מצולע שווה-צלעות

בגאומטריה, מצולע שווה-צלעות הוא מצולע שכל צלעותיו הן בעלות אותו אורך. מצולע שווה-צלעות ושווה-זוויות קרוי מצולע משוכלל.

למרובע שווה-צלעות שם משלו – מעוין. כאשר למעוין גם זוויות שוות, הוא קרוי ריבוע (שהוא מרובע משוכלל). מצולעים שווי-צלעות אחרים לא זכו לשם מיוחד, והם קרויים בשם הכללי של המצולע, בתוספת המילים "שווה-צלעות" (למשל: "מחומש שווה-צלעות"), וכאשר גם זוויותיהם שוות – בתוספת המילה "משוכלל" (למשל: "מחומש משוכלל"). משולש שווה-צלעות הוא בהכרח משולש משוכלל, אך אין זה המצב במצולעים בעלי מספר גדול יותר של צלעות.

במצולע שווה-צלעות מתקיימת גרסה מורחבת של משפט ויוויאני, הקובעת: סכום המרחקים מנקודה לצלעותיו של מצולע משוכלל נתון אינו תלוי במיקומה של הנקודה (זהו גודל אינווריאנטי של המצולע).

קישורים חיצוניים

אנטי-מנסרה

בגאומטריה, אנטי-מנסרה הוא פאון המורכב משני מצולעים חופפים המצויים במישורים מקבילים, המחוברים בעזרת משולשים בצורה הבאה: כל צלע של המצולע מחוברת לצלע של משולש, ובנוסף המשולשים מחוברים בצלעותיהם. המצולעים מכונים בסיסים, והמשולשים מעטפת המנסרה.

אנטי-מנסרה ישרה היא אנטי-מנסרה שהמשולשים בה הם משולשים שווי שוקיים, או באופן שכל הישרים המחברים קודקודים מתאימים של המצולעים מאונכים להם.

אם המצולעים משוכללים והמשולשים שווי-צלעות, האנטי-מנסרה נקראת אנטי-מנסרה משוכללת. אנטי-מנסרות משוכללות הן פאונים משוכללים למחצה.

אניאגרם

אניאגרם או נונאגרם, הוא צורה גאומטרית דמוית כוכב, בעלת תשעה קודקודים. השם הוא הלחם של שתי המילים היווניות אניאה (תשע) ו-גרמוס (דבר כתב או סמל מצויר).

יש שלוש אפשרויות לבנות אניאגרם: שיטת {9/2} - בה מחברים כל נקודה שנייה, שיטת {9/4} - בה מחברים כל נקודה רביעית, ושיטת הכוכב {9/3} - הנוצר מקודקודיו של מתושע משוכלל, המחוברים כשלושה משולשים שווי-צלעות זה על-גבי זה (ראו איורים לעיל).

האניאגרם משמש, בין היתר, כסמל בהאי וכסמל תשע המתנות והפירות של רוח הקודש בנצרות.

ארבעון

אַרְבָּעוֹן (גם טטראדר או טטרהדרון; באנגלית: Tetrahedron) הוא פירמידה משולשת, כלומר גוף שכל ארבע פאותיו הן משולשים. לארבעון 4 קודקודים, 4 פאות, ו-6 מקצועות.

אף על פי שלעיתים נתפסת התיבה כגוף הפשוט ביותר, תואר זה שייך דווקא לארבעון. הוא מכיל את מספר הקדקודים המזערי הדרוש כדי להיות גוף תלת ממדי ולא מישורי, שכן דרך כל שלוש נקודות עובר מישור.

הארבעון הוא 3-סימפלקס, מקרה פרטי של n-סימפלקס (הכללה רב-ממדית של המשולש).

טסרקט

טֵסֵרַקְט הוא גוף במרחב ארבע-ממדי המהווה היפרקוביה מממד 4.

הטסרקט הוא הכללה של הקובייה המוכרת בגאומטריה של המרחב התלת-ממדי.

היחס בין הטסרקט לקובייה דומה לזה שבין הקובייה לריבוע. כשם שקובייה היא גוף תלת-ממדי שלו שש פאות ריבועיות, הטסרקט הוא גוף ארבע-ממדי שלו שמונה קוביות. טסרקט הוא אחד מששת הפאונים הארבע-ממדיים.

לטסרקט יש 16 קודקודים, 32 מקצועות, 24 פאות דו-ממדיות, ו-8 פאות תלת-ממדיות.

את המונח "טסרקט" טבע בשנת 1888 המתמטיקאי הבריטי צ'ארלס האוורד הינטון.

מלבן

בגאומטריה, מלבן הוא מרובע שבו כל הזוויות ישרות.

מלבן הוא מקרה פרטי של מקבילית ושל טרפז שווה-שוקיים. מלבן בעל זוג צלעות סמוכות שוות הוא ריבוע.

אורכו של המלבן מוגדר כאורך של צלע מזוג הצלעות הארוכות יותר, ורוחבו של המלבן מוגדר כאורך של צלע מזוג הצלעות הקצרות יותר.

מעוין

מעוין הוא מבנה גאומטרי של מרובע שווה-צלעות.

זהו מקרה פרטי של דלתון ושל מקבילית. ריבוע הוא מקרה פרטי של מעוין שבו הזוויות שוות.

פאון שכל פאותיו הן מעוינים נקרא "מעוינון".

מעוינון

בגאומטריה של המרחב, מעוינון (קרוי גם רומבוהדרון) הוא פאון תלת-ממדי בן שש פאות, שכולן מעוינים. זהו מקבילון שכל צלעותיו באותו אורך, והוא דומה לקובייה מעוותת.

שש הפאות במעוינון מסודרות, כמו בכל מקבילון, בשלושה זוגות מקבילים, והפאות בכל זוג חופפות זו לזו. לעומת זאת, פאות הנפגשות בצלע אינן בהכרח חופפות: הזוויות המישוריות הנפגשות בכל קודקוד עשויות להיות שונות זו מזו. כאשר כל הזויות ישרות, מתקבלת קובייה.

מצולע

בגאומטריה, מצולע הוא חלק ממישור המתוחם על ידי מספר סופי של קטעים. מצולע הוא פשוט אם הקטעים אינם נחתכים מלבד בקצוותיהם. כל קטע במצולע נקרא צלע, וכל נקודה בה נפגשות שתי צלעות נקראת קודקוד. כל שתי צלעות שנפגשות בקודקוד יוצרות זווית.

מצולע משוכלל

בגאומטריה, מצולע משוכלל הוא מצולע שכל צלעותיו שוות וכל זוויותיו שוות.

מצולע קמור

בגאומטריה, מצולע קמור הוא מצולע שהפנים שלו הוא קבוצה קמורה; כל קטע בין שתי נקודות בתוך המצולע עובר כולו בתוך המצולע.

מקבילית

מקבילית היא מרובע שכל זוג צלעות נגדיות שלו מקבילות זו לזו.

המקבילית היא מקרה פרטי של הטרפז (בהגדרתו המרחיבה). מקרים פרטיים של מקבילית הם מעוין, שכל צלעותיו באורך שווה, המלבן, שבו כל זוג צלעות סמוכות מאונכות זו לזו, והריבוע שהוא מעוין וגם מלבן.

כלל המקבילית מבדיל מרחבי הילברט ממרחבי בנך.

ניתן ליצור ריצוף של המישור עם כל מקבילית שהיא.

הצורה התלת-ממדית הבנויה רק ממקביליות היא המקבילון.

מרובע

מרובע הוא מצולע בעל ארבע צלעות.

משובע

מְשֻׁבָּע (הֶפְּטָגוֹן) הוא מצולע בעל שבע צלעות.

סכום הזוויות במשובע הוא 900 מעלות. מספר האלכסונים בו הוא 14.

ביחס למשושה ולמתומן, השימוש ההנדסי-טכנולוגי במשובע הוא די נדיר.

משושה

מְשֻׁשֶּׁה (Hexagon, הֶקְסָגוֹן) הוא מצולע בעל שש צלעות. סכום כל זוויותיו הפנימיות הוא 720 מעלות. כל משושה הוא בעל תשעה אלכסונים שיוצרים שישה משולשים.

הצרפתים מכנים לעיתים את צרפת "המשושה" בגלל צורתה שנראית כמו משושה.

מתומן

מתומן (אנגלית: Octagon) הוא מצולע בעל שמונה צלעות. סכום זוויותיו הפנימיות הוא 1080°. במתומן יש 20 אלכסונים.

קובייה

קובייה (ביוונית: הֶקְסַאהֶדְרוֹן) היא פאון משוכלל בעל 6 פאות ריבועיות הניצבות כל אחת לכל שכנותיה. לקובייה יש 8 קודקודים ו- 12 מקצועות שווים באורכם.

הסימטריות הרבה של הקובייה מתבטאת בכך שחבורת הסימטריות שלה היא מסדר 24 (החבורה איזומורפית לחבורת התמורות ), והיא פועלת טרנזיטיבית על הקודקודים, על הצלעות ועל הפאות. חבורת הסימטריות של השלד של הקובייה, שהוא הגרף המורכב מן הקודקודים והצלעות בלבד, היא מסדר 48; לסימטריות הקודמות נוסף גם היפוך מבפנים-החוצה, שאינו אפשרי בקובייה מלאה.

הקובייה מופיעה באופן טבעי במערכת צירים קרטזית, משום שהיא כדור היחידה של נורמת-אינסוף על המרחב האוקלידי התלת-ממדי.

קובייה היא מקרה פרטי של מקבילון, תיבה ומעוינון.

קובייה קטומה

קובייה קטומה או הקסהדרון קטום היא פאון ארכימדי שפאותיו הן שישה מתומנים משוכללים ושמונה משולשים. לקוביה קטומה יש 24 קודקודים ו-36 מקצועות.

ריבוע

בגאומטריה, ריבוע הוא מרובע משוכלל. בריבוע יש ארבע צלעות שוות וארבע זוויות שוות. זוויות אלה הן זוויות ישרות.

ריבוע הוא מקרה פרטי של מרובע, טרפז (בהגדרה הרחבה שלו), מקבילית, מלבן, דלתון ומעוין. לריבוע יש השטח המקסימלי מבין המרובעים עם היקף נתון, והיקף מינימלי מבין המרובעים עם שטח נתון.

תמניון קטום

תמניון קטום או אוקטהדרון קטום הוא פאון ארכימדי שפאותיו הן שמונה משושים משוכללים ושישה ריבועים. לאוקטהדרון הקטום יש 24 קודקודים ו-36 מקצועות. הפאון הדואלי לתמניון הקטום הוא הקוביה הקיסית.

מצולעים ופאונים
מושגים מצולעפאוןקודקודצלעמקצועפאהזווית חיצוניתאלכסון
מצולעים
לפי מספר צלעות משולשמרובעמחומשמשושהמשובעמתומן
משולשים משולש ישר-זוויתמשולש שווה-שוקייםמשולש שווה-צלעות
מרובעים מקביליתטרפזטרפז שווה-שוקייםמרובע ציקלידלתוןדלתון ריצוףמעויןמלבןריבוע
כוכבים פנטגרםמגן דודאניאגרם
תכונות מצולע משוכלל • מצולע שווה-צלעות • מצולע קמורכוכב
פאונים
פאונים משוכללים ארבעוןקובייהתמניוןתריסרוןעשרימון
פאונים ארכימדיים ארבעון קטוםקובוקטהדרוןקובייה קטומהתמניון קטום • רומביקובוקטהדרון • קובוקטהדרון קטום • קובייה מסותתת • איקוסידודקהדרון • דודקהדרון קטום • איקוסהדרון קטום • רומביקוסידודקהדרון • איקוסידודקהדרון קטום • דודקהדרון מסותת
פאונים אחרים פירמידהמנסרהאנטי-מנסרהמקבילוןמעוינוןתיבהאיקוסיטטרהדרון
תכונות פאון משוכללפאון משוכלל למחצהפאון ארכימדי
הכללות
הכללות סימפלקסהיפרקובייהטסרקט

דף זה בשפות אחרות

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.