nhau để tạo thành một siêu lục địa. Khoảng 750 triệu năm trước, một trong những siêu lục địa được biết sớm nhất là Rodinia, đã bắt đầu chia tách. Các lục địa sau đó lại kết hợp với nhau để tạo ra Pannotia, 600 – 540 triệu năm trước, cuối cùng là Pangaea chia tách vào khoảng 180 triệu năm trước.[37]

Quá trình tiến hóa của sự sống

Hiện nay, Trái Đất là ví dụ duy nhất về một môi trường cho phép duy trì sự tiến hóa.[38] Người ta tin rằng các chất hóa học giàu năng lượng đã tạo ra các phân tử tự sao chép trong khoảng 4 tỷ năm trước đây, và trong nửa tỷ năm sau đó thì tổ tiên chung cuối cùng của các dạng sống trên Trái Đất bắt đầu xuất hiện.[39] Sự phát triển của khả năng quang hợp cho phép năng lượng Mặt Trời được hấp thụ trực tiếp bởi các dạng sống; và sau đó ôxy sản phẩm tích tụ dần trong bầu khí quyển và hình thành tầng ôzôn (một hình thức phân tử khác của ôxy - O3) ở tầng cao của bầu khí quyển. Sự tập hợp các tế bào nhỏ trong một tế bào lớn hơn dẫn đến quá trình phát triển các tế bào phức tạp gọi là các sinh vật nhân chuẩn.[40] Các sinh vật đa bào thực sự hình thành dưới dạng các tế bào trong một tập đoàn cá thể ngày càng trở nên chuyên môn hóa. Nhờ tầng ôzôn hấp thụ các bức xạ tia cực tím có hại, sự sống bắt đầu phát triển trên bề mặt Trái Đất.[41]

Kể từ thập niên 1960, đã có một giả thiết rằng hoạt động của các sông băng trong khoảng từ 750 đến 580 triệu năm trước, trong đại Tân Nguyên sinh, đã phủ một lớp băng lên bề mặt Trái Đất. Giả thiết được gọi là "Địa Cầu tuyết", và được đặc biệt quan tâm vì nó tiếp nối giả thiết về sự bùng nổ sự sống trong kỷ Cambri, khi sự sống đa bào bắt đầu tăng trưởng mạnh.[42] Sau sự bùng nổ ở kỷ Cambri, khoảng 535 triệu năm trước, đã xảy ra năm cuộc đại tuyệt chủng.[43] Cuộc đại tuyệt chủng cuối cùng diễn ra cách đây 65 triệu năm, xảy ra có thể là do một thiên thạch đâm vào Trái Đất, đã gây ra cuộc đại tuyệt chủng của khủng long và các loài bò sát lớn, nhưng bỏ qua các loài động vật có kích thước nhỏ như các loài động vật có vú, mà khi đó trông giống như chuột. Trong 65 triệu năm qua, các dạng sống máu nóng ngày càng trở nên đa dạng, và một vài triệu năm trước đây thì một loài động vật dáng vượn ở châu Phi đã có khả năng đứng thẳng.[44] Điều này cho phép chúng sử dụng công cụ và thúc đẩy giao tiếp cũng như cung cấp các chất dinh dưỡng và các yếu tố kích thích cần thiết cho một bộ não lớn hơn. Sự phát triển của nông nghiệp, và sau đó là sự văn minh, cho phép con người trong một khoảng thời gian ngắn gây ảnh hưởng đến Trái Đất nhiều hơn bất kì một dạng sống nào khác,[45] thậm chí cả tính chất cũng như số lượng của các loài sinh vật khác. Các thời kỳ băng hà bắt đầu từ 40 triệu năm trước và phát triển trong suốt thế Pleistocen vào khoảng 3 triệu năm trước. Chu kì hình thành và tan băng lặp đi lặp lại trong các vùng cực theo chu kì 40-100 nghìn năm. Thời kỳ băng hà gần đây kết thúc vào khoảng 10.000 năm trước.[46]

Tương lai

Vòng đời Mặt Trời
Vòng đời của Mặt Trời (tỉ năm), từ trái sang:
Bắt đầu - Hiện tại - Nhiệt độ tăng dần - Sao khổng lồ đỏ - Suy sụp hấp dẫn - Sao lùn trắng...

Tương lai của hành tinh này có quan hệ mật thiết với Mặt Trời. Là kết quả của sự tăng cường nguyên tử heli một cách từ từ trong lõi của Mặt Trời, độ sáng của ngôi sao này đang từ từ tăng lên. Độ sáng của Mặt Trời sẽ tăng 10% trong 1,1 tỷ năm tới, 40% trong 3,5 tỷ năm tới.[47] Các mô hình khí hậu chỉ ra rằng việc các tia phóng xạ chạm đến Trái Đất nhiều hơn sẽ tạo nên các hậu quả khủng khiếp, bao gồm sự biến mất của các đại dương.[48]

Sự tăng nhiệt độ trên bề mặt Trái Đất sẽ đẩy nhanh chu trình CO2 phi sinh học, giảm mật độ của khí này cho đến khi các loài thực vật chết (10 ppm đối với thực vật C4) trong vòng 900 triệu tới 1,2 tỷ năm. Sự thiếu hụt các loại cây xanh sẽ tạo ra hiện tượng thiếu ôxy trong bầu khí quyển, khiến cho các loại động vật trên Trái Đất sẽ bị tuyệt chủng hoàn toàn trong vài triệu năm sau đó, sự sống sẽ chỉ còn lại các dạng đơn giản sống trong các túi nước nằm sâu trong lòng đất hoặc ở 2 vùng cực.[49] Tới 1,3 tỷ năm sau, các sinh vật nhân chuẩn sẽ tuyệt chủng, chỉ còn các sinh vật nhân sơ còn sống. Tới 2,8 tỷ năm sau, nhiệt độ Trái Đất sẽ lên tới 147 độ C ngay cả ở vùng cực, toàn bộ nước trên bề mặt sẽ biến mất và sự sống sẽ hoàn toàn bị tiêu diệt[19]nhiệt độ trung bình toàn cầu sẽ đạt tới 70 °C.[49] Trái Đất được mong đợi rằng có thể hỗ trợ sự sống thêm 500 triệu năm nữa,[50] dù thời gian này có thể kéo 2,3 tỉ năm nếu nitơ được loại bỏ khỏi bầu khí quyển.[51] Cho dù Mặt Trời có tồn tại vĩnh cửu và không thay đổi, quá trình lạnh đi của Trái Đất sẽ khiến cho lượng CO2 giảm dần do sự suy giảm của các hoạt động núi lửa[52] và 35% nước của các đại dương lặn xuống lớp phủ do quá trình lưu thông hơi nước của sống núi giữa đại dương giảm.[53]

Mặt Trời, trong quá trình tiến hóa của nó, sẽ trở thành một sao khổng lồ đỏ trong khoảng 5 tỷ năm nữa. Các mô hình cho thấy rằng Mặt Trời sẽ mở rộng, tăng bán kính lên gấp 250 lần hiện tại, xấp xỉ 1 AU (150.000.000 km).[47][54] Tương lai của Trái Đất kém rõ ràng hơn. Dưới dạng một sao khổng lồ đỏ, Mặt Trời sẽ mất đi 30% khối lượng, khiến cho, không tính đến các ảnh hưởng về thủy triều, Trái Đất sẽ chuyển đến quỹ đạo 1,7 AU (250.000.000 km) so với Mặt Trời khi ngôi sao này đạt đến bán kính tối đa. Do đó người ta hy vọng rằng Trái Đất sẽ thoát khỏi được lớp không khí bao quanh Mặt Trời, dù rằng phần lớn, không phải tất cả, các loài sinh vật còn lại cũng sẽ nhanh chóng bị tuyệt chủng khi độ sáng của Mặt Trời tăng lên.[47] Nhưng, các mô phỏng gần đây cho thấy quỹ đạo của Trái Đất sẽ biến mất do tác dụng của thủy triều và lực hút, làm cho nó bị hút vào bầu không khí bao quanh Mặt Trời và bị phá hủy.[54]

Tính chất vật lý

Trái Đất là một hành tinh đất đá, có nghĩa là nó có cấu tạo đất đá cứng, khác với những hành tinh khí khổng lồ như Sao Mộc. Trái Đất là hành tinh lớn nhất trong bốn hành tinh đất đá của hệ Mặt Trời, về cả kích thướckhối lượng. Trong bốn hành tinh này, Trái Đất có độ đặc lớn nhất, hấp dẫn bề mặt lớn nhất, từ trường mạnh nhất, tốc độ quay nhanh nhất.[55] Và đồng thời nó cũng là hành tinh đất đá duy nhất mà các mảng kiến tạo còn hoạt động.[56]

Hình dạng

Bảng của F. W. Clarke về thành phần ôxít trong lớp vỏ Trái Đất
Hợp chất Công thức Tỉ lệ
phần trăm
Silica SiO2 59,71%
Alumina Al2O3 15,41%
Vôi CaO 4,90%
Ôxít magiê MgO 4,36%
Ôxít natri Na2O 3,55%
Ôxít sắt (II) FeO 3,52%
Ôxít kali K2O 2,80%
Ôxít sắt (III) Fe2O3 2,63%
Nước H2O 1,52%
Ôxít titan TiO2 0,60%
Điphốtpho pentaôxít P2O5 0,22%
Tổng cộng 99,22%

Hình dạng của Trái Đất rất gần với hình phỏng cầuhình cầu bị nén dọc theo hướng từ địa cực tới chỗ phình ra ở xích đạo.[57] Phần phình ra này là kết quả của quá trình tự quay và khiến cho độ dài đường kính tại đường xích đạo dài hơn 43 km so với độ dài đường kính tính từ cực tới cực.[58] Độ dài đường kính trung bình của hình phỏng cầu tham chiếu vào khoảng 12.745 km, xấp xỉ với 40.000 km/π, mét được định nghĩa bằng 1/10.000.000 khoảng cách từ xích đạo đến cực Bắc đo qua Paris, Pháp.[59]

Địa hình các khu vực khác nhau đều có các sai lệch nhất định so với hình phỏng cầu đã được lý tưởng hóa này và nếu xét ở quy mô toàn cầu thì độ lệch này thường rất nhỏ, còn đối với một khu vực nhỏ thì Trái Đất có dung sai vào khoảng 1/584, tức 0,17% so với hình phỏng cầu tham chiếu và nhỏ hơn 0,22% dung sai cho phép đối với các quả bóng bi-da. Nơi có độ lệch (độ cao hoặc độ sâu) lớn nhất so với bề mặt Trái Đất là đỉnh Everest (8.848 m trên mực nước biển) và rãnh Mariana (10.911 dưới mực nước biển). Do sự phồng lên ở xích đạo, nơi xa tâm Trái Đất nhất là đỉnh Chimborazo cao 6.268 m ở Ecuador.[60][61]

Thành phần hóa học

Khối lượng của Trái Đất vào khoảng 5,98×1024 kg, bao gồm sắt (32,1%), ôxy (30,1%), silic (15,1%), magiê (13,9%), lưu huỳnh (2,9%), niken (1,8%), canxi (1,5%), nhôm (1,4%); và các nguyên tố khác 1,2%. Dựa trên lý thuyết về phân tách khối lượng, người ta cho rằng vùng lõi được cấu tạo bởi sắt (88,8%) với một lượng nhỏ niken (5,8%), lưu huỳnh (4,5%), và các nguyên tố khác thì nhỏ hơn 1%.[62] Nhà hóa học F. W. Clarke tính rằng dưới 47% lớp vỏ Trái Đất chứa ôxy và các mẫu đá cấu tạo nên vỏ Trái Đất hầu hết chứa các ôxít; clo, lưu huỳnh và flo là các ngoại lệ quan trọng duy nhất của điều này và tổng khối lượng của chúng trong đá nhỏ hơn 1% rất nhiều. Các ôxít chính là ôxít silic, nhôm, sắt; các cacbonat canxi, magiê, kalinatri. Điôxít silic đóng vai trò như một axít, tạo nên silicat và có mặt trong tất cả các loại khoáng vật phổ biến nhất. Từ một tính toán dựa trên 1.672 phân tích về tất các loại đá, Clarke suy luận rằng 99,22% là cấu tạo từ 11 ôxít (nhìn bảng bên phải) và tất cả các thành phần còn lại chỉ chiếm một lượng cực nhỏ.[note 6]

Cấu trúc bên trong

Phần bên trong của Trái Đất giống như các hành tinh đất đá khác, chia thành nhiều lớp dựa trên các đặc tính hóa, lý.

Các tầng của Trái Đất[64]
Jordens inre-numbers

Mặt cắt của Trái Đất từ tâm đến thổ quyển.
Độ sâu[65]
km
Các lớp Mật độ
g/cm3
0–60 Thạch quyển (5)[note 7]
0–35 ... Lớp vỏ (6)[note 8] 2,2–2,9
35–60 ... Phần trên cùng của manti trên (4) 3,4–4,4
35–2890 Quyển manti (3)&(4) 3,4–5,6
100–700 ... Quyển mềm
2890–5100 Lõi ngoài (2) 9,9–12,2
5100–6378 Lõi trong (1) 12,8–13,1

Nhiệt lượng

Nội nhiệt của Trái Đất được tạo ra bởi sự kết hợp của nhiệt dư được tạo ra trong các hoạt động của Trái Đất (khoảng 20%) và nhiệt được tạo ra do sự phân rã phóng xạ (khoảng 80%).[66] Các đồng vị chính tham gia vào quá trình sinh nhiệt là kali-40, urani-238, urani 235, thori-232.[67] Ở trung tâm của Trái Đất, nhiệt độ có thể đạt tới 7000K và áp suất có thể lên tới 360 Gpa.[68] Do phần lớn nhiệt năng này sinh ra từ sự phân rã của các chất phóng xạ, các nhà khoa học tin rằng vào thời kì đầu của Trái Đất, trước khi số lượng của các đồng vị phóng xạ có chu kì bán rã ngắn bị giảm xuống, nhiệt năng sinh ra của Trái Đất còn cao hơn. Nhiệt năng thêm này gấp hai lần hiện tại vào thời điểm 3 tỉ năm trước [66] đã làm tăng nhiệt độ mặt đất, tăng tốc độ của quá trình đối lưu mantikiến tạo mảng, và cho phép tao ra đá macma giống như komatiite mà ngày nay không còn được tạo ra nữa.[69]

Các đồng vị phóng xạ chính tạo ra nhiệt năng[66]
Đồng vị Nhiệt năng tỏa ra [W/kg đồng vị] Chu kỳ bán hủy [năm] Lượng manti tập trung trung bình [kg đồng vị/kg manti] Nhiệt năng tỏa ra [W/kg manti]
238U 9,46 × 10-5 4,47 × 109 30,8 × 10-9 2,91 × 10-12
235U 5,69 × 10-4 7,04 × 108 0,22 × 10-9 1,25 × 10-13
232Th 2,64 × 10-5 1,40 × 1010 124 × 10-9 3,27 × 10-12
40K 2,92 × 10-5 1,25 × 109 36,9 × 10-9 1,08 × 10-12

Tổng nhiệt năng mà Trái Đất mất đi khoảng 4,2 ×1013 W.[70] Một phần năng lượng nhiệt ở lõi được truyền qua lớp vỏ nhờ chùm manti; đó là một dạng đối lưu bao gồm các đợt dâng lên của các khối đá nóng và có thể tạo ra các điểm nóng và lũ bazan.[71] Một phần nhiệt năng khác của Trái Đất mất đi thông qua hoạt động kiến tạo mảng khi mácma trong manti dâng lên ở các sống núi giữa đại dương. Hình thức mất nhiệt cuối cùng là con đường truyền nhiệt trực tiếp đi qua thạch quyển, phần lớn xuất hiện ở đại dươnglớp vỏ ở đó mỏng hơn so với ở lục địa.[70]

Các mảng kiến tạo

Các mảng kiến tạo chính của Trái Đất[72]
Tectonic plates (empty)
Tên mảng Diện tích
106 km²
Mảng châu Phi[note 9] 78,0
Mảng Nam Cực 60,9
Mảng Ấn-Úc 47,2
Mảng Á-Âu 67,8
Mảng Bắc Mỹ 75,9
Mảng Nam Mỹ 43,6
Mảng Thái Bình Dương 103,3

Lớp ngoài cứng về mặt cơ học của Trái Đất, tức thạch quyển, bị vỡ thành nhiều mảnh được gọi là các mảng kiến tạo. Các mảng này di chuyển tương đối với nhau theo một trong ba kiểu ranh giới mảng: hội tụ khi hai mảng va chạm; tách giãn khi hai mảng đẩy nhau ra xa, chuyển dạng khi các mảng trượt dọc theo các vết đứt gãy.[73] Các trận động đất, hoạt động núi lửa, sự hình thành các dãy núi, và rãnh đại dương đều xuất hiện dọc theo các ranh giới này.[74] Các mảng kiến tạo nằm trên quyển atheno (quyển mềm), phần rắn nhưng kém nhớt của lớp phủ trên có thể chảy và di chuyển cùng các mảng kiến tạo, và chuyển động của chúng gắn chặt với các kiểu đối lưu bên trong lớp phủ Trái Đất.

Khi các mảng kiến tạo di chuyển, đáy đại dương bị hút chìm ở rìa của lục địa hay tại ranh giới hội tụ. Trong khi đó, sự phun trào mácma ở ranh giới phân kỳ tạo ra các rặng núi giữa đại dương. Sự kết hợp của các quá trình này đẩy lớp vỏ ở đại dương trở lại lớp phủ. Bởi quá trình tái chế này, phần lớn đáy đại dương không quá 100 triệu tuổi. Lớp vỏ đại dương già nhất là ở tây Thái Bình Dương và ước chừng khoảng 200 triệu tuổi.[75][76] Bên cạnh đó, lớp vỏ lục địa già nhất khoảng 4030 triệu tuổi.[77]

Các mảng lục địa khác bao gồm mảng Ấn Độ, mảng Ả Rập, mảng Caribe, mảng Nazca ở bờ phía tây Nam Mỹmảng Scotia ở nam Đại Tây Dương. Mảng Úc thực chất đã hợp nhất với mảng Ấn Độ trong khoảng từ 50 đến 55 triệu năm trước để tạo thành mảng Ấn-Úc. Các mảng kiến tạo di chuyển nhanh nhất là các mảng đại dương, với mảng Cocos di chuyển với tốc độ 75 mm mỗi năm[78] và mảng Thái Bình Dương di chuyển với tốc độ 52–69 mm mỗi năm. Ở một thái cực khác, mảng di chuyển chậm nhất là mảng Á-Âu, di chuyển với tốc độ bình thường 21 mm một năm.[79]

Bề mặt

Địa hình của Trái Đất ở mỗi vùng mỗi khác. Nước bao phủ khoảng 70,8%[80] bề mặt Trái Đất, với phần lớn thềm lục địa ở dưới mực nước biển. Bề mặt dưới mực nước biển hiểm trở bao gồm hệ thống các dãy núi giữa đại dương kéo dài khắp địa cầu, ví dụ như các núi lửa ngầm,[58] các rãnh đại dương, các hẻm núi dưới mặt biển, các cao nguyên đại dương và đồng bằng đáy. Còn lại 29,2% không bị bao phủ bởi nước; bao gồm núi, sa mạc, cao nguyên, đồng bằng và các địa hình khác.

Địa hình Trái Đất

Bề mặt của hành tinh liên tục tự thay đổi theo thời gian dưới tác dụng của các quá trình kiến tạo và xói mòn. Các hình thái của bề mặt được tạo nên và biến dạng bởi các mảng kiến tạo liên tục bị phong hóa bởi giáng thủy, các chu trình nhiệt và các tác nhân hóa học. Sự đóng băng, sự xói mòn bờ biển, sự hình thành của các dải san hô ngầm, và sự va chạm với các mảnh thiên thạch lớn cũng làm thay đổi địa hình.[81]

Lớp vỏ lục địa bao gồm các vật chất có độ đặc thấp hơn như đá macma granitandesit. Ít phổ biến hơn là bazan, một loại đá núi lửa đặc là thành phần chính của đáy biển.[82] Đá trầm tích được tạo ra do sự tăng số lượng trầm tích và chúng trở nên gắn kết với nhau. Đá trầm tích bao phủ gần 75% bề mặt lục địa, mặc dù chúng chỉ chiếm khoảng 5% lớp vỏ.[83] Loại đá thứ ba được tìm thấy trên Trái Đất là đá biến chất, được tạo ra do sự biến đổi của các loại đá trước đó dưới tác dụng của áp suất cao, nhiệt độ cao, hoặc cả hai. Các khoáng vật silicat ở bề mặt Trái Đất bao gồm thạch anh, felspat, amphibol, mica, pyroxen, olivin.[84] Các khoáng vật cacbonat bao gồm canxit (tìm thấy trong đá vôi), aragonit và dolomit.[85]

Thổ quyển là lớp ngoài cùng nhất của Trái Đất, được cấu tạo bởi đất và chịu tác động của các quá trình hình thành đất. Nó tồn tại cùng thạch quyển, khí quyển, thủy quyểnsinh quyển. Theo số liệu năm 2009, tổng diện tích đất trồng trọt được chiếm 10.57% tổng diện tích đất bề mặt, với chỉ 1.04% sử dụng được cho việc trồng trọt lâu dài.[5] Gần 40% diện tích đất bề mặt đang được sử dụng để trồng trọt hoặc làm đồng cỏ chăn nuôi, ước tính 1.3 ×107 km² dùng làm đất trồng và 3,4 ×107km² dùng làm đồng cỏ.[86] Độ cao so với mực nước biển của mặt đất thay đổi từ -418 m ở biển Chết tới 8.848 m trên đỉnh Everest và độ cao trung bình trên mặt nước biển là 840 m.[87]

Thủy quyển

Biểu đồ độ cao tuyệt đối
Đồ thị thể hiện độ cao của bề mặt Trái Đất. Nước bao phủ khoảng 71% bề mặt Trái Đất.

Nguồn nước dồi dào trên bề mặt đất là đặc điểm độc nhất, giúp phân biệt "Hành tinh xanh" với các hành tinh khác trong hệ Mặt Trời. Thủy quyển của Trái Đất chủ yếu bao gồm các đại dương, nhưng về lý thuyết nó bao gồm tất cả nước trên bề mặt đất, bao gồm biển nội địa, hồ, sôngmạch nước ngầm ở độ sâu tới 2.000 m. Khu vực sâu nhất dưới đáy biển là "Challenger Deep" thuộc rãnh MarianaThái Bình Dương với độ sâu 10.911,4 m.[note 10][88] Độ sâu trung bình của các đại dương là 3.800 m, lớn hơn 4 lần độ cao trung bình của các lục địa.[87] Khối lượng nước trong các đại dương xấp xỉ 1,35 ×1018 tấn, hoặc khoảng 1/4400 khối lượng của Trái Đất, và chiếm thể tích 1,386 ×109 km³. Nếu tất cả đất trên Trái Đất được trải phẳng ra, mực nước biển sẽ dâng lên cao hơn 2,7 km.[note 11] Khoảng 97,5% nước có chứa muối, còn lại 2,5% là nước ngọt và phần lớn nước ngọt, khoảng 68,7%, đang ở dạng băng.[89]

Khoảng 3,5% tổng khối lượng của các đại dương là muối và phần lớn lượng muối này được đẩy ra từ các hoạt động núi lửa hay tách ra từ đá macma nguội.[90] Các đại dương đều có chứa đầy khí hòa tan trong nước, yếu tố thiết yếu đối với sự sống của các sinh vật biển.[91] Nước biển có ảnh hưởng lớn tới khí hậu của cả thế giới và các đại dương có vai trò như nguồn giữ nhiệt.[92] Sự thay đổi trong phân bố nhiệt đại dương tạo ra sự thay đổi quan trọng về thời tiết, như El Nino.[93]

Khí quyển

Áp suất khí quyển trung bình tác dụng lên bề mặt Trái Đất là 101,325 kPa ở độ cao 8,5 km.[9] Không khí chứa 78% nitơ và 21% ôxy, còn lại là hơi nước, điôxít cacbon và các phân tử khí khác. Độ cao của tầng đối lưu thay đổi theo vĩ độ vào khoảng 8 km ở các vùng cực và 17 km ở xích đạo, với các sự thay đổi ảnh hưởng bởi các yếu tố mùathời tiết.[94]

Sinh quyển của Trái Đất tạo ra các thay đổi khá lớn đối với bầu khí quyển. Sự quang hợp oxy tiến hóa từ 2,7 tỷ năm trước, tạo ra bầu không khí chứa nitơ-oxy tồn tại ngày nay. Sự thay đổi này tạo điều kiện thuận lợi cho sự phổ biến của các vi sinh vật ưa khí, cũng như việc tầng ôzôn - cùng với từ trường của Trái Đất- đã ngăn chặn các tia phóng xạ, cho phép sự sống tồn tại trên Trái Đất. Các chức năng khác của khí quyển đối với sự sống bao gồm vận chuyển, cung cấp các loại khí hữu dụng, đốt cháy các thiên thạch nhỏ trước khi chúng chạm đất và điều hòa nhiệt độ.[95] Hiện tương cuối cùng được biết dưới cái tên hiệu ứng nhà kính: các phân tử khí thu nhiệt năng tỏa ra từ mặt đất, làm tăng nhiệt độ trung bình. Cacbon dioxit, hơi nước, metanozon là các khí nhà kính đầu tiên trong bầu khí quyển của Trái Đất. Nếu không có hiệu ứng duy trì nhiệt này, nhiệt độ trung bình bề mặt sẽ là -18 °C và sự sống sẽ không có khả năng tồn tại.[80]

Thời tiết và khí hậu

MODIS Map
Tổng hợp hình chụp vệ tinh địa tĩnh GOES của NESDIS độ phân giải trung bình (MODIS) chụp các khu vực bề mặt Trái Đất bị mây bao phủ 11/7/2005

Khí quyển của Trái Đất không có ranh giới xác định, ngày càng trở nên mỏng hơn và loãng vào không gian. Ba phần tư khối lượng của khí quyển tập trung trong khoảng 11 km từ bề mặt hành tinh. Tầng thấp nhất này được gọi là tầng đối lưu, ở đây năng lượng Mặt Trời sẽ đốt nóng nó và bề mặt đất làm không khí giãn nở. Lớp khí mật độ thấp này bay lên trên, và thay thế vào đó là lớp khí lạnh hơn, mật độ dày hơn. Kết quả tạo ra sự lưu thông không khí, cơ chế thay đổi thời tiếtkhí hậu thông qua sự phân phối lại nhiệt năng.[96]

Các vành đai lưu thông không khí bao gồm gió mậu dịch ở vùng xích đạo dưới vĩ độ 30° và gió tây hoạt động trong khu vực giữa vĩ độ 30° và 60°.[97] Các hải lưu cũng là những yếu tố quan trọng ảnh hưởng tới khí hậu, đặc biệt là sự luân chuyển nhiệt muối, phân phối lại nhiệt năng từ các đại dương nằm trên xích đạo về vùng cực.[98]

Hơi nước được sinh ra thông qua việc bốc hơi bề mặt, được vận chuyển bằng chu trình tuần hoàn trong khí quyển. Khi điều kiện không khí cho phép việc đẩy không khí nóng ẩm lên cao thì lượng nước này ngưng tụ và rơi xuống bề mặt gọi là giáng thủy. Phần lớn lượng nước này lại được vận chuyển trở về nơi bốc hơi, thường là các đại dương hoặc các hồ nước, nhờ hệ thống sông ngòi. Vòng tuần hoàn nước là một hiện tượng cần thiết cho sự sống và là yếu tố tham gia vào hiện tượng xói mòn địa hình trong suốt các thời kì địa chất. Các hiện tượng giáng thủy có khác biệt rất lớn, từ vài mét một năm tới chưa đầy một milimét. Sự lưu thông không khí, các đặc điểm địa hình và nhiệt độ khác nhau giúp xác định lượng giáng thủy trung bình ở mỗi vùng.[99]

Trái Đất có thể chia thành các đới có khí hậu đồng nhất theo vĩ độ. Từ xích đạo đến các cực lần lượt có các kiểu khí hậu: nhiệt đới, cận nhiệt đới, ôn đới, hàn đới (khí hậu vùng cực).[100] Khí hậu cũng có thể chia dựa trên nhiệt độ và lượng giáng thủy, với các vùng khí hậu đặc trưng có không khí đồng nhất. Hệ thống phân loại khí hậu Köppen (sau này được Rudolph Geiger, học trò của Wladimir Köppen, sửa đổi) chia Trái Đất thành 5 nhóm lớn (khí hậu kiểu nhiệt đới/đại nhiệt, khí hậu khô, khí hậu ôn đới/ trung nhiệt, khí hậu lục địa/ tiểu nhiệt, khí hậu vùng cực), sau đó lại được chia nhỏ hơn nữa.[97]

Tầng khí quyển trên

Full moon partially obscured by atmosphere
Hình ảnh chụp từ trên quỹ đạo cho thấy trăng tròn bị khí quyển Trái Đất làm che mờ một phần. Ảnh của NASA.

Phía trên tầng đối lưu, bầu không khí được chia thành tầng bình lưu, tầng trung lưutầng nhiệt. Mỗi tầng có một tỉ lệ giảm nhiệt độ theo độ cao khác nhau. Phía trên các tầng này, có tầng ngoài mỏng dần đi vào từ quyển. Đây là nơi từ trường của Trái Đất tương tác với gió Mặt Trời.[101] Một bộ phận của bầu khí quyển quan trọng cho sự sống là tầng ôzôn, một bộ phận của tầng bình lưu cản các tia cực tím. Đường Kármán nằm ở độ cao 100 km so với bề mặt Trái Đất là ranh giới giữa khí quyểnkhông gian.[102]

Dựa trên nhiệt năng, một số phân tử ở rìa ngoài khí quyển của Trái Đất có thể tự tăng tốc độ đến mức chúng có thể thoát khỏi lực hút của Trái Đất. Quá trình này diễn ra chậm nhưng không khí vẫn dần dần thoát vào không gian. Bởi hiđrô có khối lượng phân tử thấp, nên chúng có thể dễ dàng đạt tới vận tốc vũ trụ cấp 2 và chúng có tỉ lệ thoát vào không gian cao hơn hẳn các loại khí khác.[103] Quá trình rò rỉ hiđrô vào không gian là một yếu tố tham gia vào việc đẩy Trái Đất từ trạng thái khử lúc đầu sang trạng thái ôxi hóa hiện tại. Sự quang hợp là quá trình cung cấp ôxy tự do, nhưng người ta tin rằng sự biến mất của các chất khử như hiđrô là điều kiện cần thiết cho quá trình tăng lượng ôxy trong bầu khí quyển.[104] Quá trình hiđrô thoát khỏi khí quyển Trái Đất có thể đã ảnh hưởng giúp cho sự sống phát triển trên hành tinh.[105] Trong khí quyển giàu ôxy hiện tại, phần lớn hiđrô bị chuyển thành dạng nước trước khi chúng kịp thoát khỏi bầu khí quyển. Thay vào đó, phần lớn lượng hiđrô mất đi là từ sự phân hủy khí mêtan trong tầng thượng khí quyển.[106]

Từ trường

Từ trường của Trái Đất có hình dạng gần giống như một lưỡng cực từ, với các cực từ gần trùng với các địa cực của Trái Đất. Theo thuyết dynamo, từ trường Trái Đất được tạo ra trong vùng lõi ngoài nóng chảy của Trái Đất, nơi mà nhiệt lượng tạo ra các chuyển động đối lưu của các vật chất dẫn điện, tạo ra dòng điện. Các dòng điện này đến lượt mình tạo ra từ trường. Các chuyển động đối lưu trong lõi rất lộn xộn, chuyển hướng theo chu kỳ. Hiện tượng này là nguyên nhân của hiện tương đảo cực địa từ diễn ra định kì một vài lần trong mỗi triệu năm. Sự đảo cực quan sát rõ trong địa tầng gần đây nhất, xảy ra vào giữa Kỷ Đệ Tứ, 781000 năm trước, là Đảo ngược Brunhes-Matuyama.[107] Sự đảo cực ngắn gần đây nhất là sự kiện Laschamp xảy ra 41.000 năm trước, trong thời kỳ băng hà cuối cùng, trong đó thời gian đảo cực dài cỡ 440 năm.[108][109][110]

Từ trường tạo nên từ quyển làm lệch hướng các điện tử của gió Mặt Trời. "Sốc hình cung" hướng về phía Mặt Trời nằm ở khoảng cách gấp 13 lần bán kính Trái Đất. Sự va chạm giữa từ trường Trái Đất và gió Mặt Trời tạo ra vành đai bức xạ Van Allen, một cặp những vùng tích điện dạng vòng cung đồng tâm hình đế hoa. Khi thể plasma xâm nhập vào bầu khí quyển của Trái Đất ở các cực, chúng tạo ra cực quang.[111]

Quỹ đạo và chuyển động tự quay

Chuyển động tự quay

Đọc thêm: Tương tác hấp dẫn

Rotating earth (large)
Chuyển động tự quay quanh trục của Trái Đất

Chu kỳ tự quay của Trái Đất tương đối với Mặt Trời – một ngày Mặt Trời trung bình - vào khoảng 86.400 giây Mặt Trời trung bình. Mỗi giây này dài hơn một giây thuộc hệ SI một chút bởi ngày Mặt Trời hiện nay của Trái Đất dài hơn so với thế kỷ XIX do gia tốc thủy triều.[112]

Chu kỳ tự quay của Trái Đất xét từ các định tinh, được IERS gọi là ngày định tinh, dài 86.164,098903691 giây thời gian Mặt Trời trung bình (UT1) hay 23h 56m 4,098903691s.[113][114] Chu kì Trái Đất tự quay xét theo tuế sai hay chuyển động của xuân phân trung bình, bị đặt tên sai là năm thiên văn, dài 86.164,09053083288 giây Mặt Trời trung bình (UT1) hay 23h 56m 4,09053083288s.[113] Vì thế ngày thiên văn ngắn hơn ngày định tinh khoảng 8,4 ms.[115] Độ dài của ngày Mặt Trời trung bình tính theo giây hệ SI có sẵn tại IERS cho các giai đoạn từ 1623-2005.[116] và 1962-2005.[117]

Ngoài các thiên thạch trong khí quyển và các vệ tinh quỹ đạo thấp thì chuyển động biểu kiến chính của các thiên thể trên bầu trời Trái Đất là sang phía Tây với tốc độ 15° một giờ hay 15’ một phút. Điều này tương đương với đường kính biểu kiến của Mặt Trời và Mặt Trăng sau mỗi hai phút; kích thước góc của Mặt Trời và Mặt Trăng nhìn từ Trái Đất là gần như bằng nhau.[118][119]

Quỹ đạo

Quydaobonmua
Quỹ đạo Trái Đất và bốn mùa
Artist's impression of the Milky Way (updated - annotated)
Hình minh họa dải Ngân Hà, với vị trí của Mặt Trời tại giao các đường thẳng chia góc.
Hình vẽ của NASA/JPL-Caltech/R. Hurt.

Trái Đất quay trên quỹ đạo quanh Mặt Trời với khoảng cách trung bình 150 triệu km hết 365,2564 ngày Mặt Trời trung bình (1 năm thiên văn, số liệu đo được đến năm 2006)[xem thảo luận]. Quỹ đạo của Trái Đất xung quanh Mặt Trời gọi là đường hoàng đạo. Trên đường hoàng đạo có các điểm đặc biệt là : điểm cận nhật, điểm viễn nhật, điểm xuân phân, điểm hạ chí, điểm thu phân, điểm đông chí. Góc giữa điểm cận nhật và điểm xuân phân (tính theo chiều chuyển động) hiện nay khoảng 77° (mỗi năm góc này giảm khoảng 1'02"). Quan sát từ Trái Đất, chuyển động biểu kiến của Mặt Trời thể hiện bằng sự thay đổi vị trí tương đối của nó so với các ngôi sao, với vận tốc góc khoảng 1°/ngày, hay một khoảng cách bằng đường kính góc của Mặt Trăng hay Mặt Trời cứ sau mỗi 12 giờ về phía đông. Vì chuyển động này, trung bình nó mất 24 giờ - một ngày Mặt Trời - để Trái Đất hoàn thành một vòng tự quay quanh trục sao cho Mặt Trời lại trở lại đường Tý Ngọ (kinh tuyến thiên cầu). Vận tốc quỹ đạo của Trái Đất khoảng 30 km/s, đủ để đi hết quãng đường bằng đường kính Trái Đất (~12.700 km) trong 7 phút, hay khoảng cách đến Mặt Trăng (384.000 km) trong 3 giờ 33 phút.[120]

Mặt Trăng quay cùng Trái Đất một vòng quanh tâm khối chung hết 27,32 ngày so với các ngôi sao trên nền. Khi kết hợp với chu kỳ quay quanh Mặt Trời của hệ Trái Đất-Mặt Trăng thì thời gian của một tháng giao hội từ sóc này tới sóc kế tiếp là 29,53 ngày. Quan sát từ cực Bắc thiên cầu, chuyển động của Trái Đất, Mặt Trăng và sự tự quay quanh trục của chúng là ngược chiều kim đồng hồ. Nhìn từ một điểm cao thuận lợi trên cực Bắc của cả Trái Đất và Mặt Trời, Trái Đất dường như quay quanh Mặt Trời theo chiều ngược chiều kim đồng hồ. Mặt phẳng quỹ đạo và mặt phẳng trục không vuông góc với nhau: trục Trái Đất nghiêng một góc khoảng 66,16° so với mặt phẳng hoàng đạo và mặt phẳng Trái Đất-Mặt Trăng (còn gọi là mặt phẳng bạch đạo) nghiêng khoảng 5,14° so với mặt phẳng hoàng đạo. Nếu không có độ nghiêng như vậy thì cứ hai tuần lại có hiện tượng thực với nhật thựcnguyệt thực xen kẽ nhau.[120][121]

Lagrange points2
Trường hấp dẫn của Mặt Trời và Trái Đất tạo ra điểm Lagrange, nơi được cho là cân bằng hấp dẫn

Quyển Hill (đặt theo tên nhà thiên văn học người Mỹ George William Hill) là quyển (vùng không gian) tầm ảnh hưởng của lực hấp dẫn của Trái Đất, có bán kính khoảng 1,5 Gm (hay 1.500.000 km).[122][note 12] Đây là khoảng cách lớn nhất mà lực hấp dẫn của Trái Đất có thể thắng được lực hấp dẫn của Mặt Trời và các hành tinh khác. Các vật thể phải quay quanh Trái Đất trong khu vực này, hoặc chúng không bị trói buộc bởi lực hấp dẫn của Mặt Trời.

Trái Đất, cũng như toàn bộ hệ Mặt Trời nằm trong dải Ngân Hà, quay quanh tâm của Ngân Hà với khoảng cách 25.000-28.000 năm ánh sáng, với vận tốc khoảng 220 km/s, với chu kỳ khoảng 225-250 triệu năm. Hiện nay nó nằm ở vị trí cách phía trên mặt phẳng xích đạo của Ngân Hà khoảng 20 năm ánh sáng, trong nhánh xoắn ốc Orion.[123]

Độ nghiêng trục và các mùa

Do độ nghiêng trục quay của Trái Đất, lượng ánh sáng Mặt Trời chạm tới một điểm cho trước trên bề mặt thay đổi liên tục trong một năm. Kết quả là tạo ra hiện tượng mùa, với mùa hè xuất hiện ở Bắc Bán cầu khi cực Bắc hướng về phía Mặt Trời trong khi mùa đông xuất hiện ở cực Nam. Trong suốt mùa hè, ngày dài hơn và Mặt Trời lên cao hơn. Vào mùa đông, khí hậu trở nên lạnh hơn và ngày ngắn hơn. Trên vòng Bắc cực, hiện tượng cực điểm xảy ra khi không có ánh sáng ban ngày trong suốt một khoảng thời gian trong năm - một ban đêm vùng cực. Ở Nam bán cầu hiện tượng xảy ra theo trật tự nghịch đảo chính xác, do cực Nam luôn luôn ngược hướng với cực Bắc.

AxialTiltObliquity
Trục tự quay của Trái Đất nghiêng so với mặt phẳng hoàng đạo góc xấp xỉ 23,5°

Theo các quy ước thiên văn học, bốn mùa được xác định bởi các điểm chí- các điểm trên quỹ đạo mà trục tự quay của Trái Đất tạo thành góc có các giá trị cực trị (cực đại hay cực tiểu) khi so với đường thẳng về phía Mặt Trời - và các điểm phân, khi hướng của trục và hướng về phía Mặt Trời là vuông góc với nhau. Tại Bắc Bán cầu, đông chí diễn ra vào khoảng ngày 21 tháng 12, hạ chí diễn ra vào khoảng ngày 21 tháng 6, xuân phân xảy ra vào khoảng ngày 20 tháng 3 và thu phân diễn ra vào khoảng ngày 23 tháng 9.[124]

Góc nghiêng của trục Trái Đất (so với mặt phẳng hoàng đạo) là tương đối ổn định theo thời gian. Nhưng sự nghiêng của trục chịu sự tác động của chương động; một chuyển động không đều rất nhỏ với chu kỳ 18,6 năm. Hướng của trục Trái Đất (chứ không phải góc nghiêng) cũng thay đổi theo thời gian, tuế sai quay một vòng tròn kín với chu kỳ hơn 25.800 năm; tuế sai này là nguyên nhân cho sự khác biệt giữa năm thiên vănnăm chí tuyến. Tất cả các chuyển động này đều được tạo ra do lực hấp dẫn thay đổi của Mặt Trăng và Mặt Trời tác dụng lên phần lồi ra tại xích đạo của Trái Đất. Từ điểm nhìn của Trái Đất, các cực cũng di chuyển vài mét trên bề mặt. Chuyển động của các cực có nhiều thành phần có chu kỳ và phức tạp, được gọi chung là "chuyển động tựa chu kỳ". Ngoài thành phần hàng năm của chuyển động này, có một chu kỳ 14 tháng được gọi là dao động Chandler. Vận tốc tự quay của Trái Đất cũng thay đổi theo một hiện tượng được biết dưới tên gọi sự thay đổi độ dài của ngày.[125]

Trong kỷ nguyên J2000, điểm cận nhật của Trái Đất diễn ra vào 3 tháng 1, và điểm viễn nhật diễn ra vào 4 tháng 7. Nhưng, những thời điểm này thay đổi theo thời gian do tuế sai và các yếu tố quỹ đạo quay khác thay đổi theo một chu kỳ gọi là chu kỳ Milankovitch. Sự thay đổi khoảng cách giữa Mặt Trời và Trái Đất tạo ra sự tăng thêm khoảng 6,9% năng lượng Mặt Trời chạm tới Trái Đất tại điểm cận nhật so với điểm viễn nhật. Do Nam bán cầu hướng vế phía Mặt Trời vào khoảng xung quanh thời điểm khi Trái Đất gần Mặt Trời nhất, nên bán cầu này nhận được nhiều năng lượng hơn so với lượng năng lượng mà Bắc Bán cầu nhận được trong hành trình cả năm. Nhưng, hiệu ứng này là nhỏ hơn rất nhiều so với thay đổi năng lượng tổng cộng do độ nghiêng trục quay và phần lớn năng lượng dư này được hấp thụ bởi tỷ lệ nước cao hơn ở Nam bán cầu.[126]

Mặt Trăng

Full Moon Luc Viatour
Mặt Trăng với góc nhìn từ Trái Đất, tháng 10/2006.

Mặt Trăng là một vệ tinh đất đá tương đối lớn, tương tự như các hành tinh, có đường kính bằng khoảng 1/4 đường kính Trái Đất. Mặt Trăng là vệ tinh có kích thước lớn nhất, khi tính tương đối so với kích thước hành tinh nó quay quanh.

Lực hấp dẫn giữa Trái Đất và Mặt Trăng sinh ra thủy triều trên Trái Đất. Hiệu ứng tương tự trên Mặt Trăng dẫn đến khóa thủy triều của nó: chu kỳ tự quay của Mặt Trăng bằng với chu kỳ quay quanh Trái Đất. Kết quả là nó luôn luôn hướng một mặt về hướng Trái Đất. Khi Mặt Trăng quay quanh Trái Đất, các phần khác nhau trên bề mặt của nó được Mặt Trời chiếu sáng, nên có các pha của Mặt Trăng: phần sẫm trên bề mặt được phân cách với phần sáng bằng đường phân cách Mặt Trời.

Do sự tương tác thủy triều, Mặt Trăng ngày càng cách xa Trái Đất với tốc độ trung bình 38 mm mỗi năm. Trong suốt vài triệu năm, những sự thay đổi nhỏ này – và sự dài ra của ngày trên Trái Đất vào khoảng 23 µs một năm - đã tạo ra những sự thay đổi đáng kể.[127] Chẳng hạn, trong suốt kỷ Devon (vào khoảng 410 triệu năm trước) có 400 ngày trong một năm, với mỗi ngày kéo dài trong 21,8 giờ.[128]

Mặt Trăng tác động lên sự sống thông qua việc điều hòa khí hậu. Các chứng cứ hóa thạch và giả lập máy tính chỉ ra rằng độ nghiêng trục của Trái Đất được ổn định bởi tương tác thủy triều với Mặt Trăng.[129] Một số người cho rằng nếu không có sự ổn định này để chống lại các mômen xoắn do tác động của Mặt Trời và các hành tinh khác tới Trái Đất thì trục tự quay của Trái Đất có thể đã không ổn định và hỗn loạn, giống như trên Sao Hỏa.[130] Nếu trục tự quay của Trái Đất gần với mặt phẳng quỹ đạo, khí hậu Trái Đất có lẽ sẽ cực kỳ khắc nghiệt do tạo ra sự sai biệt theo mùa cực lớn. Một cực sẽ gần như hướng thẳng tới Mặt Trời và luôn trong mùa hè và cực kia luôn luôn trong mùa đông. Các nhà hành tinh học cho rằng khi đó phần lớn các loại hình sự sống cao cấp sẽ bị hủy diệt.[131] Điều này vẫn là một chủ đề gây tranh cãi và các nghiên cứu tiếp theo về Sao Hỏa - giống với Trái Đất về chu kỳ tự quay và độ nghiêng trục, nhưng không có vệ tinh đủ lớn hay lõi lỏng - có thể cung cấp các thông tin bổ sung.

Earth Moon Scale
Hình ảnh biểu diễn theo tỉ lệ khoảng cách giữa Trái Đất với Mặt Trăng và kích thước của chúng.

Mặt Trăng là vừa đủ xa để khi nhìn từ Trái Đất, có kính thước góc biểu kiến giống như Mặt Trời (Mặt Trời lớn hơn 400 lần, nhưng Mặt Trăng thì lại gần hơn 400 lần).[119] Điều này cho phép có hiện tượng nhật thực toàn phần cũng như nhật thực hình khuyên diễn ra trên Trái Đất.

Giả thuyết phổ biến nhất về nguồn gốc của Mặt Trăng cho rằng nó được tạo thành sau va đập của một tiền hành tinh, gọi là Theia có kích thước cỡ Sao Hỏa, với Trái Đất ở thời kỳ đầu. Giả thuyết này giải thích sự thiếu vắng sắt và các nguyên tố dễ bay hơi khác trên Mặt Trăng, và sự giống nhau giữa các thành phần đất của lớp vỏ Trái Đất cũng như Mặt Trăng.[132]

Bán vệ tinh

Mô phỏng bán vệ tinh 3753 Cruithne quay quanh Trái Đất theo quỹ đạo hình móng ngựa.

Trái Đất có một bán vệ tinh là 3753 Cruithne, đây là một tiểu hành tinh có đường kính khoảng 5 km quay quanh Mặt Trời nhưng đôi khi 3753 Cruithne được xem như vệ tinh thứ hai của Trái Đất do sự chuyển động phức tạp từ quỹ đạo của nó khiến nó trông như đang quay quanh Trái Đất theo Quỹ đạo hình móng ngựa. 3753 Cruithne phải mất đến 770 năm mới có thể quay hết một vòng quỹ đạo hình móng ngựa xung quanh Trái Đất.[133]

Giả thuyết vệ tinh thứ hai

Có nhiều giả thuyết về vệ tinh tự nhiên thứ hai của Trái Đất. Ý kiến đầu tiên là của Frederic Petit, sau đó là của Georg Waltermath.

Sự sống

Khu vực có thể sống được
Hình mô tả vùng trong Hệ Mặt Trời có điều kiện thuận lợi cho phát sinh sự sống tương ứng với tuổi đời của Mặt Trời

Hiện nay, Trái Đất là ví dụ duy nhất về một môi trường cho phép duy trì sự tiến hóa.[134] Trái Đất cung cấp các điều kiện cần thiết như nước, một môi trường mà các phân tử hữu cơ phức tạp có thể tổng hợp được, năng lượng vừa đủ cho quá trình trao đổi chất.[135] Khoảng cách từ Trái Đất tới Mặt Trời, độ lêch tâm của quỹ đạo quay, tỉ số quay, độ nghiêng trục quay, lịch sử địa chất Trái Đất, bầu không khí ổn định và từ trường bảo vệ tất cả đều là những điều kiện cần thiết để hình thành và duy trì sự sống trên hành tinh này.[136]

Sinh quyển

Các dạng sự sống trên hành tinh đôi khi được nói đến như là "sinh quyển". Người ta nói chung cho rằng sinh quyển Trái Đất bắt đầu tiến hóa cách đây khoảng 3,5 tỷ năm. Trái Đất là nơi duy nhất đã biết có sự sống tồn tại. Các nhà khoa học cho rằng một sinh quyển như ở Trái Đất là rất hiếm.[137]

Sinh quyển được phân chia thành một số quần xã sinh vật, bao gồm các hệ thực vật và hệ động vật tương đối giống nhau sinh sống. Các quần xã sinh vật được phân chia chủ yếu theo vĩ độ và theo độ cao trên mực nước biển. Các quần xã sinh vật nằm trong phạm vi vòng Bắc cựcvòng Nam cực là tương đối hiếm về thực vật và động vật, trong khi phần lớn các quần xã sinh vật phong phú về chủng loại nhất nằm gần đường xích đạo.[138]

Sinh quyển của Trái Đất tạo ra các thay đổi khá lớn đối với bầu khí quyển và, ngược lại, cũng nhờ có bầu khí quyển mà có những bước phát triển đáng kể. Sự quang hợp sinh ôxy tiến triển từ 2,7 tỷ năm trước đã tạo ra bầu không khí chứa nitơ-ôxy tồn tại như ngày nay. Sự thay đổi này tạo điều kiện thuận lợi cho sự phổ biến của các vi sinh vật hiếu khí, cũng như việc tầng ôzôn - cùng với từ trường của Trái Đất- đã ngăn chặn các tia phóng xạ, cho phép sự sống tồn tại trên Trái Đất. Các chức năng khác của khí quyển đối với sự sống bao gồm vận chuyển, cung cấp các loại khí hữu dụng, đốt cháy các thiên thạch nhỏ trước khi chúng va chạm với mặt đất và điều hòa nhiệt độ.[139] Hiện tượng cuối cùng được biết dưới cái tên hiệu ứng nhà kính: các phân tử khí thu nhiệt năng tỏa ra từ mặt đất, làm tăng nhiệt độ trung bình. Điôxít cacbon, hơi nước, mêtanôzôn là các khí nhà kính đầu tiên trong bầu khí quyển của Trái Đất. Nếu không có hiệu ứng duy trì nhiệt này, nhiệt độ trung bình bề mặt sẽ là -18 °C và sự sống sẽ không có khả năng tồn tại.[80]

Con người

Địa lý con người

Earth's City Lights by DMSP, 1994-1995 (large)
Trái Đất về đêm, sự kết hợp của các dữ liệu chiếu sáng mặt đất của DMSP/OLS trên hình ảnh về đêm giả lập của địa cầu. Hình ảnh này không phải là hình chụp và nhiều chi tiết có thể sáng hơn so với những gì một người quan sát trực tiếp có thể thấy.

Trái Đất là nơi sinh sống của hơn 7.550.000.000 người tính đến tháng 11 năm 2017,[140] và các dự án nghiên cứu chỉ ra rằng dân số thế giới sẽ đạt tới 9,2 tỷ vào năm 2050.[141] Phần lớn sự gia tăng này diễn ra ở các nước đang phát triển. Mật độ dân số rất đa dạng ở khắp nơi trên thế giới, nhưng phần lớn sống ở châu Á. Năm 2020, 60% dân số thế giới sẽ sống ở các thành thị thay vì nông thôn.[142]

Ước tính rằng chỉ có một phần tám bề mặt Trái Đất thích hợp cho con người sinh sống - ba phần tư bề mặt bị bao phủ bởi nước, và một nửa diện tích đất hoặc là sa mạc (14 %),[143] hoặc là núi cao (27%),[144] hoặc các địa hình không phù hợp khác. Điểm tận cùng ở cực bắc có thể sống lâu dài là Alert, trên đảo EllesmereNunavut, Canada[145] (82°28' vĩ bắc). Điểm tận cùng ở cực nam là trạm Nam Cực Amundsen-Scott, gần như trùng Nam cực(90° vĩ nam).

Các quốc gia độc lập đã tuyên bố chủ quyền với tất cả đất trên bề mặt, ngoại trừ một vài phần ở châu Nam Cực. Tính đến năm 2007 có 201 nhà nước có chủ quyền, bao gồm 192 thành viên của Liên Hợp Quốc. Thêm vào đó, có 59 lãnh thổ phụ thuộc và một số vùng tự trị, các lãnh thổ đang tranh chấp hoặc các chính thể khác. Trong lịch sử, Trái Đất chưa bao giờ là một chính thể có chủ quyền với quyền lực bao trùm cả thế giới, dù một số quốc gia đã chiếm được vị trí thống trị và rồi sụp đổ.[146]

Liên Hợp Quốc là một tổ chức quốc tế với quy mô toàn thế giới, được thành lập nhằm can thiệp vào các cuộc tranh chấp giữa các quốc gia, ngăn chặn những cuộc xung đột vũ trang.[147] Tuy nhiên, Liên Hợp Quốc chưa bao giờ là một chính thể toàn thế giới. Trong khi Liên Hợp Quốc tạo ra một cơ chế cho luật quốc tế và khi có sự đồng ý của các thành viên, tham gia can thiệp vũ trang,[148] thì nó chủ yếu phục vụ như là một diễn đàn cho ngoại giao quốc tế.

Người đầu tiên bay vòng quanh Trái Đất là Yuri Alekseyevich Gagarin vào ngày 12 tháng 4 năm 1961.[149] Tính đến năm 2004, tổng cộng đã có khoảng 400 người đã du hành vào không gian và tham gia bay vòng quanh Trái Đất, trong đó có 12 người đã đặt chân lên Mặt Trăng.[150][151][152] Thông thường, chỉ có vài người sống trong không gian đó là những người làm việc tại Trạm Vũ trụ Quốc tế (ISS). Phi hành đoàn của trạm gồm 6 người được thay thế liên tục sau mỗi 6 tháng.[153] Con người đi xa nhất khỏi Trái Đất vào năm 1970, khi phi hành đoàn của tàu Apollo 13 ở cách Trái Đất 400.171 km.[154][155]

Con người với Trái Đất

Sử dụng đất thế giới năm 2003
Cách sử dụng đất Tỉ lệ phần trăm
Đất trồng được: 10.57%[156]
Đất trồng cây lâu năm: 1.04%[157]

Trái Đất cung cấp những tài nguyên có thể được con người sử dụng cho nhiều mục đích. Một vài trong số đó là những nguồn tài nguyên không tái tạo và rất khó tạo ra trong một thời gian ngắn như các loại nhiên liệu hóa thạch.

Các nguồn nhiên liệu hóa thạch lớn được lấy từ lớp vỏ Trái Đất, bao gồm than đá, dầu mỏ, khí thiên nhiênmetan hydrat. Các loại nhiên liệu này được sử dụng để tạo ra năng lượng và làm nguồn nguyên liệu sản xuất các chất hóa học. Quặng khoáng sản được hình thành trong lớp vỏ Trái Đất thông qua quá trình hình thành quặng, tạo ra từ các hoạt động xói mòn và kiến tạo mảng.[158] Các dạng quặng này tập trung nhiều kim loại cũng như các nguyên tố hữu dụng khác.

Sinh quyển Trái Đất tạo ra các sản phẩm sinh học có ích cho con người bao gồm thức ăn, gỗ, dược phẩm, khí ôxy và tái chế nhiều chất thải hữu cơ. Hệ sinh thái lục địa phụ thuộc vào tầng đất mặt và nước sạch còn hệ sinh thái đại dương dựa vào các chất dinh dưỡng hòa tan trong nước được rửa trôi từ đất liền ra.[159] Con người cũng sống trên đất bằng cách sử dụng các vật liệu xây dựng để kiến thiết nhà cửa. Tổng diện tích đất được tưới tiêu vào năm 2005 là 2.770.980 km².[156]

Cuộc sống của con người cũng chịu những tác động xấu từ các dạng thời tiết chu kì như bão, áp thấp nhiệt đới hay các biến động bất thường như động đất, lở đất, sóng thần, phun trào núi lửa, lốc xoáy, sụt đất, bão tuyết, lũ lụt, hạn hán và các thảm họa thiên tai khác.

Con người cũng là thủ phạm của nhiều xáo trộn tiêu cực cho Trái Đất, nhiều trong số đó ảnh hưởng lại chính con người: sự ô nhiễm không khí và nguồn nước, mưa axít và các chất độc hại khác, sự biến mất của thảm thực vật (chăn thả quá mức, nạn chặt phá rừng, sa mạc hóa) và của động vật hoang dã (tuyệt chủng loài), hiện tượng bạc màu đất, sự mất đất, sự xói mòn và sự xuất hiện của các sinh vật xâm hại.

Người ta đồng ý rằng có một mối liên hệ giữa các hoạt động của con người với hiện tượng nóng lên toàn cầu do sự phát thải khí điôxít cacbon trong các hoạt động công nghiệp. Hiện tượng này làm tan băng, gia tăng các dải nhiệt độ khắc nghiệt, biến đổi khí hậu lớn và mực nước biển dâng cao.[160]

Quan điểm văn hóa

AS8-13-2329
Bức ảnh đầu tiên chụp cảnh "Trái Đất mọc" từ Mặt Trăng; bức ảnh đã làm thay đổi cảm nhận của công chúng về vai trò của Trái Đất

Ký hiệu thiên văn tiêu chuẩn cho Trái Đất là một hình chữ thập có đường tròn bao quanh.[161]

Trái Đất thường được nhân cách hóa như một vị thần, thường là một nữ thần. Trong nhiều nền văn hóa, nữ thần Mẹ hay Mẹ Trái Đất tượng trưng cho một vị thần sinh sôi nảy nở. Các thần thoại về sự sáng thế trong nhiều tôn giáo gợi nhớ về câu chuyện tạo ra Trái Đất của một vị thần/các vị thần siêu nhiên. Các nhóm tôn giáo khác nhau, thường gắn với các nhánh chính thống của Tin Lành[162] hay Hồi giáo,[163] khẳng định rằng các giải thích của họ về thần thoại sáng thế trong các kinh sách là sự thật và nên được xem xét cùng với hay thay thế cho các miêu tả khoa học thông thường về sự hình thành Trái Đất cũng như nguồn gốc và phát triển của sự sống.[164] Cộng đồng các nhà khoa học[165][166] và một số nhóm tôn giáo khác đã bác bỏ khẳng định này.[167][168][169] Ví dụ nổi bật nhất là tranh luận sáng thế-tiến hóa.

Trong quá khứ, có nhiều mức độ niềm tin khác nhau vào một Trái Đất phẳng,[170] nhưng nó đã được thay thế bằng khái niệm Trái Đất cầu nhờ các quan sát và các chuyến đi vòng quanh Trái Đất.[171] Hình ảnh của Trái Đất dưới cách nhìn của con người đã thay đổi với sự ra đời của các chuyến bay của tàu vũ trụ, và giờ đây con người xem xét sinh quyển dưới một góc nhìn tổng thể toàn cầu.[172][173] Nó được phản ánh qua phong trào môi trường đang lên, quan tâm tới ảnh hưởng của nhân loại lên hành tinh xanh này.[174]

Xem thêm

Chú thích

  1. ^ Tất cả các đại lượng thiên văn đều liên tục thay đổi. Các đại lượng dưới đây được xác định vào kỷ nguyên J2000.0, loại bỏ tất cả các thay đổi định kỳ.
  2. ^ Blue planet (hành tinh xanh) được sử dụng làm tiêu đề cho một số bộ phim như 'Blue Planet' và 'The Blue Planet', trong tạp chí Life số The Incredible Year '68 nổi bật bởi bức ảnh 'Earthrise' cùng với vài dòng chữ của nhà thơ James Dickey Behold/The blue planet steeped in its dream/Of reality [10] trang 7-8,[11] và tiêu đề của bản báo cáo từ Cơ quan Vũ trụ châu Âu Exploring the water cycle of the 'Blue Planet' [12]
  3. ^ Các hành tinh khác trong hệ Mặt Trời đều quá lạnh hoặc quá nóng để có thể tồn tại nước ở dạng lỏng. Nhưng nước ở dạng lỏng được xác nhận rằng đã từng tồn tại trên bề mặt Sao Hỏa trong quá khứ, và có thể vẫn còn tồn tại cho đến ngày nay.[20] Có nhiều nhà nghiên cứu khẳng định sự tồn tại của nước trên hành tinh khác.[21][22] Xem thêm các nguồn.[21]
  4. ^ Vào năm 2007, hơi nước được phát hiện thấy trong lớp không khí xung quanh một hành tinh ngoài hệ Mặt Trời, và nó là một hành tinh khí khổng lồ. Xem: Tinetti, G. và đồng nghiệp (tháng 7 năm 2007). “Water vapour in the atmosphere of a transiting extrasolar planet”. tờ Nature. tập 448: 169–171. doi:10.1038/nature06002.
  5. ^ Số ngày trong dương lịch nhỏ hơn một chút so với số ngày trong năm thiên văn do chuyển động quay của Trái Đất quanh Mặt Trời tạo ra thêm một chuyển động quay của Trái Đất quanh trục.
  6. ^ Bài viết này là bản dịch một phần bài viết "Petrology" trong Encyclopædia Britannica, phiên bản 11, một ấn phẩm hiện nay thuộc phạm vi cộng đồng.
  7. ^ Phụ thuộc vào từng khu vực thay đổi trong khoảng 5 và 200 km.
  8. ^ Phụ thuộc vào từng khu vực thay đổi trong khoảng 5 và 70 km.
  9. ^ tính cả mảng Somali, mảng này đang trong quá trình tách khỏi mảng châu Phi. Xem: Chorowicz, Jean (tháng 10 năm 2005). “The East African rift system”. Tờ Journal of African Earth Sciences 43 (1–3): trang 379–410. doi:10.1016/j.jafrearsci.2005.07.019.
  10. ^ Số liệu này được đo bởi tàu Kaikō vào tháng 3 năm 1995 và người ta tin rằng đây là con số chính xác nhất từng được đo. Xem bài (tiếng Anh) để biết thêm thông tin chi tiết.
  11. ^ Tổng thể tích của tất cả các đại dương trên thế giới là: 1.4×109 km3. Tổng diện tích bề mặt Trái Đất là 5.1×108km². Nên, theo phép tính xấp xỉ, độ sâu trung bình là tỉ số giữa hai đại lượng trên hay 2.7 km.
  12. ^ Đối với Trái Đất, bán kính của quyển Hill là:
    ,
    trong đó m là khối lượng của Trái Đất, a là đơn vị thiên văn, và M là khối lượng của Mặt Trời. Nên bán kính tính theo AU là:
    .

Tham khảo

  1. ^ a ă Các nhóm hoạt động thuộc IERS (2003). “General Definitions and Numerical Standards”. Trong McCarthy, Dennis D.; Petit, Gérard. IERS Technical Note No. 32 (bằng tiếng Anh). U.S. Naval Observatory and Bureau International des Poids et Mesures. Truy cập ngày 2 tháng 4 năm 2019.
  2. ^ a ă Cazenave, Anny (1995). “Geoid, Topography and Distribution of Landforms”. Trong Ahrens, Thomas J. Global earth physics a handbook of physical constants (PDF) (bằng tiếng Anh). Washington, DC: American Geophysical Union. ISBN 0-87590-851-9. Truy cập ngày 2 tháng 4 năm 2019.
  3. ^ Nhiều tác giả (năm 2000). David R. Lide, biên tập. Handbook of Chemistry and Physics (bằng tiếng Anh) . CRC. ISBN 0849304814. Kiểm tra giá trị ngày tháng trong: |date= (trợ giúp)
  4. ^ Pidwirny, Michael (ngày 2 tháng 2 năm 2006). “Surface area of our planet covered by oceans and continents.(Table 8o-1)” (bằng tiếng Anh). Đại học British Columbia, Okanagan. Truy cập ngày 26 tháng 11 năm 2007.
  5. ^ a ă Staff (ngày 24 tháng 7 năm 2008). “World”. The World Factbook (bằng tiếng Anh). Central Intelligence Agency. Truy cập ngày 5 tháng 8 năm 2008.
  6. ^ Do sự thay đổi liên tục của tự nhiên, cũng như sự mập mờ xung quanh các mặt băng, "and mapping conventions for vertical datums", con số chính xác về diện tích bao phủ của nước và đất là không cần thiết. Dựa trên các thông tin từ "Vector Map" và http://www-gem.jrc.it/ Global Landcover], các hồ nước và hơi nước che phủ tôi đa 0,6% và 1,0% bề mặt Trái Đất. Chú ý rằng lớp băng của Nam cực đảo Greenland được tính như mặt đất, dù phần lớn phần đá của chúng nằm dưới mực nước biển.
  7. ^ Yoder, C. F. (1995) p. 12.
  8. ^ Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities (bằng tiếng Anh). Springer. tr. 296. ISBN 0387987460.
  9. ^ a ă â Williams, David R. (ngày 1 tháng 9 năm 2004). “Earth Fact Sheet” (bằng tiếng Anh). NASA. Truy cập ngày 17 tháng 3 năm 2007.
  10. ^ 2539_CH01
  11. ^ Google book
  12. ^ http://www.esa.int/esapub/bulletin/bulletin137/bul137b_drinkwater.pdf
  13. ^ May, Robert M. (1988). “Có bao nhiêu loài sinh vật trên Trái Đất?-How many species are there on earth?. Tờ Science (bằng tiếng Anh). tập 241 (số 4872): trang 1441–1449. PMID 17790039. doi:10.1126/science.241.4872.1441. Truy cập ngày 14 tháng 8 năm 2007.
  14. ^ a ă Dalrymple, G.B. (1991). Tuổi của Trái Đất-The Age of the Earth (bằng tiếng Anh). California: Stanford University Press. ISBN 0-8047-1569-6.
  15. ^ a ă Newman, William L. (ngày 9 tháng 7 năm 2007). “Age of the Earth” (bằng tiếng Anh). USGS. Truy cập ngày 20 tháng 9 năm 2007.
  16. ^ a ă Dalrymple, G. Brent (2001). “The age of the Earth in the twentieth century: a problem (mostly) solved”. Tờ Geological Society, Luân Đôn, Special Publications (bằng tiếng Anh). tập 190: trang 205–221. doi:10.1144/GSL.SP.2001.190.01.14. Truy cập ngày 20 tháng 9 năm 2007.
  17. ^ a ă Stassen, Chris (ngày 10 tháng 9 năm 2005). “The Age of the Earth” (bằng tiếng Anh). trang web TalkOrigins Archive. Truy cập ngày 30 tháng 12 năm 2008.
  18. ^ Harrison, Roy M.; Hester, Ronald E. (2002). Causes and Environmental Implications of Increased UV-B Radiation (bằng tiếng Anh). Royal Society of Chemistry. ISBN 0854042652.
  19. ^ a ă Carrington, Damian (ngày 21 tháng 2 năm 2000). “Date set for desert Earth” (bằng tiếng Anh). BBC News. Truy cập ngày 31 tháng 3 năm 2007.
  20. ^ a ă Sao Hỏa là hành tinh giống Trái Đất nhất trong Hệ Mặt Trời.
  21. ^ a ă Malik, Tariq (ngày 2 tháng 3 năm 2007). “Rover reveals Mars was once wet enough for life”. Space.com (qua MSNBC). Truy cập ngày 28 tháng 8 năm 2007.
  22. ^ “Simulations Show Liquid Water Could Exist on Mars”. Daily Headlines (Đại học Arkansas). Ngày 7 tháng 11 năm 2005. Truy cập ngày 8 tháng 8 năm 2007.
  23. ^ Trái Đất là một hành tinh có nước và không khí.
  24. ^ Yoder Charles F. (1995:8).
  25. ^ Bowring, S. (1995). “The Earth's early evolution”. Tờ Science (bằng tiếng Anh). tập 269: trang 1535. PMID 7667634. doi:10.1126/science.7667634.
  26. ^ Yin, Qingzhu; Jacobsen, S. B.; Yamashita, K.; Blichert-Toft, J.; Télouk, P.; Albarède, F. (2002). “A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites”. Tờ Nature (bằng tiếng Anh). tập 418 (số 6901): trang 949–952. doi:10.1038/nature00995.
  27. ^ Kleine, Thorsten; Palme, Herbert; Mezger, Klaus; Halliday, Alex N. (ngày 24 tháng 11 năm 2005). “Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon”. Tờ Science (bằng tiếng Anh). tập 310 (số 5754): trang 1671–1674. doi:10.1126/science.1118842.
  28. ^ Canup, R. M.; Asphaug, E. (2001). “An impact origin of the Earth-Moon system”. Abstract #U51A-02 (bằng tiếng Anh). American Geophysical Union. Truy cập ngày 10 tháng 3 năm 2007.
  29. ^ Morbidelli, A.; Chambers, J.; Lunine, J. I.; Petit, J. M.; Robert, F.; Valsecchi, G. B.; Cyr, K. E. (2000). “Source regions and time scales for the delivery of water to Earth”. Meteoritics & Planetary Science (bằng tiếng Anh). tập 35 (số 6): trang 1309–1320. Truy cập ngày 6 tháng 3 năm 2007.
  30. ^ Rogers, John James William; Santosh, M. (2004). Continents and Supercontinents (bằng tiếng Anh). Oxford University Press US. tr. trang 48. ISBN 0195165896.
  31. ^ Hurley, P.M.; Rand, J.R. (1969). “Pre-drift continental nuclei”. Tờ Science (bằng tiếng Anh). tập 164: trang 1229–1242. PMID 17772560. doi:10.1126/science.164.3885.1229.
  32. ^ Armstrong, R.L. (1968). “A model for the evolution of strontium and lead isotopes in a dynamic earth”. Rev. Geophys. (bằng tiếng Anh). tập 6: trang 175–199. doi:10.1029/RG006i002p00175.
  33. ^ De Smet, J (2000). “Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle”. Tờ Tectonophysics (bằng tiếng Anh). tập 322: trang 19. doi:10.1016/S0040-1951(00)00055-X.
  34. ^ Harrison, Tm; Blichert-Toft, J; Müller, W; Albarede, F; Holden, P; Mojzsis, Sj (2005). “Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 ga.”. Science (New York, N.Y.) (bằng tiếng Anh). tập 310 (số 5756): trang 1947–50. PMID 16293721. doi:10.1126/science.1117926.
  35. ^ Hong, D (2004). “Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt”. Journal of Asian Earth Sciences (bằng tiếng Anh). tập 23: trang 799. doi:10.1016/S1367-9120(03)00134-2.
  36. ^ Armstrong, R.L. (1991). “The persistent myth of crustal growth”. Tờ Australian Journal of Earth Sciences (bằng tiếng Anh). tập 38: trang 613–630. doi:10.1080/08120099108727995.
  37. ^ Murphy, J. B.; Nance, R. D. (1965). “How do supercontinents assemble?”. Tờ American Scientist (bằng tiếng Anh). tập 92: trang 324–33. doi:10.1511/2004.4.324. Truy cập ngày 5 tháng 3 năm 2007.
  38. ^ Purves, William Kirkwood; Sadava, David; Orians, Gordon H.; Heller, Craig (năm 2001). Life, the Science of Biology: The Science of Biology (bằng tiếng Anh). Macmillan. tr. trang 455. ISBN 0716738732. Kiểm tra giá trị ngày tháng trong: |date= (trợ giúp)
  39. ^ Doolittle, W. Ford (2000). “Uprooting the tree of life”. Tờ Scientific American (bằng tiếng Anh). tập 282 (số 6): trang 90–95. doi:10.1038/nature03582.
  40. ^ Berkner, L. V.; Marshall, L. C. (1965). “On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere”. Tờ Journal of Atmospheric Sciences (bằng tiếng Anh). tập 22 (số 3): trang 225–261. doi:10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2. Truy cập ngày 5 tháng 3 năm 2007.
  41. ^ Burton, Kathleen (ngày 29 tháng 11 năm 2002). “Astrobiologists Find Evidence of Early Life on Land” (bằng tiếng Anh). NASA. Truy cập ngày 5 tháng 3 năm 2007.
  42. ^ Kirschvink, J. L. (1992). Schopf, J.W.; Klein, C. & Des Maris, D., biên tập. Late Proterozoic low-latitude global glaciation: the Snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study (bằng tiếng Anh). Cambridge University Press. tr. trang 51–52. ISBN 0521366151.
  43. ^ Raup, D. M.; Sepkoski, J. J. (1982). “Mass Extinctions in the Marine Fossil Record”. Tờ Science (bằng tiếng Anh). tập 215 (số 4539): trang 1501–1503. PMID 17788674. doi:10.1126/science.215.4539.1501. Truy cập ngày 5 tháng 3 năm 2007.
  44. ^ Gould, Stephan J. (1994). “The Evolution of Life on Earth”. tờ Scientific American (bằng tiếng Anh). Truy cập ngày 5 tháng 3 năm 2007.
  45. ^ Wilkinson, B. H.; McElroy, B. J. (2007). “The impact of humans on continental erosion and sedimentation”. tờ Bulletin of the Geological Society of America (bằng tiếng Anh). tập 119 (số 1–2): trang 140–156. doi:10.1130/B25899.1. Truy cập ngày 22 tháng 4 năm 2007.
  46. ^ Staff. “Paleoclimatology - The Study of Ancient Climates” (bằng tiếng Anh). Page Paleontology Science Center. Truy cập ngày 2 tháng 3 năm 2007.
  47. ^ a ă â Sackmann, I.-J.; Boothroyd, A. I.; Kraemer, K. E. (1993). “Our Sun. III. Present and Future” (PDF). tờ Astrophysical Journal (bằng tiếng Anh). tập 418: trang 457–468. Bibcode:1993ApJ...418..457S. doi:10.1086/173407. Truy cập ngày 8 tháng 7 năm 2008.
  48. ^ Kasting, J.F. (1988). “Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus”. tờ Icarus (bằng tiếng Anh). tập 74: trang 472–494. doi:10.1016/0019-1035(88)90116-9. Truy cập ngày 31 tháng 3 năm 2007.
  49. ^ a ă Ward and Brownlee (2002).
  50. ^ Britt, Robert (ngày 25 tháng 2 năm 2000). “Freeze, Fry or Dry: How Long Has the Earth Got?” (bằng tiếng Anh). Bản gốc lưu trữ ngày 6 tháng 7 năm 2000.
  51. ^ Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L. (2009). “Atmospheric Pressure as a Natural Climate Regulator for a Terrestrial Planet with a Biosphere” (PDF). tờ Proceedings of the National Academy of Sciences (bằng tiếng Anh). tập 1-6 (số 24): trang 9576–9579. doi:10.1073/pnas.0809436106. Truy cập ngày 19 tháng 7 năm 2009.
  52. ^ Guillemot, H.; Greffoz, V. (2002). “Ce que sera la fin du monde”. Tờ Science et Vie (bằng tiếng Pháp). tậpN° 1014.
  53. ^ Bounama, Christine; Siegfried Franck and Werner von Bloh (2001). “The fate of Earth’s ocean” (PDF). Hydrology and Earth System Sciences (bằng tiếng Anh) (Germany: Potsdam Institute for Climate Impact Research) tập5 (số 4): trang 569–575. Truy cập ngày 3 tháng 7 năm 2009.
  54. ^ a ă Schröder, K.-P.; Smith, Robert Connon (2008). “Distant future of the Sun and Earth revisited”. Tờ Monthly Notices of the Royal Astronomical Society (bằng tiếng Anh). tập386: trang 155. doi:10.1111/j.1365-2966.2008.13022.x. arXiv:0801.4031.
    See also Palmer, Jason (ngày 22 tháng 2 năm 2008). “Hope dims that Earth will survive Sun's death”. NewScientist.com news service (bằng tiếng Anh). Truy cập ngày 24 tháng 3 năm 2008.
  55. ^ Stern, David P. (ngày 25 tháng 11 năm 2001). “Planetary Magnetism” (bằng tiếng Anh). NASA. Truy cập ngày 1 tháng 4 năm 2007.
  56. ^ Tackley, Paul J. (ngày 16 tháng 6 năm 2000). “Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory”. Science (bằng tiếng Anh). tập288 (số 5473): trang 2002–2007. PMID 10856206. doi:10.1126/science.288.5473.2002.
  57. ^ Milbert, D. G.; Smith, D. A. “Converting GPS Height into NAVD88 Elevation with the GEOID96 Geoid Height Model” (bằng tiếng Anh). National Geodetic Survey, NOAA. Truy cập ngày 7 tháng 3 năm 2007.
  58. ^ a ă Sandwell, D. T.; Smith, W. H. F. (ngày 7 tháng 7 năm 2006). “Exploring the Ocean Basins with Satellite Altimeter Data” (bằng tiếng Anh). NOAA/NGDC. Truy cập ngày 21 tháng 4 năm 2007.
  59. ^ Mohr, P.J.; Taylor, B.N. (2000). “Unit of length (meter)”. NIST Reference on Constants, Units, and Uncertainty (bằng tiếng Anh). NIST Physics Laboratory. Truy cập ngày 23 tháng 4 năm 2007.
  60. ^ Senne, Joseph H. (2000). “Did Edmund Hillary Climb the Wrong Mountain”. Tờ Professional Surveyor (bằng tiếng Anh). tập20 (số 5): trang 16–21.
  61. ^ Sharp, David (ngày 5 tháng 3 năm 2005). “Chimborazo and the old kilogram”. Tờ The Lancet (bằng tiếng Anh). tập365 (số 9462): trang 831–832. doi:10.1016/S0140-6736(05)71021-7.
  62. ^ Morgan, J. W.; Anders, E. (1980). “Chemical composition of Earth, Venus, and Mercury”. Tờ Proceedings of the National Academy of Science (bằng tiếng Anh). tập71 (số 12): trang 6973–6977. PMID 16592930. doi:10.1073/pnas.77.12.6973. Truy cập ngày 4 tháng 2 năm 2007.
  63. ^ Kerr, Richard A. (ngày 26 tháng 9 năm 2005). “Earth's Inner Core Is Running a Tad Faster Than the Rest of the Planet”. Science (bằng tiếng Anh) 309 (5739): 1313. PMID 16123276. doi:10.1126/science.309.5739.1313a.
  64. ^ Jordan, T. H. (1979). “Structural Geology of the Earth's Interior”. Tờ Proceedings National Academy of Science (bằng tiếng Anh) 76 (9): 4192–4200. PMID 16592703. doi:10.1073/pnas.76.9.4192. Truy cập ngày 24 tháng 3 năm 2007.
  65. ^ Robertson, Eugene C. (ngày 26 tháng 7 năm 2001). “The Interior of the Earth” (bằng tiếng Anh). USGS. Truy cập ngày 24 tháng 3 năm 2007.
  66. ^ a ă â Turcotte, D. L.; Schubert, G. (2002). “chương 4”. Geodynamics (PDF) (bằng tiếng Anh) . Cambridge, Anh: Nhà in Đại học Cambridge. tr. trang 136–137. ISBN 978-0-521-66624-4.
  67. ^ Sanders, Robert (ngày 10 tháng 12 năm 2003). “Radioactive potassium may be major heat source in Earth's core” (bằng tiếng Anh). UC Berkeley News. Truy cập ngày 28 tháng 2 năm 2007.
  68. ^ Alfè, D.; Gillan, M. J.; Vocadlo, L.; Brodholt, J; Price, G. D. (2002). “The ab initio simulation of the Earth's core” (dạng PDF). Philosophical Transaction of the Royal Society of London (bằng tiếng Anh) 360 (1795): tr. 1227–1244. Truy cập ngày 28 tháng 2 năm 2007.
  69. ^ Vlaar, N (1994). “Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle”. Earth and Planetary Science Letters (bằng tiếng Anh) 121: 1. doi:10.1016/0012-821X(94)90028-0.
  70. ^ a ă Sclater, John G (1981). “Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss”. Tờ Journal of Geophysical Research (bằng tiếng Anh). tập 86: trang 11535. doi:10.1029/JB086iB12p11535.
  71. ^ Richards, M. A.; Duncan, R. A.; Courtillot, V. E. (1989). “Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails”. Tờ Science (bằng tiếng Anh) 246 (4926): tr. 103–107. PMID 17837768. doi:10.1126/science.246.4926.103. Truy cập ngày 21 tháng 4 năm 2007.
  72. ^ Brown, W. K.; Wohletz, K. H. (2005). “SFT and the Earth's Tectonic Plates” (bằng tiếng Anh). Los Alamos National Laboratory. Truy cập ngày 2 tháng 3 năm 2007.
  73. ^ Kious, W. J.; Tilling, R. I. (ngày 5 tháng 5 năm 1999). “Understanding plate motions” (bằng tiếng Anh). USGS. Truy cập ngày 2 tháng 3 năm 2007.
  74. ^ Seligman, Courtney (2008). “The Structure of the Terrestrial Planets”. Online Astronomy eText Table of Contents (bằng tiếng Anh). cseligman.com. Truy cập ngày 28 tháng 2 năm 2008.
  75. ^ Duennebier, Fred (ngày 12 tháng 8 năm 1999). “Pacific Plate Motion”. University of Hawaii. Truy cập ngày 14 tháng 3 năm 2007.
  76. ^ Mueller, R.D.; Roest, W.R.; Royer, J.-Y.; Gahagan, L.M.; Sclater, J.G. (ngày 7 tháng 3 năm 2007). “Age of the Ocean Floor Poster” (bằng tiếng Anh). NOAA. Truy cập ngày 14 tháng 3 năm 2007.
  77. ^ Bowring, Samuel A. (1999). “Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada”. Tờ Contributions to Mineralogy and Petrology. tập134: 3. doi:10.1007/s004100050465.
  78. ^ Meschede, M.; Udo Barckhausen, U. (ngày 20 tháng 11 năm 2000). “Plate Tectonic Evolution of the Cocos-Nazca Spreading Center”. Proceedings of the Ocean Drilling Program (bằng tiếng Anh). Texas A&M University. Truy cập ngày 2 tháng 4 năm 2007.
  79. ^ Staff. “GPS Time Series” (bằng tiếng Anh). NASA JPL. Truy cập ngày 2 tháng 4 năm 2007.
  80. ^ a ă â Pidwirny, Michael (2006). “Fundamentals of Physical Geography” (bằng tiếng Anh) . PhysicalGeography.net. Truy cập ngày 19 tháng 3 năm 2007.
  81. ^ Kring, David A. “Terrestrial Impact Cratering and Its Environmental Effects” (bằng tiếng Anh). Lunar and Planetary Laboratory. Truy cập ngày 22 tháng 3 năm 2007.
  82. ^ Staff. “Layers of the Earth” (bằng tiếng Anh). Volcano World. Truy cập ngày 11 tháng 3 năm 2007.
  83. ^ Jessey, David. “Weathering and Sedimentary Rocks” (bằng tiếng Anh). Cal Poly Pomona. Truy cập ngày 20 tháng 3 năm 2007.
  84. ^ Staff. “I am taking Geology 100 at the University of Maryland. Could you tell me any five common rock-forming minerals, and one characteristic feature of each.” (bằng tiếng Anh). University of Oregon Museum of Natural and Cultural History. Truy cập ngày 17 tháng 7 năm 2014.
  85. ^ “Carbonate sediments” (bằng tiếng Anh). Universidad de Puerto Rico. 2003. Truy cập ngày 17 tháng 7 năm 2014.
  86. ^ FAO Staff (1995). FAO Production Yearbook 1994 (ấn bản 48). Roma, Italia: FAO. ISBN 9250038445.
  87. ^ a ă Sverdrup, H. U.; Fleming, Richard H. (ngày 1 tháng 1 năm 1942). The oceans, their physics, chemistry, and general biology. Scripps Institution of Oceanography Archives. Truy cập ngày 13 tháng 6 năm 2008.
  88. ^ “7,000 m Class Remotely Operated Vehicle KAIKO 7000 (bằng tiếng Anh). Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Truy cập ngày 7 tháng 6 năm 2008.
  89. ^ Igor A. Shiklomanov và nnk. (1999). “World Water Resources and their use Beginning of the 21st century" Prepared in the Framework of IHP UNESCO” (bằng tiếng Anh). State Hydrological Institute, St. Petersburg. Truy cập ngày 10 tháng 8 năm 2006.
  90. ^ Mullen, Leslie (ngày 11 tháng 6 năm 2002). “Salt of the Early Earth” (bằng tiếng Anh). NASA Astrobiology Magazine. Truy cập ngày 14 tháng 3 năm 2007.
  91. ^ Morris, Ron M. “Oceanic Processes” (bằng tiếng Anh). NASA Astrobiology Magazine. Truy cập ngày 14 tháng 3 năm 2007.
  92. ^ Scott, Michon (ngày 24 tháng 4 năm 2006). “Earth's Big heat Bucket” (bằng tiếng Anh). NASA Earth Observatory. Truy cập ngày 14 tháng 3 năm 2007.
  93. ^ Sample, Sharron (ngày 21 tháng 6 năm 2005). “Sea Surface Temperature” (bằng tiếng Anh). NASA. Truy cập ngày 21 tháng 4 năm 2007.
  94. ^ Geerts, B.; Linacre, E. (1997). “The height of the tropopause” (bằng tiếng Anh). Đại học Wyoming. Truy cập ngày 2 tháng 4 năm 2019.
  95. ^ Staff (ngày 8 tháng 10 năm 2003). “Earth's Atmosphere” (bằng tiếng Anh). NASA. Truy cập ngày 21 tháng 3 năm 2007.
  96. ^ Moran, Joseph M. (2005). “Weather”. World Book Online Reference Center (bằng tiếng Anh). NASA/World Book, Inc. Truy cập ngày 17 tháng 3 năm 2007.
  97. ^ a ă Berger, Wolfgang H. (2002). “The Earth's Climate System” (bằng tiếng Anh). Đại học California, San Diego. Truy cập ngày 24 tháng 3 năm 2007.
  98. ^ Rahmstorf, Stefan (2003). “The Thermohaline Ocean Circulation” (bằng tiếng Anh). Potsdam Institute for Climate Impact Research. Truy cập ngày 21 tháng 4 năm 2007.
  99. ^ nhiều tác giả (ngày 21 tháng 7 năm 1997). “The Hydrologic Cycle” (bằng tiếng Anh). Đại học Illinois. Truy cập ngày 24 tháng 3 năm 2007.
  100. ^ Staff. “Climate Zones” (bằng tiếng Anh). UK Department for Environment, Food and Rural Affairs. Truy cập ngày 24 tháng 3 năm 2007.
  101. ^ Staff (2004). “Stratosphere and Weather; Discovery of the Stratosphere” (bằng tiếng Anh). Science Week. Truy cập ngày 14 tháng 3 năm 2007.
  102. ^ de Córdoba, S. Sanz Fernández (ngày 21 tháng 6 năm 2004). “100 km. Altitude Boundary for Astronautics” (bằng tiếng Anh). Fédération Aéronautique Internationale. Truy cập ngày 21 tháng 4 năm 2007.
  103. ^ Liu, S. C.; Donahue, T. M. (1974). “The Aeronomy of Hydrogen in the Atmosphere of the Earth”. Journal of Atmospheric Sciences (bằng tiếng Anh) 31 (4): 1118–1136. doi:10.1175/1520-0469(1974)031<1118:TAOHIT>2.0.CO;2. Truy cập ngày 2 tháng 3 năm 2007.
  104. ^ David C. Catling, Kevin J. Zahnle, Christopher P. McKay (2001). “Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth”. Science (bằng tiếng Anh) 293 (5531): 839–843. PMID 11486082. doi:10.1126/science.1061976.
  105. ^ Abedon, Stephen T. (ngày 31 tháng 3 năm 1997). “History of Earth” (bằng tiếng Anh). Đại học bang Ohio. Truy cập ngày 19 tháng 3 năm 2007.
  106. ^ Hunten, D. M.; Donahue, T. M. (1976). “Hydrogen loss from the terrestrial planets”. Annual review of earth and planetary sciences (bằng tiếng Anh) 4: 265–292. doi:10.1146/annurev.ea.04.050176.001405. Truy cập ngày 7 tháng 11 năm 2008.
  107. ^ McElhinny M. W., McFadden P. L., 2000. Paleomagnetism: Continents and Oceans. Academic Press. ISBN 0-12-483355-1.
  108. ^ Bonhommet N., Zähringer J., 1969. "Paleomagnetism and potassium argon age determinations of the Laschamp geomagnetic polarity event. Earth and Planetary Science Letters 6, p. 43–46. doi:10.1016/0012-821x(69)90159-9.
  109. ^ Fitzpatrick, Richard (ngày 16 tháng 2 năm 2006). “MHD dynamo theory” (bằng tiếng Anh). NASA WMAP. Truy cập ngày 27 tháng 2 năm 2007.
  110. ^ Campbell, Wallace Hall (2003). Introduction to Geomagnetic Fields (bằng tiếng Anh). New York: Cambridge University Press. tr. 57. ISBN 0521822068.
  111. ^ Stern, David P. (ngày 8 tháng 7 năm 2005). “Exploration of the Earth's Magnetosphere” (bằng tiếng Anh). NASA. Truy cập ngày 21 tháng 3 năm 2007.
  112. ^ “Leap seconds” (bằng tiếng Anh). Time Service Department, USNO. Truy cập ngày 23 tháng 9 năm 2008.
  113. ^ a ă Staff (ngày 7 tháng 8 năm 2007). “Useful Constants” (bằng tiếng Anh). International Earth Rotation and Reference Systems Service (IERS). Truy cập ngày 23 tháng 9 năm 2008.
  114. ^ Aoki, nguồn cuối cùng của các con số này, đã sử dụng thuật ngữ giây UT1 thay vì giây MẶT Trời trung bình.—Aoki, S.; Kinoshita, H.; Guinot, B.; Kaplan, G. H.; McCarthy, D. D.; Seidelmann, P. K. (năm 1982). “The new definition of universal time”. Tờ Astronomy and Astrophysics. tập 105 (số 2): trang 359–361. Truy cập ngày 23 tháng 9 năm 2008. Kiểm tra giá trị ngày tháng trong: |date= (trợ giúp)
  115. ^ Seidelmann, P. Kenneth (1992). Explanatory Supplement to the Astronomical Almanac (bằng tiếng Anh). Mill Valley, CA: University Science Books. tr. 48. ISBN 0-935702-68-7.
  116. ^ Staff. “IERS Excess of the duration of the day to 86400s... since 1623” (bằng tiếng Anh). International Earth Rotation and Reference Systems Service (IERS). Truy cập ngày 23 tháng 9 năm 2008.—Graph at end.
  117. ^ Staff. “IERS Variations in the duration of the day 1962–2005” (bằng tiếng Anh). International Earth Rotation and Reference Systems Service (IERS). Bản gốc lưu trữ ngày 13 tháng 8 năm 2007. Truy cập ngày 23 tháng 9 năm 2008.
  118. ^ Zeilik, M.; Gregory, S. A. (1998). Introductory Astronomy & Astrophysics . Saunders College Publishing. tr. 56. ISBN 0030062284.
  119. ^ a ă Williams, David R. (ngày 10 tháng 2 năm 2006). “Planetary Fact Sheets” (bằng tiếng Anh). NASA. Truy cập ngày 28 tháng 9 năm 2008.— Xem trang về đường kính biểu kiến của Mặt Trời và Mặt Trăng.
  120. ^ a ă Williams, David R. (ngày 1 tháng 9 năm 2004). “Earth Fact Sheet” (bằng tiếng Anh). NASA. Truy cập ngày 17 tháng 3 năm 2007.
  121. ^ Williams, David R. (ngày 1 tháng 9 năm 2004). “Moon Fact Sheet” (bằng tiếng Anh). NASA. Truy cập ngày 21 tháng 3 năm 2007.
  122. ^ Vázquez, M.; Montañés Rodríguez, P.; Palle, E. (2006). “The Earth as an Object of Astrophysical Interest in the Search for Extrasolar Planets” (dạng PDF). Instituto de Astrofísica de Canarias. Truy cập ngày 21 tháng 3 năm 2007.
  123. ^ Astrophysicist team (ngày 1 tháng 12 năm 2005). “Earth's location in the Milky Way”. NASA. Truy cập ngày 11 tháng 6 năm 2008.
  124. ^ Bromberg, Irv (ngày 1 tháng 5 năm 2008). “The Lengths of the Seasons (on Earth)” (bằng tiếng Anh). Đại học Toronto. Truy cập ngày 8 tháng 11 năm 2008.
  125. ^ Fisher, Rick (ngày 5 tháng 2 năm 1996). “Earth Rotation and Equatorial Coordinates” (bằng tiếng Anh). National Radio Astronomy Observatory. Truy cập ngày 21 tháng 3 năm 2007.
  126. ^ Williams, Jack (ngày 20 tháng 12 năm 2005). “Earth's tilt creates seasons” (bằng tiếng Anh). USAToday. Truy cập ngày 17 tháng 3 năm 2007.
  127. ^ Espenak, F.; Meeus, J. (ngày 7 tháng 2 năm 2007). “Secular acceleration of the Moon” (bằng tiếng Anh). NASA. Bản gốc lưu trữ ngày 5 tháng 12 năm 2012. Truy cập ngày 20 tháng 4 năm 2007.
  128. ^ Poropudas, Hannu K. J. (ngày 16 tháng 12 năm 1991). “Using Coral as a Clock” (bằng tiếng Anh). Skeptic Tank. Truy cập ngày 20 tháng 4 năm 2007.
  129. ^ Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. (2004). “A long-term numerical solution for the insolation quantities of the Earth”. Astronomy and Astrophysics (bằng tiếng Anh) 428: 261–285. doi:10.1051/0004-6361:20041335. Truy cập ngày 31 tháng 3 năm 2007.
  130. ^ Murray, N.; Holman, M. (2001). “The role of chaotic resonances in the solar system”. Nature (bằng tiếng Anh) 410 (6830): 773–779. doi:10.1038/35071000. Truy cập ngày 5 tháng 8 năm 2008.
  131. ^ Williams, D.M.; J.F. Kasting (1996). “Habitable planets with high obliquities”. Lunar and Planetary Science (bằng tiếng Anh) 27: 1437–1438. Truy cập ngày 31 tháng 3 năm 2007.
  132. ^ R. Canup and E. Asphaug (2001). “Origin of the Moon in a giant impact near the end of the Earth's formation”. Nature (bằng tiếng Anh) 412: 708–712. doi:10.1038/35089010.
  133. ^ “More Moons Around Earth? Its Not So Loony.”. Archive Today.
  134. ^ Purves, William Kirkwood; Sadava, David; Orians, Gordon H.; Heller, Craig (2001). Life, the Science of Biology: The Science of Biology (bằng tiếng Anh). Macmillan. tr. trang 455. ISBN 0716738732.
  135. ^ Staff (2003). “Astrobiology Roadmap” (bằng tiếng Anh). NASA, Lockheed Martin. Truy cập ngày 10 tháng 3 năm 2007.
  136. ^ Dole, Stephen H. (1970). Habitable Planets for Man (PDF) . American Elsevier Publishing Co. ISBN 0-444-00092-5. Truy cập ngày 11 tháng 3 năm 2007.
  137. ^ Ward, P. D.; Brownlee, D. (ngày 14 tháng 1 năm 2000). Rare Earth: Why Complex Life is Uncommon in the Universe (bằng tiếng Anh) . New York: Springer-Verlag. ISBN 0387987010.
  138. ^ Hillebrand, Helmut (2004). “On the Generality of the Latitudinal Gradient”. American Naturalist (bằng tiếng Anh) 163 (2): 192–211. doi:10.1086/381004.
  139. ^ Staff (ngày 8 tháng 10 năm 2003). “Earth's Atmosphere” (bằng tiếng Anh). NASA. Truy cập ngày 21 tháng 3 năm 2007.
  140. ^ United States Census Bureau (ngày 7 tháng 1 năm 2008). “World POP Clock Projection”. United States Census Bureau International Database (bằng tiếng Anh). Truy cập ngày 7 tháng 1 năm 2008.
  141. ^ Staff. “World Population Prospects: The 2006 Revision” (bằng tiếng Anh). United Nations. Truy cập ngày 7 tháng 3 năm 2007.
  142. ^ Staff (2007). “Human Population: Fundamentals of Growth: Growth” (bằng tiếng Anh). Population Reference Bureau. Truy cập ngày 31 tháng 3 năm 2007.
  143. ^ Peel, M. C.; Finlayson, B. L.; McMahon, T. A. (2007). “Updated world map of the Köppen-Geiger climate classification”. Hydrology and Earth System Sciences Discussions (bằng tiếng Anh) 4: 439–473. Truy cập ngày 31 tháng 3 năm 2007.
  144. ^ Staff. “Themes & Issues” (bằng tiếng Anh). Secretariat of the Convention on Biological Diversity. Truy cập ngày 29 tháng 3 năm 2007.
  145. ^ Staff (ngày 15 tháng 8 năm 2006). “Canadian Forces Station (CFS) Alert” (bằng tiếng Anh). Information Management Group. Truy cập ngày 31 tháng 3 năm 2007.
  146. ^ Kennedy, Paul (1989). The Rise and Fall of the Great Powers (bằng tiếng Anh) (ấn bản 1). Vintage. ISBN 0679720197.
  147. ^ “U.N. Charter Index” (bằng tiếng Anh). United Nations. Truy cập ngày 23 tháng 12 năm 2008.
  148. ^ Staff. “International Law” (bằng tiếng Anh). United Nations. Truy cập ngày 27 tháng 3 năm 2007.
  149. ^ Kuhn, Betsy (2006). The race for space: the United States and the Soviet Union compete for the new frontier (bằng tiếng Anh). Twenty-First Century Books. tr. trang 34. ISBN 0822559846.
  150. ^ Ellis, Lee (2004). Who's who of NASA Astronauts (bằng tiếng Anh). Americana Group Publishing. ISBN 0966796144.
  151. ^ Shayler, David; Vis, Bert (2005). Russia's Cosmonauts: Inside the Yuri Gagarin Training Center (bằng tiếng Anh). Birkhäuser. ISBN 0387218947.
  152. ^ Wade, Mark (ngày 30 tháng 6 năm 2008). “Astronaut Statistics” (bằng tiếng Anh). Encyclopedia Astronautica. Truy cập ngày 23 tháng 12 năm 2008.
  153. ^ “Reference Guide to the International Space Station” (bằng tiếng Anh). NASA. Ngày 16 tháng 1 năm 2007. Truy cập ngày 23 tháng 12 năm 2008.
  154. ^ Cramb, Auslan (ngày 27 tháng 10 năm 2007). “Nasa's Discovery extends space station” (bằng tiếng Anh). Telegraph. Truy cập ngày 24 tháng 5 năm 2013.
  155. ^ Stathopoulos, Vic (ngày 8 tháng 1 năm 2009). “Apollo Spacecraft” (bằng tiếng Anh). Truy cập ngày 23 tháng 3 năm 2009.
  156. ^ a ă Staff (ngày 4 tháng 9 năm 2009). “World”. The World Factbook (bằng tiếng Anh). Cục Tình báo Trung ương Mỹ. Truy cập ngày 5 tháng 8 năm 2008.
  157. ^ Staff (24 tháng 7 năm 2008). “World”. The World Factbook. Central Intelligence Agency. Truy cập ngày 5 tháng 8 năm 2008.
  158. ^ Staff (ngày 24 tháng 11 năm 2006). “Mineral Genesis: How do minerals form?” (bằng tiếng Anh). Non-vertebrate Paleontology Laboratory, Texas Memorial Museum. Truy cập ngày 1 tháng 4 năm 2007.
  159. ^ Rona, Peter A. (2003). “Resources of the Sea Floor” (PDF). Science (bằng tiếng Anh) 299 (5607): 673–674. PMID 12560541. doi:10.1126/science.1080679. Truy cập ngày 4 tháng 2 năm 2007.
  160. ^ Staff (ngày 2 tháng 2 năm 2007). “Evidence is now ‘unequivocal’ that humans are causing global warming – UN report” (bằng tiếng Anh). United Nations. Truy cập ngày 7 tháng 3 năm 2007.
  161. ^ Liungman, Carl G. (2004). “Group 29: Multi-axes symmetric, both soft and straight-lined, closed signs with crossing lines”. Symbols -- Encyclopedia of Western Signs and Ideograms. New York: Ionfox AB. tr. 281–282. ISBN 91-972705-0-4.
  162. ^ Dutch, S.I. (2002). “Religion as belief versus religion as fact” (dạng PDF). Journal of Geoscience Education (bằng tiếng Anh) 50 (2): 137–144. Truy cập ngày 28 tháng 4 năm 2008.
  163. ^ Taner Edis (2003). A World Designed by God: Science and Creationism in Contemporary Islam (dạng PDF) (bằng tiếng Anh). Amherst: Prometheus. ISBN 1-59102-064-6. Truy cập ngày 28 tháng 4 năm 2008.
  164. ^ Ross, M.R. (2005). “Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism” (dạng PDF). Journal of Geoscience Education. tập 53 (số 3): trang 319. Truy cập ngày 28 tháng 4 năm 2008.
  165. ^ Pennock, R. T. (2003). “Creationism and intelligent design”. Annu Rev Genomics Hum Genet. tập 4: 143–63. PMID 14527300. doi:10.1146/annurev.genom.4.070802.110400.
  166. ^ Science, Evolution, and Creationism National Academy Press, Washington, DC 2005
  167. ^ Colburn, A.; Henriques, L. (2006). “Clergy views on evolution, creationism, science, and religion”. Journal of Research in Science Teaching 43 (4): 419–442. doi:10.1002/tea.20109.
  168. ^ Frye, Roland Mushat (1983). Is God a Creationist? The Religious Case Against Creation-Science. Scribner's. ISBN 0-68417-993-8.
  169. ^ Gould, S. J. (1997). “Nonoverlapping magisteria” (dạng PDF). Natural History 106 (2): 16–22. Truy cập ngày 28 tháng 4 năm 2008.
  170. ^ Russell, Jeffrey B. “The Myth of the Flat Earth”. American Scientific Affiliation. Truy cập ngày 14 tháng 3 năm 2007.
  171. ^ Jacobs, James Q. (ngày 1 tháng 2 năm 1998). “Archaeogeodesy, a Key to Prehistory”. Truy cập ngày 21 tháng 4 năm 2007.
  172. ^ Fuller, R. Buckminster (1963). Operating Manual for Spaceship Earth . New York: E.P. Dutton & Co. ISBN 0-525-47433-1. Bản gốc (PDF) lưu trữ ngày 18 tháng 4 năm 2007. Truy cập ngày 26 tháng 1 năm 2016.
  173. ^ Lovelock, James E. (1979). Gaia: A New Look at Life on Earth . Oxford: Nhà in Đại học Oxford. ISBN 0-19-286030-5.
  174. ^ For example: McMichael, Anthony J. (1993). Planetary Overload: Global Environmental Change and the Health of the Human Species. Nhà in Đại học Cambridge. ISBN 0521457599.

Nguồn chú thích

Tài liệu đọc thêm

(tiếng Anh)

  • Comins, Neil F. (2001). Discovering the Essential Universe . W. H. Freeman. ISBN 0-7167-5804-0. Truy cập ngày 17 tháng 3 năm 2007.
  • Kirk Munsell biên tập (ngày 19 tháng 10 năm 2006). “Solar System Exploration: Planets: Earth: Read More”. NASA. Truy cập ngày 17 tháng 3 năm 2007.
  • Ward, Peter D.; Donald Brownlee (2002). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World. Times Books, Henry Holt and Company. ISBN 0-8050-6781-7.
  • Williams, David R. (ngày 1 tháng 9 năm 2004). “Earth Fact Sheet”. NASA. Truy cập ngày 17 tháng 3 năm 2007.
  • NASA's Earth fact sheet
  • Discovering the Essential Universe (Second Edition) by Neil F. Comins (2001)

Liên kết ngoài

Europa (vệ tinh)

Europa (phiên âm /jʊˈroʊpə/ yew-ROE-pə) là vệ tinh thứ sáu, tính theo quỹ đạo từ trong ra ngoài, của Sao Mộc. Europa được Galileo Galilei và Simon Marius phát hiện năm 1610. Hai nhà khoa học này có thể đã phát hiện ra vệ tinh này đồng thời và độc lập nhau. Trong số 4 vệ tinh lớn của Sao Mộc được phát hiện trong năm 1610, Europa là vệ tinh nhỏ nhất.

Europa có đường kính 3.100 km, nhỏ hơn Mặt Trăng một chút. Trong Hệ Mặt Trời, Europa là vệ tinh lớn thứ 6 và là vệ tinh nhỏ nhất trong nhóm Galileo, sau 3 vệ tinh lớn hơn của Sao Mộc, Titan của Sao Thổ và Mặt Trăng của Trái Đất. Mặc dù vậy, Europa vẫn có khối lượng lớn hơn tổng cộng những vệ tinh nhỏ hơn trong hệ Mặt trời cộng lại. Cấu tạo của Europa chủ yếu là đá silicate và có thể có lõi bằng sắt. Bề mặt của Europa được tạo thành từ những kiến tạo địa chất gần đây, có nhiều vết nứt và vỉa đá. Europa có rất ít hố thiên thạch. Bề mặt trẻ và rất mịn của Europa khiến các nhà khoa học tin rằng bên dưới lớp ngoài cùng là một lớp nước. Và rất có thể trong đại dương ngầm này đang ẩn giấu sự sống ngoài Trái Đất mà chúng ta đang tìm kiếm. Nhiệt năng sản sinh ra do ma sát giữa các lớp vật chất của Europa dưới tác động của Sao Mộc đủ để giữ cho đại dương này luôn đủ ấm để không bị đóng băng và duy trì những hoạt động địa chất ở lớp vỏ ngoài của nó.Con người mới chỉ tiếp cận được Europa bằng những tàu vũ trụ bay ngang qua bề mặt vệ tinh này. Mặc dù vậy, những đặc điểm rất đáng chú ý của Europa khiến nó trở thành một trong những thiên thể có khả năng tồn tại sự sống cao nhất trong hệ Mặt Trời. Rất nhiều dự án tham vọng coi Europa là điểm đến cho công cuộc nghiên cứu vũ trụ của con người. Trong số đó có thể kể đến dự án tàu thám hiểm Galileo, đã cung cấp rất nhiều dữ liệu về bề mặt Europa, và dự án Jupiter Icy Moons Orbiter – nay đã bị dừng lại – nhằm nghiên cứu Europa, Ganymede và Callisto. Hiện tại rất nhiều dự án thám hiểm vệ tinh đang được đề nghị cấp vốn nghiên cứu. Trong tương lai không xa, Europa sẽ là điểm đến cho những dự án vũ trụ mới của con người.

Hành tinh

Hành tinh là một thiên thể quay xung quanh một ngôi sao hay các tàn tích sao, có đủ khối lượng để nó có hình cầu do chính lực hấp dẫn của nó gây nên, có khối lượng dưới khối lượng giới hạn để có thể diễn ra phản ứng hợp hạch (phản ứng nhiệt hạch) của deuterium, và đã hút sạch miền lân cận quanh nó như các vi thể hành tinh.. "Hành tinh" ở các ngôn ngữ Âu châu như tiếng Anh, tiếng Pháp, tiếng Tây Ban Nha, tiếng Ý, tiếng Đức... đều có nguồn gốc từ chữ planetes (Πλανήτης) của tiếng Hy Lạp. Planetes có nghĩa là "dân du mục".

Tên của các hành tinh trong hệ Mặt Trời, xét theo sự tăng dần khoảng cách từ Mặt Trời: gồm bốn hành tinh đá Sao Thủy, Sao Kim, Trái Đất, và Sao Hỏa, bốn hành tinh khí khổng lồ Sao Mộc, Sao Thổ, Sao Thiên Vương, và Sao Hải Vương (Sao Diêm Vương đã từng được xếp vào nhóm này nhưng hiện tại bị loại ra do không đáp ứng được tiêu chí ba trong định nghĩa của IAU 2006). Những tên này được chọn dựa theo hệ thống Ngũ Hành (kim, mộc, thủy, hỏa, thổ) và thêm vào đó là trời (thiên), biển (hải) và địa ngục (diêm hay diêm la). Hành tinh của chúng ta có một tên đặc biệt (Trái Đất) không thuộc vào hệ thống tên vừa kể trên nhưng thường được gọi là Quả Đất hay Trái Đất hoặc Địa Cầu.

Từ năm 1992, hàng trăm hành tinh quay xung quanh ngôi sao khác ("hành tinh ngoài Hệ Mặt Trời" hay "hành tinh ngoại hệ") trong Ngân Hà đã được khám phá. Đến 28 tháng 10 năm 2011, đã phát hiện được 695 hành tinh ngoài hệ Mặt Trời, có kích thước từ các hành tinh khí khổng lồ lớn hơn Sao Mộc cho đến kích thước của các hành tinh đá, với 528 hệ hành tinh và 81 hệ đa hành tinh (các hành tinh quay quanh sao đôi hoặc sao ba).

Hệ Mặt Trời

Hệ Mặt Trời (hay Thái Dương Hệ) là 1 hệ hành tinh có Mặt Trời ở trung tâm và các thiên thể nằm trong phạm vi lực hấp dẫn của Mặt Trời, tất cả chúng được hình thành từ sự suy sụp của 1 đám mây phân tử khổng lồ cách đây gần 4,6 tỷ năm. Đa phần các thiên thể quay quanh Mặt Trời, và khối lượng tập trung chủ yếu vào 8 hành tinh có quỹ đạo gần tròn và mặt phẳng quỹ đạo gần trùng khít với nhau gọi là mặt phẳng hoàng đạo. 4 hành tinh nhỏ vòng trong gồm: Sao Thủy, Sao Kim, Trái Đất và Sao Hỏa - người ta cũng còn gọi chúng là các hành tinh đá do chúng có thành phần chủ yếu từ đá và kim loại. 4 hành tinh khí khổng lồ vòng ngoài có khối lượng lớn hơn rất nhiều so với 4 hành tinh vòng trong. 2 hành tinh lớn nhất, Sao Mộc và Sao Thổ có thành phần chủ yếu từ heli và hiđrô; và 2 hành tinh nằm ngoài cùng, Sao Thiên Vương và Sao Hải Vương có thành phần chính từ băng, như nước, amoniac và mêtan, và đôi khi người ta lại phân loại chúng thành các hành tinh băng khổng lồ. Có 6 hành tinh và 3 hành tinh lùn có các vệ tinh tự nhiên quay quanh. Các vệ tinh này được gọi là "Mặt Trăng" theo tên gọi của Mặt Trăng của Trái Đất. Mỗi hành tinh vòng ngoài còn có các vành đai hành tinh chứa bụi, hạt và vật thể nhỏ quay xung quanh.

Hệ Mặt Trời cũng chứa 2 vùng tập trung các thiên thể nhỏ hơn. Vành đai tiểu hành tinh nằm giữa Sao Hỏa và Sao Mộc, có thành phần tương tự như các hành tinh đá với đa phần là đá và kim loại. Bên ngoài quỹ đạo của Sao Hải Vương là các vật thể ngoài Sao Hải Vương có thành phần chủ yếu từ băng như nước, amoniac, mêtan. Giữa 2 vùng này, có 5 thiên thể điển hình về kích cỡ, Ceres, Pluto, Haumea, Makemake và Eris, được coi là đủ lớn đủ để có dạng hình cầu dưới ảnh hưởng của chính lực hấp dẫn của chúng, và được các nhà thiên văn phân loại thành hành tinh lùn. Ngoài ra có hàng nghìn thiên thể nhỏ nằm giữa 2 vùng này, có kích thước thay đổi, như sao chổi, centaurs và bụi liên hành tinh, chúng di chuyển tự do giữa 2 vùng này.

Mặt Trời phát ra các dòng vật chất plasma, được gọi là gió Mặt Trời, dòng vật chất này tạo ra 1 bong bóng gió sao trong môi trường liên sao gọi là nhật quyển, nó mở rộng ra đến tận biên giới của đĩa phân tán. Đám mây Oort giả thuyết, được coi là nguồn cho các sao chổi chu kỳ dài, có thể tồn tại ở khoảng cách gần 1.000 lần xa hơn nhật quyển.

Kiến tạo mảng

Kiến tạo mảng (tiếng Anh: plate tectonics; tiếng Hy Lạp: τέκτων tektōn, nghĩa là "người xây dựng", "thợ nề") mô tả các chuyển động ở quy mô lớn của thạch quyển Trái Đất. Học thuyết này hoàn thiện các quan niệm trước đây về trôi dạt lục địa do Alfred Wegener đề xuất trong các thập niên đầu thế kỷ 20 và tách giãn đáy đại dương trong thập niên 1960.

Phần ngoài cùng nhất của Trái Đất được cấu tạo bởi thạch quyển nằm trên và quyển mềm bên dưới. Thạch quyển bao gồm vỏ Trái Đất và phần trên cùng nhất của quyển manti. Quyển mềm thuộc manti ở trạng thái rắn, nhưng có độ nhớt và ứng suất cắt tương đối thấp nên có thể chảy giống như chất lỏng nếu xét theo thời gian địa chất. Phần sâu nhất của manti bên dưới quyển mềm thì cứng do chịu áp suất lớn hơn.

Thạch quyển bị vỡ ra thành các mảng kiến tạo và chúng trượt trên quyển mềm. Các mảng này di chuyển tương đối với nhau theo một trong ba kiểu ranh giới mảng: hội tụ hay va chạm; tách giãn, cũng được gọi là trung tâm tách giãn; và chuyển dạng. Các trận động đất, hoạt động núi lửa, sự hình thành các dãy núi, và rãnh đại dương đều xuất hiện dọc theo các ranh giới này. Sự dịch chuyển sang bên của các mảng vào khoảng 50–100 mm/năm.

Lịch sử Trái Đất

Lịch sử Trái Đất trải dài khoảng 4,55 tỷ năm, từ khi Trái Đất hình thành từ Tinh vân Mặt Trời cho tới hiện tại. Bài viết này đưa ra 1 khái quát chung, tóm tắt những lý thuyết khoa học được nhiều người công nhận hiện tại.

Trong bài này, để giúp độc giả dễ tưởng tượng, toàn bộ lịch sử Trái Đất được miêu tả trong 1 khoảng thời gian tượng trưng bằng 24 giờ. Thời điểm bắt đầu là 0 giờ, chính xác vào 4,55 tỷ năm trước, và kết thúc, 24 giờ, ở thời điểm hiện tại. Mỗi giây tượng trưng trong khoảng thời gian này tương đương với khoảng 53.000 năm.

Vụ nổ lớn và nguồn gốc của vũ trụ, được ước tính đã xảy ra khoảng 13,8 tỷ năm trước, tương đương với việc ta lấy mốc của nó là 3 ngày trước đây - 2 ngày trước khi chiếc đồng hồ của riêng chúng ta (hệ Mặt Trời) bắt đầu chuyển động.

Mặt Trăng

Mặt Trăng (tiếng Latin: Luna, ký hiệu: ☾) là vệ tinh tự nhiên duy nhất của Trái Đất và là vệ tinh tự nhiên lớn thứ năm trong Hệ Mặt Trời.

Khoảng cách trung bình tính từ tâm Trái Đất đến Mặt Trăng là 384.403 km, lớn khoảng 30 lần đường kính Trái Đất. Đường kính Mặt Trăng là 3.474 km, bằng 27% đường kính Trái Đất. Khối lượng Mặt Trăng khoảng bằng 2% khối lượng Trái Đất và lực hấp dẫn tại bề mặt Mặt Trăng bằng 17% lực hấp dẫn trên bề mặt Trái Đất. Mặt Trăng quay một vòng quanh Trái Đất với chu kỳ quỹ đạo 27,32 ngày, và các biến đổi định kỳ trong hình học của hệ Trái Đất – Mặt Trăng – Mặt Trời là nguyên nhân gây ra các pha Mặt Trăng, lặp lại sau mỗi chu kỳ giao hội 29,53 ngày.

Mặt Trăng là thiên thể duy nhất ngoài Trái Đất mà con người đã đặt chân tới. Năm 1959 là năm mang tính lịch sử đối với công cuộc khám phá Mặt Trăng, mở đầu bằng chuyến bay của vệ tinh nhân tạo Luna 1 của Liên bang Xô viết đến phạm vi của Mặt Trăng, tiếp đó Luna 2 rơi xuống bề mặt của Mặt Trăng và Luna 3 lần đầu tiên cung cấp ảnh mặt sau của Mặt Trăng. Năm 1966, Luna 9 trở thành tàu vũ trụ đầu tiên hạ cánh thành công và Luna 10 là tàu vũ trụ không người lái đầu tiên bay quanh Mặt Trăng. Hiện nay, các miệng hố đen ở vùng cực Nam của Mặt Trăng là nơi lạnh nhất trong hệ Mặt Trời.Cho đến nay, Chương trình Apollo của Hoa Kỳ đã thực hiện được những cuộc đổ bộ duy nhất của con người xuống Mặt Trăng, tổng cộng gồm 6 lần hạ cánh trong giai đoạn từ 1969 tới 1972. Năm 1969, Neil Armstrong và Buzz Aldrin là những người đầu tiên đặt chân lên Mặt Trăng trong chuyến bay Apollo 11. Việc thám hiểm Mặt Trăng của loài người đã ngừng lại với sự chấm dứt của chương trình Apollo, dù nhiều quốc gia đã thông báo các kế hoạch đưa người hay tàu vũ trụ robot tới Mặt Trăng.

Mặt Trời

Mặt Trời là ngôi sao ở trung tâm Hệ Mặt Trời, chiếm khoảng 99,86% khối lượng của Hệ Mặt Trời. Trái Đất và các thiên thể khác như các hành tinh, tiểu hành tinh, thiên thạch, sao chổi, và bụi quay quanh Mặt Trời. Khoảng cách trung bình giữa Mặt Trời và Trái Đất xấp xỉ 149,6 triệu kilômét (1 Đơn vị thiên văn AU) nên ánh sáng Mặt Trời cần 8 phút 19 giây mới đến được Trái Đất. Trong một năm, khoảng cách này thay đổi từ 147,1 triệu kilômét (0,9833 AU) ở điểm cận nhật (khoảng ngày 3 tháng 1), tới xa nhất là 152,1 triệu kilômét (1,017 AU) ở điểm viễn nhật (khoảng ngày 4 tháng 7). Năng lượng Mặt Trời ở dạng ánh sáng hỗ trợ cho hầu hết sự sống trên Trái Đất thông qua quá trình quang hợp, và điều khiển khí hậu cũng như thời tiết trên Trái Đất. Thành phần của Mặt Trời gồm hydro (khoảng 74% khối lượng, hay 92% thể tích), heli (khoảng 24% khối lượng, 7% thể tích), và một lượng nhỏ các nguyên tố khác, gồm sắt, nickel, oxy, silic, lưu huỳnh, magiê, carbon, neon, canxi, và crom.

Mặt Trời có hạng quang phổ G2V. G2 có nghĩa nó có nhiệt độ bề mặt xấp xỉ 5.778 K (5.505 °C) khiến nó có màu trắng, và thường có màu vàng khi nhìn từ bề mặt Trái Đất bởi sự tán xạ khí quyển. Chính sự tán xạ này của ánh sáng ở giới hạn cuối màu xanh của quang phổ khiến bầu trời có màu xanh. Quang phổ Mặt Trời có chứa các vạch ion hoá và kim loại trung tính cũng như các đường hydro rất yếu. V (số 5 La Mã) trong lớp quang phổ thể hiện rằng Mặt Trời, như hầu hết các ngôi sao khác, là một ngôi sao thuộc dãy chính. Điều này có nghĩa nó tạo ra năng lượng bằng tổng hợp hạt nhân của hạt nhân hydro thành heli. Có hơn 100 triệu ngôi sao lớp G2 trong Ngân Hà của chúng ta. Từng bị coi là một ngôi sao nhỏ và khá tầm thường nhưng thực tế theo hiểu biết hiện tại, Mặt Trời sáng hơn 85% các ngôi sao trong Ngân Hà với đa số là các sao lùn đỏ.Quầng nóng của Mặt Trời liên tục mở rộng trong không gian và tạo ra gió Mặt Trời là các dòng hạt có vận tốc gấp 5 lần âm thanh - mở rộng nhật mãn (Heliopause) tới khoảng cách xấp xỉ 100 AU. Bong bóng trong môi trường liên sao được hình thành bởi gió mặt trời, nhật quyển (heliosphere) là cấu trúc liên tục lớn nhất trong Hệ Mặt Trời.Mặt Trời hiện đang đi xuyên qua đám mây Liên sao Địa phương (Local Interstellar Cloud) trong vùng Bóng Địa phương (Local Bubble) mật độ thấp của khí khuếch tán nhiệt độ cao, ở vành trong của Nhánh Orion của Ngân Hà, giữa nhánh Perseus và nhánh Sagittarius của ngân hà. Trong 50 hệ sao gần nhất bên trong 17 năm ánh sáng từ Trái Đất, Mặt Trời xếp hạng 4 về khối lượng như một ngôi sao cấp bốn (M = +4,83), dù có một số giá trị cấp hơi khác biệt đã được đưa ra, ví dụ 4,85 và 4,81. Mặt Trời quay quanh trung tâm của Ngân Hà ở khoảng cách xấp xỉ 24.000–26.000 năm ánh sáng từ trung tâm Ngân Hà, nói chung di chuyển theo hướng chùm sao Cygnus và hoàn thành một vòng trong khoảng 225–250 triệu năm (một năm ngân hà). Tốc độ trên quỹ đạo của nó được cho khoảng 250 ± 20, km/s nhưng một ước tính mới đưa ra con số 251 km/s.

Bởi Ngân Hà của chúng ta đang di chuyển so với Màn bức xạ vi sóng vũ trụ (CMB) theo hướng chòm sao Hydra với tốc độ 550 km/s, nên tốc độ chuyển động của nó so với CMB là khoảng 370 km/s theo hướng chòm sao Crater hay Leo.

Nhật thực

Nhật thực xảy ra khi Mặt Trăng đi qua giữa Trái Đất và Mặt Trời và quan sát từ Trái Đất, lúc đó Mặt Trăng che khuất hoàn toàn hay một phần Mặt Trời. Điều này chỉ có thể xảy ra tại thời điểm sóc trăng non khi nhìn từ Trái Đất, lúc Mặt Trời bị Mặt Trăng che khuất và bóng của Mặt Trăng phủ lên Trái Đất. Trong lúc nhật thực toàn phần, đĩa Mặt Trời bị che khuất hoàn toàn. Với nhật thực một phần hoặc hình khuyên, đĩa Mặt Trời chỉ bị che khuất một phần.

Nếu Mặt Trăng có quỹ đạo tròn hoàn hảo, gần hơn Trái Đất một chút, và trong cùng mặt phẳng quỹ đạo, sẽ có nhật thực toàn phần xảy ra mỗi lần trong một tháng. Tuy nhiên, quỹ đạo của Mặt Trăng nghiêng hơn 5° so với mặt phẳng quỹ đạo của Trái Đất quanh Mặt Trời (xem mặt phẳng hoàng đạo), do vậy bóng của Mặt Trăng lúc trăng non thường không chiếu lên Trái Đất. Để hiện tượng nhật thực cũng như nguyệt thực xảy ra, Mặt Trăng phải đi qua mặt phẳng quỹ đạo của Trái Đất. Hơn nữa, quỹ đạo của Mặt Trăng có hình elip, và nó thường ở đủ xa Trái Đất khiến cho kích cỡ biểu kiến của nó không đủ lớn để che khuất hoàn toàn Mặt Trời lúc nhật thực. Mặt phẳng quỹ đạo của Mặt Trăng và của Trái Đất mỗi năm cắt nhau tại các điểm nút lên và nút xuống của quỹ đạo; và có ít nhất là 2 và nhiều nhất là 5 lần nhật thực xảy ra trong một năm, cũng không thể có nhiều hơn hai lần nhật thực toàn phần trong cùng một năm. Tuy nhiên, tại một nơi cụ thể trên Trái Đất, hiện tượng nhật thực toàn phần xảy ra là rất hiếm bởi vì bóng của Mặt Trăng trong lúc hiện tượng này xảy ra đổ lên Trái Đất theo một dải hẹp và trong thời gian ngắn, với lần lâu nhất khoảng 7 phút (nhật thực toàn phần ngày 20 tháng 7 năm 1955).Hiện tượng che khuất là hiện tượng của tự nhiên. Tuy thế, trong lịch sử cổ đại và quan niệm của một số người hiện đại, nhật thực thuộc về hiện tượng siêu nhiên. Hiện tượng nhật thực toàn phần gây ra sự sợ hãi đối với người dân thời cổ đại do thiếu hiểu biết về thiên văn học, khi Mặt Trời dường như biến mất vào ban ngày và bầu trời tối đen trong vài phút.

Rất nguy hiểm cho mắt khi nhìn trực tiếp vào Mặt Trời. Do vậy để quan sát hiện tượng nhật thực trực tiếp cần sử dụng các loại kính bảo vệ mắt hoặc quan sát gián tiếp hình ảnh lúc nhật thực. Nhưng khi xảy ra hiện tượng nhật thực toàn phần, mắt có thể an toàn quan sát hiện tượng này trong lúc Mặt Trăng che khuất hoàn toàn Mặt Trời. Những người ưa thích hiện tượng này thường đi du lịch đến những nơi sắp xảy ra để chứng kiến và chụp ảnh.

Sao Hải Vương

Sao Hải Vương hay Hải Vương tinh là hành tinh thứ tám và xa nhất tính từ Mặt Trời trong Hệ Mặt Trời. Nó là hành tinh lớn thứ tư về đường kính và lớn thứ ba về khối lượng. Sao Hải Vương có khối lượng riêng lớn nhất trong số các hành tinh khí trong hệ Mặt trời. Sao Hải Vương có khối lượng gấp 17 lần khối lượng của Trái Đất và hơi lớn hơn khối lượng của Sao Thiên Vương (xấp xỉ bằng 15 lần của Trái Đất). Sao Hải Vương quay trên quỹ đạo quanh Mặt Trời ở khoảng cách trung bình 30,1 AU, bằng khoảng 30 lần khoảng cách Trái Đất - Mặt Trời. Sao Hải Vương được đặt tên theo vị thần biển cả của người La Mã (Neptune). Nó có ký hiệu thiên văn là ♆, là biểu tượng cách điệu cây đinh ba của thần Neptune.

Sao Hải Vương là hành tinh đầu tiên được tìm thấy bằng tính toán lý thuyết. Dựa vào sự nhiễu loạn bất thường của quỹ đạo Sao Thiên Vương, nhà thiên văn Alexis Bouvard đã kết luận rằng quỹ đạo của nó bị nhiễu loạn do tương tác hấp dẫn với một hành tinh nào đó. Vào ngày 23 tháng 9 năm 1846, nhà thiên văn Johann Galle đã phát hiện ra Sao Hải Vương ở vị trí lệch 1 độ so với tiên đoán của Urbain Le Verrier. Sau đó ít lâu, người ta cũng khám phá ra Triton, vệ tinh lớn nhất của sao Hải Vương, trong khi 13 vệ tinh còn lại của nó chỉ được phát hiện trong thế kỷ XX. Cho tới nay, tàu không gian Voyager 2 là tàu duy nhất bay qua Sao Hải Vương vào ngày 25 tháng 8 năm 1989.

Sao Hải Vương có cấu tạo tương tự như Sao Thiên Vương, nhưng lại khác biệt với những hành tinh khí khổng lồ như Sao Mộc và Sao Thổ. Khí quyển của sao Hải Vương chứa thành phần cơ bản là hiđrô và heli, cùng một số ít các hiđrôcacbon và có lẽ cả nitơ, tương tự như của Sao Mộc hay Sao Thổ. Tuy nhiên khí quyển của nó chứa tỷ lệ lớn hơn các phân tử "băng" như nước, amoniac, và mêtan. Do đó các nhà thiên văn thỉnh thoảng phân loại Sao Thiên Vương và Sao Hải Vương thành các hành tinh băng đá khổng lồ để nhấn mạnh sự khác biệt này. Bên trong Sao Hải Vương chứa chủ yếu băng và đá, giống như Sao Thiên Vương. Lõi hành tinh có thể có bề mặt tuy rắn nhưng nhiệt độ của nó có thể cao tới hàng nghìn độ và áp suất rất lớn. Khí mêtan trong tầng ngoài khí quyển là nguyên nhân Sao Hải Vương hiện lên với màu xanh lam.Trái ngược với bầu khí quyển mờ đặc và gần như đồng màu của Sao Thiên Vương, khí quyển của Sao Hải Vương có những vùng hoạt động mạnh và dễ nhận thấy. Năm 1989, tàu Voyager 2 khi bay qua Sao Hải Vương đã chụp được hình ảnh của Vết Tối Lớn trên bán cầu nam có kích thước tương đương với Vết Đỏ Lớn của Sao Mộc. Những vùng hoạt động thời tiết này được duy trì bởi những cơn gió với tốc độ lên tới 2.100 kilômét trên giờ, mạnh nhất trên khí quyển trong các hành tinh thuộc Hệ Mặt Trời. Do cách rất xa Mặt Trời nên lớp khí quyển ngoài cùng của Sao Hải Vương là một trong những nơi lạnh nhất trong Hệ Mặt Trời. Nhiệt độ của những đám mây trên cao khoảng 55 K (-218 °C) trong khi nhiệt độ tại lõi hành tinh xấp xỉ 5.400 K (5.000 °C). Sao Hải Vương có một hệ thống vành đai mờ và rời rạc (hay những cung), được phát hiện trong thập niên 1960 nhưng chỉ được xác nhận vào năm 1989 bởi Voyager 2.

Sao Hỏa

Sao Hỏa còn gọi là: Hỏa tinh, (tiếng Anh: Mars) là hành tinh thứ tư tính từ Mặt Trời trong Thái Dương Hệ. Nó thường được gọi với tên khác là "Hành tinh Đỏ", do sắt ôxít có mặt rất nhiều trên bề mặt hành tinh làm cho bề mặt nó hiện lên với màu đỏ đặc trưng. Sao Hỏa là một hành tinh đất đá với một khí quyển mỏng, có những đặc điểm trên bề mặt có nét giống với cả các hố va chạm trên Mặt Trăng và các núi lửa, thung lũng, sa mạc và chỏm băng ở cực trên của Trái Đất. Chu kỳ tự quay và sự tuần hoàn của các mùa trên Hỏa Tinh khá giống với của Trái Đất do độ nghiêng của trục quay tạo ra. Trên Sao Hỏa có ngọn núi Olympus Mons, ngọn núi cao nhất trong Hệ Mặt Trời, và hẻm núi Valles Marineris, hẻm núi dài và rộng nhất trong Thái Dương Hệ. Lòng chảo Borealis bằng phẳng trên bán cầu bắc bao phủ tới 40% diện tích bề mặt hành tinh đỏ và có thể là một hố va chạm khổng lồ trong quá khứ.Cho đến khi tàu Mariner 4 lần đầu tiên bay ngang qua Sao Hỏa vào năm 1965, đã có nhiều suy đoán về sự có mặt của nước lỏng trên bề mặt hành tinh này. Chúng dựa trên những quan sát về sự biến đổi chu kỳ về độ sáng và tối của những nơi trên bề mặt hành tinh, đặc biệt tại những vĩ độ vùng cực, nơi có đặc điểm của biển và lục địa; những đường kẻ sọc dài và tối ban đầu được cho là những kênh tưới tiêu chứa nước lỏng. Những đường sọc thẳng này sau đó được giải thích như là những ảo ảnh quang học, mặc dù các chứng cứ địa chất thu thập bởi các tàu thăm dò không gian cho thấy Sao Hỏa có khả năng đã từng có nước lỏng bao phủ trên diện rộng ở bề mặt của nó. Năm 2005, dữ liệu từ tín hiệu radar cho thấy sự có mặt của một lượng lớn nước đóng băng ở hai cực, và tại các vũng vĩ độ trung bình. Robot tự hành Spirit đã lấy được mẫu các hợp chất hóa học chứa phân tử nước vào tháng 3 năm 2007. Tàu đổ bộ Phoenix đã trực tiếp lấy được mẫu nước đóng băng trong lớp đất nông trên bề mặt vào ngày 31 tháng 7 năm 2008.Sao Hỏa có hai vệ tinh, Phobos và Deimos, chúng là các vệ tinh nhỏ và dị hình. Đây có thể là các tiểu hành tinh bị Hỏa Tinh bắt được, tương tự như 5261 Eureka-một tiểu hành tinh Troia của Hỏa Tinh. Hiện nay có ba tàu quỹ đạo còn hoạt động đang bay quanh Sao Hỏa: Mars Odyssey, Mars Express, và Mars Reconnaissance Orbiter. Trên bề mặt nó có robot tự hành thám hiểm Sao Hỏa (Mars Exploration Rover) Opportunity không còn hoạt động và cặp song sinh với nó robot tự hành Spirit đã ngừng hoạt động, cùng với đó là những tàu đổ bộ và robot tự hành trong quá khứ-cả thành công lẫn không thành công. Tàu đổ bộ Phoenix đã hoàn thành phi vụ của nó vào năm 2008. Những quan sát bởi tàu quỹ đạo đã ngừng hoạt động của NASA Mars Global Surveyor chỉ ra chứng cứ về sự dịch chuyển thu nhỏ và mở rộng của chỏm băng cực bắc theo các mùa. Tàu quỹ đạo Mars Reconnaissance Orbiter của NASA đã thu nhận được các bức ảnh cho thấy khả năng có nước chảy trong những tháng nóng nhất trên sao Hỏa.Sao Hỏa có thể dễ dàng nhìn từ Trái Đất bằng mắt thường. Cấp sao biểu kiến của nó đạt giá trị −3,0 chỉ đứng sau so với Sao Mộc, Sao Kim, Mặt Trăng, và Mặt Trời.

Sao Kim

Sao Kim hay Kim tinh (chữ Hán: 金星), còn gọi là sao Thái Bạch (太白), Thái Bạch Kim tinh (太白金星), là hành tinh thứ hai trong hệ Mặt Trời, tự quay quanh nó với chu kỳ 224,7 ngày Trái Đất. Xếp sau Mặt Trăng, nó là thiên thể tự nhiên sáng nhất trong bầu trời tối, với cấp sao biểu kiến bằng −4.6, đủ sáng để tạo nên bóng trên mặt nước. Bởi vì Sao Kim là hành tinh phía trong tính từ Trái Đất, nó không bao giờ xuất hiện trên bầu trời mà quá xa Mặt Trời: góc ly giác đạt cực đại bằng 47,8°. Sao Kim đạt độ sáng lớn nhất ngay sát thời điểm hoàng hôn hoặc bình minh, do vậy mà dân gian còn gọi là sao Hôm, khi hành tinh này mọc lên lúc hoàng hôn, và sao Mai, khi hành tinh này mọc lên lúc bình minh.

Sao Kim được xếp vào nhóm hành tinh đất đá và đôi khi người ta còn coi nó là "hành tinh chị em" với Trái Đất do kích cỡ, gia tốc hấp dẫn, tham số quỹ đạo gần giống với Trái Đất. Tuy nhiên, người ta đã chỉ ra rằng nó rất khác Trái Đất trên những mặt khác. Sao Kim bị bao bọc bởi lớp mây dày có tính phản xạ cao chứa axít sunfuric, và khiến chúng ta không thể quan sát bề mặt của nó dưới bước sóng ánh sáng khả kiến. Mật độ không khí trong khí quyển của nó lớn nhất trong số bốn hành tinh đất đá, thành phần chủ yếu là cacbon điôxít. Áp suất khí quyển tại bề mặt hành tinh cao gấp 92 lần so với của Trái Đất. Với nhiệt độ bề mặt trung bình bằng 735 K (462 °C), Sao Kim là hành tinh nóng nhất trong Hệ Mặt Trời. Nó không có chu trình cacbon để đưa cacbon trở lại đá và đất trên bề mặt, do vậy không thể có một tổ chức sống hữu cơ nào có thể hấp thụ nó trong sinh khối. Một số nhà khoa học từng cho rằng Sao Kim đã có những đại dương trong quá khứ, nhưng đã bốc hơi khi nhiệt độ hành tinh tăng lên do hiệu ứng nhà kính mất kiểm soát. Nước có thể đã bị quang ly, và bởi vì không có từ quyển hành tinh, hiđrô tự do có thể thoát vào vũ trụ bởi tác động của gió Mặt Trời. Toàn bộ bề mặt của Sao Kim là một hoang mạc khô cằn với đá và bụi và có lẽ vẫn còn núi lửa hoạt động trên hành tinh này.

Sao Mộc

Sao Mộc hay Mộc tinh (chữ Hán: 木星) là hành tinh thứ năm tính từ Mặt Trời và là hành tinh lớn nhất trong Hệ Mặt Trời. Nó là hành tinh khí khổng lồ với khối lượng bằng một phần nghìn của Mặt Trời nhưng bằng hai lần rưỡi tổng khối lượng của tất cả các hành tinh khác trong Hệ Mặt Trời cộng lại. Sao Mộc được xếp vào nhóm hành tinh khí khổng lồ cùng với Sao Thổ (Sao Thiên Vương và Sao Hải Vương được xếp vào hành tinh băng khổng lồ). Hai hành tinh này đôi khi được gọi là hành tinh kiểu Mộc Tinh hoặc hành tinh vòng ngoài. Các nhà thiên văn học cổ đại đã biết đến hành tinh này, và gắn với thần thoại và niềm tin tôn giáo trong nhiều nền văn hóa. Người La Mã đặt tên hành tinh theo tên của vị thần Jupiter, vị thần quan trọng nhất trong số các vị thần. Tên gọi trong tiếng Trung Quốc, tiếng Triều Tiên, tiếng Nhật và tiếng Việt của hành tinh này được đặt dựa vào hành "mộc" trong ngũ hành. Khi nhìn từ Trái Đất, Sao Mộc có cấp sao biểu kiến −2,94, đủ sáng để tạo bóng; và là thiên thể sáng thứ ba trên bầu trời đêm sau Mặt Trăng và Sao Kim. (Sao Hỏa hầu như sáng bằng Sao Mộc khi Sao Hỏa ở những vị trí xung đối trên quỹ đạo của nó với Trái Đất.)

Sao Mộc chứa chủ yếu hiđrô và heli - chiếm một phần tư khối lượng của nó, mặc dù heli chỉ chiếm một phần mười số lượng phân tử. Có thể có một lõi đá trong hành tinh chứa các nguyên tố nặng hơn, nhưng giống như những hành tinh khí khổng lồ khác, Sao Mộc không có một bề mặt rắn định hình. Bởi vì có tốc độ tự quay nhanh, hình dạng của hành tinh có hình phỏng cầu dẹt (nó hơi phình ra tại xích đạo). Lớp khí quyển ngoài cùng hiện lên với nhiều dải mây ở những độ cao khác nhau, do kết quả của hiện tượng nhiễu loạn khí động và tương tác với những cơn bão tại biên. Một đặc điểm nổi bật trên ảnh chụp của nó đó là Vết Đỏ Lớn, một cơn bão khổng lồ được biết đến tồn tại ít nhất từ thế kỷ 17 khi các nhà thiên văn lần đầu tiên quan sát nó bằng kính thiên văn. Bao quanh Mộc Tinh là một hệ thống vành đai mờ nhạt cũng như từ quyển mạnh. Có ít nhất 67 vệ tinh tự nhiên quay quanh nó, bao gồm bốn vệ tinh lớn nhất gọi là các vệ tinh Galileo do nhà bác học Galileo Galilei lần đầu tiên quan sát năm 1610. Ganymede, vệ tinh lớn nhất, có đường kính lớn hơn Sao Thủy.

Đã có một vài tàu không gian thám hiểm đến Sao Mộc, bao gồm tàu Pioneer và Voyager trong các phi vụ bay ngang qua và sau đó tàu Galileo bay quay hành tinh này. Con tàu gần đây nhất bay qua Sao Mộc trên hành trình đến Sao Diêm Vương - tàu New Horizons bay qua vào cuối 2007. Con tàu sử dụng sự hỗ trợ của hấp dẫn từ Sao Mộc nhằm tăng tốc độ của nó. Hiện nay tàu Juno của NASA đã đến vào ngày 5 tháng 7 năm 2016. Trong tương lai có phi vụ của ESA đến thám hiểm các vệ tinh Galileo nói chung và Europa nói riêng.

Sao Thổ

Sao Thổ tức Thổ tinh (chữ Hán: 土星) là hành tinh thứ sáu tính theo khoảng cách trung bình từ Mặt Trời và là hành tinh lớn thứ hai về đường kính cũng như khối lượng, sau Sao Mộc trong Hệ Mặt Trời. Tên tiếng Anh của hành tinh mang tên thần Saturn trong thần thoại La Mã, ký hiệu thiên văn của hành tinh là (♄) thể hiện cái liềm của thần. Sao Thổ là hành tinh khí khổng lồ với bán kính trung bình bằng 9 lần của Trái Đất. Tuy khối lượng của hành tinh cao gấp 95 lần khối lượng của Trái Đất nhưng với thể tích lớn hơn 763 lần, khối lượng riêng trung bình của Sao Thổ chỉ bằng một phần tám so với của Trái Đất.Cấu trúc bên trong của Sao Thổ có lẽ bao gồm một lõi sắt, nikel và đá (hợp chất silic và ôxy), bao quanh bởi một lớp dày hiđrô kim loại, một lớp trung gian giữa hiđrô lỏng với heli lỏng và bầu khí quyển bên trên cùng. Hình ảnh hành tinh có màu sắc vàng nhạt là do sự có mặt của các tinh thể amoniac trong tầng thượng quyển. Dòng điện bên trong lớp hiđrô kim loại là nguyên nhân Sao Thổ có một từ trường hành tinh với cường độ hơi yếu hơn so với từ trường của Trái Đất và bằng một phần mười hai so với cường độ từ trường của Sao Mộc. Lớp khí quyển bên trên cùng hành tinh có những màu đồng nhất và hiện lên dường như yên ả so với bầu khí quyển hỗn loạn của Sao Mộc, mặc dù nó cũng có những cơn bão mạnh. Tốc độ gió trên Sao Thổ có thể đạt tới 1.800 km/h, nhanh hơn trên Sao Mộc, nhưng không nhanh bằng tốc độ gió trên Sao Hải Vương.Sao Thổ có một hệ thống vành đai bao gồm chín vành chính liên tục và ba cung đứt đoạn, chúng chứa chủ yếu hạt băng với lượng nhỏ bụi và đá. Sao Thổ có 82 vệ tinh tự nhiên đã biết; trong đó 53 vệ tinh đã được đặt tên. Số lượng vệ tinh này không bao gồm hàng trăm tiểu vệ tinh ("moonlet") bên trong vành đai. Titan là vệ tinh lớn nhất của Sao Thổ và là vệ tinh lớn thứ hai trong Hệ Mặt Trời, nó cũng lớn hơn cả Sao Thủy và là vệ tinh tự nhiên duy nhất trong Hệ Mặt Trời có bầu khí quyển dày đặc.

Sao Thủy

Sao Thủy hay Thủy Tinh là hành tinh nhỏ nhất và gần Mặt Trời nhất trong tám hành tinh thuộc Hệ Mặt Trời, với chu kỳ quỹ đạo bằng 88 ngày Trái Đất. Nhìn từ Trái Đất, hành tinh hiện lên với chu kỳ giao hội trên quỹ đạo bằng xấp xỉ 116 ngày, và nhanh hơn hẳn những hành tinh khác. Tốc độ chuyển động nhanh này đã khiến người La Mã đặt tên hành tinh là Mercurius, vị thần liên lạc và đưa tin một cách nhanh chóng. Trong thần thoại Hy Lạp tên của vị thần này là Hermes (Ερμής). Tên tiếng Việt của hành tinh này dựa theo tên do Trung Quốc đặt, chọn theo hành thủy trong ngũ hành.

Do hành tinh hầu như không có khí quyển để giữ lại nhiệt lượng, bề mặt Sao Thủy trải qua sự biến đổi nhiệt độ lớn nhất trong số các hành tinh, thay đổi từ 100 K (−173 °C; −280 °F) vào ban đêm tới 700 K (427 °C; 800 °F) vào ban ngày. Trục quay của Sao Thủy có độ nghiêng nhỏ nhất trong Hệ Mặt Trời (khoảng 1⁄30 độ), nhưng hành tinh lại có độ lệch tâm quỹ đạo lớn nhất. Tại viễn điểm quỹ đạo, Sao Thủy ở cách xa Mặt Trời hơn 1,5 lần khi so với hành tinh ở cận điểm quỹ đạo. Bề mặt hành tinh có rất nhiều hố va chạm nhìn trông giống như bề mặt của Mặt Trăng, và hành tinh không còn hoạt động địa chất trong hàng tỷ năm trước.

Trên Sao Thủy không có sự biến đổi thời tiết theo mùa như ở các hành tinh khác bởi vì nó không có bầu khí quyển đáng kể. Hành tinh bị khóa thủy triều với Mặt Trời do đó nó quay trên quỹ đạo rất khác so với các hành tinh khác. Khi lấy các ngôi sao cố định làm điểm mốc, nó tự quay được chính xác ba vòng trong hai chu kỳ quỹ đạo quanh Mặt Trời . Khi nhìn từ Mặt Trời, trong hệ quy chiếu quay cùng với chuyển động quỹ đạo, hành tinh hiện lên chỉ quay quanh trục một lần trong hai "năm" Sao Thủy. Do vậy nếu có người đứng trên Sao Thủy họ chỉ nhận thấy 1 ngày trong 2 năm.

Bởi vì quỹ đạo Thủy Tinh nằm bên trong quỹ đạo Trái Đất (và của Sao Kim), khi nhìn từ Trái Đất hành tinh có lúc hiện lên vào buổi sáng hoặc vào buổi tối, nhưng không bao giờ có thể nhìn thấy lúc nửa đêm. Tương tự như Sao Kim và Mặt Trăng, hành tinh cũng có các pha quan sát khi nó di chuyển trên quỹ đạo. Sao Thủy không có một vệ tinh tự nhiên nào. Độ sáng biểu kiến của Sao Thủy thay đổi từ −2,0 đến 5,5; nhưng vì quá gần Mặt Trời nên nếu quan sát hành tinh này qua kính viễn vọng rất khó khăn và ít khi thực hiện được.

Hai phi thuyền đã ghé thăm sao Thủy: Mariner 10 bay vào năm 1974 và 1975; và MESSENGER, được phóng lên vào năm 2004, đã quay quanh sao Thủy hơn 4.000 lần trong vòng bốn năm trước khi cạn kiệt nguồn nhiên liệu và rơi vào bề mặt hành tinh này vào ngày 30 tháng 4 năm 2015.

Titan (vệ tinh)

Titan (phát âm tiếng Anh: ˈtaɪtən TYE-tən, hay tiếng Hy Lạp: Τῑτάν) hoặc Saturn VI là vệ tinh lớn nhất của Sao Thổ, vệ tinh duy nhất được biết có một khí quyển đặc, và vật thể duy nhất trừ Trái Đất có bằng chứng rõ ràng về các vật thể nước bề mặt ổn định đã được khám phá.Titan là vệ tinh ở khoảng cách xa thứ hai mươi hai của Sao Thổ và xa thứ sáu trong nhóm những vệ tinh có kích thước đủ lớn để có hình cầu. Thường được miêu tả như một vệ tinh có những đặc điểm giống hành tinh, Titan có đường kính lớn hơn khoảng 50% so với Mặt Trăng của Trái Đất và có khối lượng lớn hơn 80%. Nó là vệ tinh lớn thứ hai trong Hệ Mặt Trời, sau vệ tinh Ganymede của Sao Mộc, và nếu tính theo đường kính nó còn lớn hơn hành tinh nhỏ nhất, Sao Thuỷ, (dù chỉ có khối lượng bằng một nửa). Titan là vệ tinh được phát hiện đầu tiên của Sao Thổ, nó được khám phá năm 1655 bởi nhà thiên văn học người Hà Lan Christiaan Huygens.Titan được cấu tạo chủ yếu gồm các vật liệu băng nước và đá. Mật độ khí quyển dày đặc khiến chúng ta khó tìm hiểu về bề mặt của Titan cho tới khi các thông tin mới được thu thập với phi vụ Cassini–Huygens năm 2004, gồm cả việc phát hiện các hồ hydrocarbon lỏng tại các vùng cực của vệ tinh này. Chúng là những vật thể lỏng lớn, ổn định duy nhất tồn tại trên bề mặt của bất kỳ một vật thể từng biết nào ngoài Trái Đất. Về địa chất, bề mặt vệ tinh này còn trẻ; dù các ngọn núi và nhiều núi lửa băng (dạng phun trào giống núi lửa nhưng thành phần chủ yếu là băng) có thể có đã được phát hiện, bề mặt khá phẳng với chỉ một ít hố va chạm.

Khí quyển của Titan chủ yếu gồm nitơ và khí hậu của nó gồm các đám mây metan và etan. Khí hậu có gió và các đặc điểm bề mặt do mưa tạo ra tương tự như các đặc điểm trên Trái Đất, như các đụn cát và các dải bờ biển, và, giống như Trái Đất, cũng bị chi phối bởi các hình mẫu thời tiết theo mùa. Với chất lỏng (cả ở trên và dưới mặt đất) và lớp khí quyển nitơ dày, Titan được cho là giống Trái Đất thời nguyên thuỷ, dù có nhiệt độ thấp hơn. Vì thế vệ tinh này đã được cho là có khả năng thích hợp cho vi khuẩn như một sự sống ngoài Trái Đất hay, ít nhất, như một môi trường hóa học tiền vi sinh vật với nhiều hợp chất hóa học hữu cơ phức tạp. Các nhà nghiên cứu đã cho rằng có thể biển chất lỏng dưới bề mặt hoạt động như một môi trường sinh học.

Tương lai của Trái Đất

Tương lai của Trái Đất về mặt sinh học và địa chất có thể được ngoại suy dựa trên việc ước lượng những tác động trong dài hạn của một số yếu tố, bao gồm thành phần hóa học của bề mặt Trái Đất, tốc độ nguội đi ở bên trong của nó, những tương tác trọng lực với các vật thể khác trong hệ Mặt Trời, và sự tăng dần lên trong độ sáng của Mặt Trời. Nhân tố bất định trong phép ngoại suy này là ảnh hưởng liên tục của những công nghệ mà loài người phát minh ra, chẳng hạn như kỹ thuật khí hậu, có khả năng gây ra những thay đổi lớn tới Trái Đất. Sự kiện tuyệt chủng Holocen đang diễn ra là hậu quả của công nghệ và những tác động của nó có thể kéo dài tới năm triệu năm. Từ đó, công nghệ có khả năng sẽ dẫn đến sự tuyệt chủng của loài người, để hành tinh quay trở lại nhịp độ tiến hóa chậm hơn chỉ nhờ vào những quá trình tự nhiên diễn ra một cách lâu dài.Giữa những khoảng thời gian dài tới hàng trăm triệu năm, các sự kiện vũ trụ ngẫu nhiên có khả năng đe dọa tới sinh quyển của Trái Đất trên quy mô toàn cầu và thậm chí gây tuyệt chủng hàng loạt. Chúng bao gồm những sự va chạm với sao chổi hoặc tiểu hành tinh có bán kính từ 5–10 km (3,1–6,2 mi) trở lên, và một vụ nổ siêu tân tinh xảy ra trong vòng bán kính 100 năm ánh sáng tính từ Mặt Trời (được gọi là siêu tân tinh gần Trái Đất. Các sự kiện địa chất quy mô lớn khác thì dễ dự đoán hơn. Nếu bỏ qua tác động lâu dài của sự ấm lên toàn cầu, học thuyết Milankovitch dự đoán rằng Trái Đất sẽ tiếp tục trải qua các thời kỳ băng hà ít nhất là cho đến khi kỷ băng hà Đệ tứ kết thúc. Điều này là kết quả của độ lệch tâm quỹ đạo, độ nghiêng trục quay và tiến động của quỹ đạo Trái Đất. Trong chu kỳ biến đổi của các siêu lục địa (chu kì siêu lục địa) đang tiếp diễn, hoạt động kiến tạo mảng có khả năng sẽ tạo nên một siêu lục địa sau 250–350 triệu năm. Trong khoảng 1,5–4,5 tỉ năm tới, độ nghiêng trục quay của Trái Đất có thể sẽ bắt đầu thay đổi một cách hỗn loạn với độ chênh lệch lên tới 90° so với hiện tại.

Trong suốt 4 tỉ năm tới, độ sáng của Mặt Trời sẽ ngày càng tăng lên, làm gia tăng lượng phóng xạ Mặt Trời ảnh hưởng tới Trái Đất. Điều này đẩy nhanh tốc độ phong hóa của các khoáng vật silicat, làm giảm hàm lượng cacbon điôxít trong khí quyển. Trong vòng khoảng 600 triệu năm, hàm lượng CO2 sẽ là không đủ để các thực vật C3 tiếp tục quang hợp. Mặc dù một số các thực vật khác sử dụng phương pháp cố định cacbon C4 vẫn có thể quang hợp với hàm lượng CO2 thấp tới 10 phần triệu, trong dài hạn toàn bộ thực vật vẫn sẽ không thể sống sót. Sự tuyệt chủng của thực vật, thành phần chủ chốt trong chuỗi thức ăn trên Trái Đất, cũng sẽ làm cho hầu hết các loài động vật diệt vong.Trong vòng 1,1 tỉ năm tới, mặt trời sẽ sáng hơn 10% so với hiện tại. Điều này khiến cho hiệu ứng nhà kính trong khí quyển Trái Đất không ngừng gia tăng và các đại dương sẽ dần bay hơi hết. Do đó, hoạt động kiến tạo mảng sẽ dừng lại và chu trình cacbon cũng chấm dứt theo. Kết quả là Trái Đất sẽ mất đi từ trường và từ quyển, làm gia tăng tốc độ mất vật chất trong khí quyển vào không gian. Đến thời điểm đó, hầu hết hoặc tất cả sự sống trên Trái Đất sẽ không còn tồn tại. Kết cục nhiều khả năng xảy ra nhất là Trái Đất sẽ bị Mặt Trời nuối chửng vào khoảng 7,5 tỉ năm tới, khi nó đã trở thành một sao khổng lồ đỏ và nở rộng ra tới quỹ đạo Trái Đất.

Tốc độ ánh sáng

Tốc độ ánh sáng (một cách tổng quát hơn, tốc độ lan truyền của bức xạ điện từ) trong chân không, ký hiệu là c, là một hằng số vật lý cơ bản quan trọng trong nhiều lĩnh vực vật lý. Nó có giá trị chính xác bằng 299.792.458 mét trên giây, bởi vì đơn vị độ dài mét được định nghĩa lại dựa theo hằng số này và giây tiêu chuẩn. Theo thuyết tương đối hẹp, c là tốc độ cực đại mà mọi năng lượng, vật chất, và thông tin trong vũ trụ có thể đạt được. Nó là tốc độ cho mọi hạt phi khối lượng liên kết với các trường vật lý (bao gồm bức xạ điện từ như photon ánh sáng) lan truyền trong chân không. Nó cũng là tốc độ truyền của hấp dẫn (như sóng hấp dẫn) được tiên đoán bởi các lý thuyết hiện tại. Những hạt và sóng truyền với vận tốc c không kể chuyển động của nguồn hay của hệ quy chiếu quán tính của người quan sát. Trong thuyết tương đối, c có liên hệ với không gian và thời gian, và do vậy nó xuất hiện trong phương trình nổi tiếng sự tương đương khối lượng-năng lượng E = mc2.Vận tốc của ánh sáng khi nó lan truyền qua vật liệu trong suốt, như thủy tinh hoặc không khí, nhỏ hơn c. Tỉ số giữa c và vận tốc v của ánh sáng truyền qua vận liệu gọi là chỉ số chiết suất n của vật liệu (n = c / v). Ví dụ, đối với ánh sáng khả kiến chiết suất của thủy tinh có giá trị khoảng 1,5, có nghĩa là ánh sáng truyền qua thủy tinh với vận tốc c / 1,5 ≈ &0000000200000000.000000200000 km/s; chiết suất của không khí cho ánh sáng khả kiến bằng 1,0003, do vậy tốc độ trong không khí của ánh sáng chậm hơn &0000000000090000.00000090 km/s so với c.

Trong thực hành hàng ngày, ánh sáng có thể coi là lan truyền "tức thì", nhưng đối với khoảng cách lớn và phép đo rất nhạy sự hữu hạn của tốc độ ánh sáng có thể nhận biết được. Ví dụ, trong các video về những cơn bão có tia sét trong khí quyển Trái Đất chụp từ Trạm vũ trụ Quốc tế ISS, hình ảnh tia sáng chạy dài từ ánh chớp có thể nhận thấy được, và cho phép các nhà khoa học ước lượng tốc độ ánh sáng bằng cách phân tích các khung hình về vị trí của đầu sóng (wavefront) tia sáng. Điều này không hề ngạc nhiên, do thời gian ánh sáng đi một vòng quanh chu vi Trái Đất vào cỡ 140 milli giây. Hiện tượng thời gian trễ này cũng chính là nguyên nhân trong cộng hưởng Schumann. Trong liên lạc truyền tín hiệu thông tin đến các tàu không gian, thời gian mất khoảng từ vài phút đến hàng giờ cho tín hiệu đến được Trái Đất và ngược lại. Ánh sáng phát ra từ những ngôi sao đến được chúng ta mất thời gian nhiều năm, cho phép các nhà thiên văn nghiên cứu được lịch sử của vũ trụ bằng cách quan sát những thiên thể ở rất xa. Tốc độ hữu hạn của ánh sáng cũng đặt ra giới hạn lý thuyết cho tốc độ tính toán của máy tính, do thông tin dưới dạng bit truyền bằng tín hiệu điện trong máy tính giữa các bộ vi xử lý. Cuối cùng, tốc độ ánh sáng có thể được kết hợp với thời gian chuyến bay (time of flight) nhằm đo lường các khoảng cách lớn với độ chính xác cao.

Ole Rømer là người đầu tiên chứng tỏ ánh sáng truyền với tốc độ hữu hạn vào năm 1676 (trái ngược với suy nghĩ tốc độ tức thì vào thời đó) khi ông nghiên cứu chuyển động biểu kiến của vệ tinh Io của Sao Mộc. Năm 1865, James Clerk Maxwell dựa trên lý thuyết điện từ của mình chứng tỏ được ánh sáng là một dạng sóng điện từ, do hằng số c xuất hiện trong các phương trình truyền sóng của ông. Năm 1905, Albert Einstein nêu ra tiên đề rằng tốc độ ánh sáng trong chân không đối với mọi hệ quy chiếu quán tính là không đổi và độc lập với chuyển động của nguồn sáng, và cùng với một tiên đề và các định luật khác ông đã xây dựng lên thuyết tương đối hẹp và chứng minh rằng hằng số c còn có liên hệ bản chất sâu xa ngoài khái niệm tốc độ ánh sáng và sóng điện từ. Sau nhiều thập kỷ đo lường chính xác, năm 1975 tốc độ ánh sáng trong chân không được định nghĩa lại bằng &0000000299792458.000000299792458 m/s với sai số 4 phần tỷ. năm 1983, đơn vị đo mét được định nghĩa lại trong hệ SI bằng khoảng cách ánh sáng truyền trong chân không trong thời gian bằng 1/299.792.458 của một giây. Kết quả là, giá trị số của c trong đơn vị mét trên giây được định nghĩa cố định và chính xác.

Tự nhiên

Tự nhiên hay cũng được gọi thiên nhiên, thế giới vật chất, vũ trụ và thế giới tự nhiên (tiếng Anh: nature) là tất cả vật chất và năng lượng chủ yếu ở dạng bản chất. "Tự nhiên" nói đến các hiện tượng xảy ra trong thế giới vật chất, và cũng nhắc đến sự sống nói chung. Phạm vi bao quát của nó từ cấp hạ nguyên tử cho tới những khoảng cách lớn trong vũ trụ. Nghiên cứu về tự nhiên là một mảnh ghép lớn trong thế giới khoa học. Dù cho con người hiển nhiên là một phần của tự nhiên, nhưng những hoạt động của con người thường được phân biệt rạch ròi khỏi những hiện tượng tự nhiên.

Từ nature có nguồn gốc từ natura trong tiếng Latin, có nghĩa là "phẩm chất thuần khiết, thiên hướng bẩm sinh", và trong thời cổ đại nó có nghĩa đen là "sự sinh nở". Natura trong tiếng Latin là dịch từ physis (φύσις) trong tiếng Hy Lạp, một từ có nguồn gốc liên quan đến đặc tính nội tại của thực vật, động vật và những đặc trưng khác trong thế giới do chính người cổ đại nghĩ ra hoặc ghi chép lại.1 2 Khái niệm tự nhiên theo nghĩa tổng thể, hay vũ trụ vật chất, là một trong vài khái niệm mở rộng của khái niệm ban đầu; nó bắt đầu bằng những cách thông hiểu trọng tâm của từ φύσις bởi các triết gia trước Sokrates, và đã thu được sự chú ý dần dần theo thời gian kể từ đó. Cách sử dụng này dần được chấp nhận trong giai đoạn phát triển của phương pháp khoa học hiện đại trong vài thế kỷ qua.3 4Với nhiều cách sử dụng và ý hiểu ngày nay, "tự nhiên" cũng nhắc đến địa chất và thế giới hoang dã. Tự nhiên cũng bao gồm nhiều loại động thực vật sống khác nhau, và trong một số trường hợp liên quan tới tiến trình của những vật vô tri vô giác – cách mà những kiểu riêng biệt của sự vật tồn tại và làm biến đổi môi trường quanh nó, tỉ như thời tiết và hoạt động địa chất của Trái Đất, cũng như vật chất và năng lượng của tất cả mọi thứ mà chúng cấu thành lên. Khi hiểu theo nghĩa là "môi trường tự nhiên" hoặc vùng hoang dã – động vật hoang dã, đá, rừng, bờ biển, và nói chung những thứ không bị tác động của con người thay đổi hoặc phản kháng trước những tác động của con người. Ví dụ, các sản phẩm được sản xuất hoặc có tác động bởi con người nói chung sẽ không được coi là thuộc về tự nhiên, trừ khi được định nghĩa thành những lớp lang phù hợp, ví dụ, "bản chất con người" (nhân tính) hay "toàn thể tự nhiên". Khái niệm truyền thống này về các vật tự nhiên mà đôi khi ngày nay vẫn sử dụng hàm ý sự phân biệt giữa thế giới tự nhiên và nhân tạo, với những thứ nhân tạo được ngầm hiểu từ tâm thức hoặc tư duy của con người. Phụ thuộc vào từng ngữ cảnh, thuật ngữ "tự nhiên" cũng có thể khác hẳn với từ "không tự nhiên" hay "siêu nhiên".

Ấm lên toàn cầu

Ấm lên toàn cầu hay nóng lên toàn cầu, là hiện tượng nhiệt độ trung bình của không khí và các đại dương trên Trái Đất tăng lên theo các quan sát trong các thập kỷ gần đây. Trong thế kỷ XX, nhiệt độ trung bình của không khí gần mặt đất đã tăng 0,6 ± 0,2 °C (1,1 ± 0,4 °F). Theo báo cáo của Cơ quan Bảo vệ Môi trường (EPA), nhiệt độ trung bình của Trái đất ở cuối thế kỷ XIX đã tăng +0,8 °C và thế kỷ XX tăng 0,6 ± 0,2 °C. Các dự án mô hình khí hậu của Ủy ban Liên chính phủ về Biến đổi Khí hậu (IPCC) chỉ ra rằng nhiệt độ bề mặt Trái Đất sẽ có thể tăng 1,1 đến 6,4 °C trong suốt thế kỷ XXI. Ủy ban Liên chính phủ về Biến đổi Khí hậu (IPCC) nghiên cứu sự gia tăng nồng độ khí nhà kính sinh ra từ các hoạt động của con người như đốt nhiên liệu hóa thạch và phá rừng làm cho nhiệt độ Trái Đất tăng lên kể từ giữa thế kỷ XX. IPCC cũng nghiên cứu sự biến đổi các hiện tượng tự nhiên như bức xạ mặt trời và núi lửa gây ra phần lớn hiện tượng ấm lên từ giai đoạn tiền công nghiệp đến năm 1950 và có sự ảnh hưởng lạnh đi sau đó. Các kết luận cơ bản đã được chứng thực bởi hơn 45 tổ chức khoa học và viện hàn lâm khoa học, bao gồm tất cả các viện hàn lâm của các nước công nghiệp hàng đầu.Các dự án thiết lập mô hình khí hậu được tóm tắt trong báo cáo gần đây nhất của IPCC chỉ ra rằng nhiệt độ bề mặt Trái Đất sẽ có thể tăng 1,1 đến 6,4 °C (2,0 đến 11,5 °F) trong suốt thế kỷ XXI. Các yếu tố không chắc chắn trong tính toán này tăng lên khi khi các mô hình sử dụng nồng độ các khí nhà kính có độ chính xác khác nhau và sử dụng các thông số ước tính khác nhau về lượng phát thải khí nhà kính tương lai. Các yếu tố không chắc chắn khác bao gồm sự ấm dần lên và các biến đổi liên quan sẽ khác nhau giữa các khu vực trên toàn thế giới. Hầu hết các nghiên cứu tập trung trong giai đoạn đến năm 2100. Tuy nhiên, sự ấm dần lên sẽ tiếp tục diễn ra sau năm 2100 cả trong trường hợp ngừng phát thải khí nhà kính, đều này là do nhiệt dung riêng của đại dương lớn và carbon dioxit tồn tại lâu trong khí quyển.Nhiệt độ toàn cầu tăng sẽ làm mực nước biển dâng lên và làm biến đổi lượng giáng thủy, có thể bao gồm cả sự mở rộng của các sa mạc vùng cận nhiệt đới. Hiện tượng ấm lên được dự đoán sẽ diễn ra mạnh nhất ở Bắc Cực.

Tiếp tục có những cuộc tranh luận chính trị và tranh cãi trong công chúng về việc liệu có phải là Trái Đất thực sự đang ấm dần lên, và con người cần phải làm gì để đối phó với hiện tượng này. Người ta tìm nhiều cách để giảm thiểu lượng phát thải; thích nghi để giảm thiệt hại do sự ấm lên gây ra; và đặc biệt hơn nữa là áp dụng các kỹ thuật địa chất để có thể làm giảm thiểu sự ấm lên. Hầu hết các chính phủ đã ký và thông qua Nghị định thư Kyoto với mục đích giảm phát thải khí nhà kính.

Trái Đất
Lịch sử
Địa lý,
địa chất
Hệ sinh thái
Bản đồ kỹ thuật số
Văn hóa,
nghệ thuật
và xã hội
Tâm linh,
mục đích luận
Khác
Vị trí của Trái Đất trong vũ trụ
Các thành phần Tự nhiên
Vũ trụ
Trái Đất
Thời tiết
Môi trường
tự nhiên
Sự sống

Ngôn ngữ khác

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.