Sistema inmunitario

O sistema inmunitario é o conxunto de mecanismos que no interior dun organismo teñen a finalidade de protexelo das doenzas, identificando e eliminando os axentes patóxenos. Debe detectar unha gran variedade de axentes, desde virus ata vermes parasitos, e precisa distinguilos das súas propias células e tecidos para ser eficaz, ademais os patóxenos adáptanse e evolucionan para infectaren con éxito o organismo hóspede.

Para sobrevivir, diversos organismos desenvolveron mecanismos para recoñecer e neutralizar patóxenos. Mesmo os organismos unicelulares simples, como poden ser as bacterias, posúen un sistema de enzimas para protexerse das infeccións virais. Outros mecanismos inmunitarios básicos desenvolvéronse nas antigas células eucariotas permanecendo nos seus modernos descendentes, como plantas, peixes, réptiles e insectos. Entre eses mecanismos están os péptidos coñecidos como defensinas, a fagocitose e o sistema do complemento. Mecanismos máis sofisticados desenvolvéronse máis recentemente coa evolución dos vertebrados[1]. Os sistemas inmunitarios dos vertebrados consisten en A varios tipos de proteínas, células, órganos e tecidos que interactúan nunha rede elaborada e dinámica. Como parte desta resposta máis complexa, os sistema dos vertebrados adáptanse para recoñeceren os patóxenos concretos con maior eficacia. O proceso de adaptación crea memorias inmunolóxicas e permite unha mellor protección en futuros encontros con eses patóxenos. Este proceso de adquirir inmunidade é a base da vacinación.

Neutrophil with anthrax copy
Imaxe microscópica dun neutrófilo, en amarelo, fagocitando a bacteria ántrax, en laranxa.

Frontes inmunolóxicas de defensa

O sistema inmunitario protexe os organismos de infeccións con frontes de defensa sucesivas, cun nivel de espeficidade que se vai incrementanto desde as máis simples, barreiras físicas que impiden aos axentes patóxenos como bacterias e virus entrar no organismo. De se conseguir romper esa barreira, o sistema inmunitario innato dá unha resposta inmediata, pero que non dunha forma específica. Estes sistemas inmunitarios innatos atópanse en todas as plantas e animais [2]. Así e todo, se o axente patóxeno evade a resposta innata, os vertebrados posúen unha terceira barreira de protección, o sistema inmunitario adaptativo, que se activa como unha resposta innata durante a infección para recoñecer o patóxeno, esta resposta mantense mesmo despois que o patóxeno fora eliminado, na forma dunha memoria inmunolóxica, o cal permite ao sistema inmunitario adaptativo atacar máis rápido e mellor cada volta que se encontra con ese patóxeno.[3][4]

Compoñentes do sistema inmunitario
Sistema inmunitario innato Sistema inmunitario adaptativo
A resposta non é específica A resposta é específica contra patóxenos e antíxenos
A exposición leva á resposta máxima inmediatamente Tempo de espera entre a exposición e a resposta máxima
Inmunidade celular e humoral Inmunidade celular e humoral
Sen memoria inmunolóxica A exposición leva á memoria inmunolóxica
Atópase en case todas as formas de vida Atópase só nos vertebrados mandibulados

Tanto a inmunidade innata como a adaptativa dependen da habilidade do sistema inmunitario para distinguir entre as moléculas propias das que non o son. En inmunoloxía, as moléculas propias son aqueles compoñentes dun organismo que o sistema inmunitario distingue das substancias estrañas [5]. Pola contra, as moléculas non propias son aquelas recoñecidas como estrañas. Unha das clases de moléculas non propias son os chamados antíxenos que se definen como substancias que se ligan a receptores inmunitarios específicos e desencadenan unha resposta inmune.[6].

Barreiras superficiais

Diferentes barreiras protexen os organismos das infeccións, entre elas hai barreiras mecánicas, químicas e biolóxicas. A cutícula dunha folla, o exoesqueleto dun insecto, a casca dun ovo ou a pel son exemplos de barreiras mecánicas que constitúen a primeira liña de defensa contra a infección. Non obstante, os organismos non poden pechar as cancelas totalmente ao su medio externo e existen outros sistemas que protexen as aberturas do corpo tales como os pulmóns, intestinos e o sistema xenitourinario. Nos pulmóns, a tose e os esbirros expulsan mecanicamente os patóxenos e outros elementos irritantes para o aparato respiratorio. O fluxo de lágrimas e urina expele mecanicamente os patóxenos, mentres a secreción de mucosidade polo aparato respiratorio e dixestivo serve para atrapar microorganismos [7]

As barreiras químicas tamén protexen contra a infección. A pel e o sistema respiratorio secretan péptidos antimicrobianos como as β-defensinas.[8]. Enzimas como o lisozima e a fosfolipase A2 na saliva, as lágrimas e o leite materno son tamén antibacterianos.[9][10] As secrecións vaxinais serven como unha barreira química na menarquia, cando se converten en lixeiramente ácidas, mentres o seme contén defensinas e cinc que matan os patóxenos.[11][12] No estómago, o ácido gástrico e as peptidases serven como poderosas defensas químicas contra os patóxenos inxeridos.

Dentro dos tractos xenitourinario e gastrointestinal, a flora comensal serve como barreira biolóxica competindo coas bacterias polo alimento e o espazo, nalgúns casos tamén cambiando as condicións do seu contorno, como o pH ou o contido de ferro dispoñible.[13]. Isto reduce a probabilidade de que os axentes patóxenos acaden o número suficiente para causar doenzas. Non obstante, debido a que a maioría de antibióticos non diferenzan entre bacterias patóxenas e a flora habitual, os antibióticos orais poden deixar unha sobreabundancia de fungos, que non se ven afectados pola maioría dos antibióticos, e orixinar as condicións para que se dean procesos como a candidiase vaxinal.[14] Hai evidencia que a reintrodución da flora probiótica, como o lactobacillus normalmente atopado no iogur axuda a restaurar un equilibrio saudable de poboacións microbianas nas infeccións intestinais nos nenos, ademais de datos preliminares alentadores en casos de gastroenterite bacteriana, enfermidades inflamatorias intestinais, infeccións urinarias e infeccións poscirúrxicas.[15][16][17]

Inmunidade innata

Os microorganismos que conseguen entrar con éxito nun organismo atópanse coas células e os mecanismos do sistema inmunitario innato. A resposta innata actívase normalmente cando os receptores de recoñecemento de patróns identifica as bacterias, ao recoñecer compoñentes que se conservan entre os principais grupos de microorganismos.[18]. As defensas so sistema inmune innato non son específicas, o que significa que eses sistemas responden aos patóxenos dun xeito xenérico. Estes sistema non confire inmunidade a longo prazo contra o patóxeno. O sitema inmune innato é o sistema dominante de protección na maioría dos organismos.

Barreiras químicas e humorais

Inflamación

Artigo principal: Inflamación.

A inflamación é unha das primeiras respostas do sistema inmunitario á infección.[19] Os síntomas da inflamación son o arroxamento e o inchazo, causados polo aumento do fluxo do sangue no tecido. A inflamación prodúcena os eicosanoides e citocinas, liberados por células feridas ou infectadas. Os eicosanoides inclúen prostaglandinas que producen febre e a dilatación dos vasos sanguíneos asociados coa inflamación, e leucotrienos que atraen certos leucocitos.[20][21] As citocinas inclúen interleucinas que son responsables da comunicación entre os leucocitos; quimiocinas que potencian a quimiotaxis; e interferóns que teñen efectos antivirais, tales como a supresión da síntese proteica na célula hóspede.[22] Tamén se poden liberar factores de crecemento e citolóxicos. Estas citocinas e outros axentes químicos atraen células inmunitarias ao lugar da infección e promoven a curación de calquera tecido danado mediante a eliminación dos patóxenos.[23]

Sistema de complemento

O sistema do complemento é unha fervenza bioquímica que ataca a superficie das células estrañas. Contén por riba das vinte proteínas diferentes e a súa denominación procede da súa capacidade para complementar a destrución dos patóxenos realizado polos anticorpos. O sistema de complemento é o maior compoñente humoral da resposta inmunitaria innata.[24][25] Moitas son as especies que teñen sistemas de complemento, non só os mamíferos, tamén plantas, peixes e algúns invertebrados.[26]

Nos humanos, esta resposta de complemento actívase pola ligazón dos anticorpos que se unen aos microorganismos ou pola unión de proteínas de complemento a carbohidratos na superficie dos microorganismos. Este sinal de recoñecemento produce unha rápida resposta destrutiva.[27]

Barreiras celulares do sistema innato

SEM blood cells
Imaxe tirada dun microscopio electrónico de varrido do sistema circulatorio dun ser humano.

Os leucocitos actúan como un organismos unicelulares independentes e son o segundo brazo do sistema inmunitario innato. Os leucocitos innatos inclúen os fagocitos (macrófagos, neutrófilos, e células dendríticas), mastocitos, eosinófilos, basófilos e células exterminadoras naturais. Estas células identifican e eliminan patóxenos, atacando os máis grandes ou ben engulíndoos para matalos.

A fagocitose é unha elemento importante da inmunidade celular innata, realizada polas células chamadas fagocitos, que engolen, ou comen, patóxenos e partículas. Os fagocitos xeralmente patrullan o corpo na procura de patóxenos, pero poden ser chamadas a localizacións específicas polas citocinas. Unha vez que un patóxeno queda envolvido polo fagocito, queda atrapado nunha vesícula intracelular chamada fagosoma, que deseguido se fusiona con outra vesícula chamada lisosoma para formaren un fagolisosoma. A actividade das enzimas dixestivas ou un chorro respiratorio que libera radicais libres destrúen os patóxenos[28][29]

Os neutrófilos e macrófagos son fagocitos que percorren o corpo na procura de patóxenos invasores.[30] Os neutrófilos atópanse normalmente no sistema circulatorio e constitúen o tipo de fagocito máis abundante, polo xeral representa entre o 50% e o 60% do total dos leucocitos en circulación no corpo.[31] Durante a fase aguda de inflamación, particularmente nas infeccións bacterianas, os neutrófilos migran cara ao lugar da inflamación nun proceso coñecido como quimiotaxe, e normalmente son as primeiras células en chegaren á escena da infección. Os macrófagos son células versátiles que residen dentro dos tecidos e producen unha ampla gama de substancias químicas, incluíndo enzimas, proteínas de complemento, e factores reguladores como interleucina 1.[32] Os macrófagos actúan tamén como preeiros, librando ao organismo de células mortas e outros refugallos, e células presentadoras de antíxenos para activaren o sistema inmunitario adaptativo.

As células dendríticas son fagocitos en tecidos que están en contacto co ambiente exterior. Localízanse, xa que logo, na pel, nariz, pulmóns, estómago e intestinos.[33] Débenlle o seu nome polo seu parecido coas dendritas neuronais, xa que ámbolos dous teñen proxeccións en forma de espiña, aínda que as células dendríticas non están relacionadas de xeito ningún co sistema nervioso. As células dendríticas serven como ligazón entre os sistemas inmunitarios innato e adaptativo por presentaren antíxenos ás células T, un dos tipos de célula clave do sistema inmunitario adaptativo.

Os mastocitos residen nos tecidos conxuntivos e nas mucosas, e regulan a resposta inflamatoria.[34] Frecuentemente están relacionados coa alerxia e a anafilaxe. Tanto os basófilos como os eosinófilos aparecen relacionados cos neutrófilos. Secretan mediadores químicos que están comprometidos na defensa contra os parasitos e xogan o seu papel nas reaccións alérxicas, como é o caso da asma.[35] As células exterminadoras naturais son leucocitos que atacan e estruen células tumorosas ou aquelas infectadas por virus.[36]

Inmunidade adaptativa

O sistema inmunitario adaptativo desenvolveuse nos vertebrados primitivos e permite unha mellor resposta inmunitaria e tamén a existencia dunha memoria inmunolóxica, lembrando cada patóxeneo pola sinatura do seu antíxeno.[37] A resposta inmunitaria adaptativa é caracterísitca para cada antíxeno e require o recoñecemento dos antíxenos foráneos durante o proceso coñecido como presentación de antíxenos. A especificidade do antíxeno permite producir respostas que se adaptan a patóxenos específicos ou a células infectadas por patóxenos. A habilidade para establecer esas respostas permanece no organismo por "células de memoria". De un patóxeno infectar un organismo máis dunha vez, esas células específicas de memoria elimínano rapidamente.

Linfocitos

As células do sistema inmunitario adaptativo son un tipo especial de leucocitos, chamados linfocitos. As células B e as células T son os principais tipos de linfocitos e derívanse das células nai hematopoéticas da medula ósea. As células B participan na resposta humoral inmunitaria, mentres as células T participan na resposta inmunitaria celular.

Tanto as células B como as células T conteñen moléculas receptoras que recoñecen albos específicos. As células T recoñecen un obxectivo externo, como un patóxeno, só despois que os antíxenos (pequenos anacos do patóxeno) foran procesados e presentados en combinación cun receptor propio, unha molécula do chamado complexo maior de histocompatibilidade (CMH). Hai dous subtipos principais de células T: a célula T asasina e a célula T auxiliar. As células asasinas só recoñecen os antíxenos ligados a moléculas do CMH de clase I, mentres as células T auxiliares só recoñecen os antíxenos ligados a moléculas do MHC de clase II. Eses dous mecanismos de presentación de antíxenos reflicten as diferentes tarefas dos dous tipos de células T. Un terceiro suptipo, máis escaso, son as células γδ T que recoñecen antíxenos intactos que non se ligan a receptores MHC.[38]

En contraste, o receptor específico das células B (BCR) é unha molécula de anticorpo na superficie da célula B, e recoñece os patóxenos completos sen necesidade de procesar antíxenos. Cada liñaxe de células B expresa na súa superficie un anticorpo diferente, así o conxunto completo de receptores de antíxenos das células B representan todos os anticorpos que o organismo pode elaborar.

Células T asasinas

As células T asasinas son un subgrupo de células T que destrúen células infectadas por virus (e outros patóxenos), as danadas ou as que non funcionan correctamente[39]. Ao igual que sucede coas células B, cada tipo de célula T recoñece un antíxeno diferente. As células T actívanse cando o seu receptor de células T (TCR) se liga ao seu antíxeno específico, acoplado ao receptor MHC de clase I doutra célula. Axuda ao recoñecemento deste acoplamento MHC:antíxeno a existencia dun correceptor, denominado CD8. A célula T viaxa logo a través do corpo na procura de células onde os receptores MHC I leven este antíxeno. Cando unha célula T activada contacta con tales células, desprende citotoxinas, como a perforina, que forma poros na membrana plasmática, permitindo entrar aos ións, auga e toxinas. A entrada doutra toxina chamada granulisina induce á célula atacada a someterse á apoptose.[40] A morte de células T hospede é especialmente importante para previr a replicación dos virus. A activación das células T está estreitamente controlada e xeralmente require do complexo CMH/antíxeno un sinal moi forte que a active, ou sinais de activación adicionais que veñan das células T auxiliares.

Células T auxiliares

Lymphocyte activation simple
Función das células T auxiliares: As células presentadoras de antíxenos (APC) dispoñen de antíxeno nas súas moléculas MHC de clase II. As células T auxiliares recoñecen esta presenza, coa axuda do coreceptor CD4. A activación das células T axiliares comporta a liberación de citocinas e outros sinais (frechas verdes) que estimulan a actividade de macrófagos, células T asasinas e células B, que logo producen anticorpos. A estimulación dos macrófagos e células B produce unha proliferación de células T auxiliares.

As células T auxiliares regulan tanto as respostas inmunitarias innatas como as adaptativas e axuda a determinar os tipos de respostas do organismo fronte a cada patóxeno concreto.[41][42] Esas células non teñen actividade citotóxica e non matan células infectadas nin limpan patóxenos directamente pero dirixen a resposta inmune controlando outras células para realizaren esas accións.

As células T auxiliares expresan receptores de células T que reocoñecen antíxenos ligados a moléculas MHC de clase II. O correceptor CD4 das células auxiliares tamén recoñecen o complexo MHC:antíxeno e mobiliza moléculas dentro da célula T (como Lck) que son responsables da activación das células T. As células T auxililares teñen unha asociación máis feble co complexo MHC:antíxeno que o observado para as células T asasinas, isto significa que precisa que se liguen moitos receptores (200 ou 300) na célula T auxiliar para activar a célula auxiliar, mentres que as células asasinas pódense activar pola unión dunha soa molécula CMH:antíxeno. A activación da célula T auxiliar tamén require unha duración máis longa da unión coa célula presentadora de antíxeno.[43] A activación das células T auxiliares causa a emisión de citoquinas que inflúen na actividade de moitos tipos de células. O sinais da citoquina producidas polas células T auxiliares reforzan a función microbicida dos macrofagos e a actividade das células T asasinas. Hai que engadir que a activación das células T auxiliares provoca unha sobreregulación de moléculas portadas na superficie das células T, como a CD154, que proporciona sinais extras de estimulación requiridas para activar linfocitos B que producen anticorpos.[44]

Células T γδ

As células T γδ caracterízanse por posuíren un receptor de células T (RCT) alternativo na súa superficie chamado γδ (gamma-delta) ao contrario que as células T CD4+ e CD8+ (que teñen o αβ) compartindo a característica coas células T auxiliares, células T citotóxicas e células asasinas naturais. As causas que producen respostas por parte das células T γδ non se coñecen totalmente. Como outras subpoboacións de células T non convencionais que portan RCT invariables, tales como o receptor CD1d restrinxido ou a células T asasina natural, as células T γδ atópanse no límite entre a inmunidade adaptativa e a innata.[45] Por unha banda, as células T γδ son un compoñente do inmunidade adaptativa xa que son reorganizar os xenes dos seus RCT para produciren diversidade de receptores e poden tamén desenvolver unha memoría fenotípica. Por outra banda, as súas varias subpoboacións son tamén parte do sistema inmune innato, xa que varias das súas subpoboacións posúen receptores RCT ou NK restrinxidos que se poden usar como receptores de recoñecemento de patróns. Así por exemplo, gran número de células T Vγ9/Vδ2 humanas responden en horas a moléculas comúns producidas por microbios, e as células T Vδ1+ nos epitelios responden a células epiteliais estresadas.[46]

Antibody illustration
Un anticorpo componse de dúas cadeas pesadas e dúas lixeiras. A única rexión variable permite que un anticorpo recoñeza o antíxeno que lle corresponda.

Linfocitos B e anticorpos

O linfocito B identifica os patóxenos cando os anticorpos da súa superficie se ligan a antíxenos foráneos específicos.[47] Este complexo antíxeno/anticorpo pasa ao interior do linfocito B, procesando os peptidos por medio da proteólise. O linfocito B entón amosa eses peptidos anti xénicos na súa superficie unidos a moléculas CMH de clase II. Esta combinación de CMH e antíxeno atrae a un linfocito T auxiliar, liberando linfoquinas.[48] Ao se activar o linfocito B comeza a súa división, a súa descendencia (plasmocitos) secretan millóns de copias do anticorpo que recoñecen este antíxeno. Eses anticorpos circulan no sangue plasmático e na linfa, ligándose aos patóxenos que portan eses antíxenos e marcándoos para a súa destrución por medio da activación do complemento ou ao ser absorbidos e destruídos polos fagocitos. Os anticorpos poden tamén neutralizar os perigos directamente, ligándose a toxinas bacterianas ou interferindo cos receptores que eses virus e bacterias usan para infectar as células.[49]

Sistema inmunitario adaptativo alternativo

Non obstante as moléculas do sistema inmunitario adaptativo (anticorpos e receptores de células T) existiren só en vertebrados mandibulados, descubriuse unha molécula diferente derivada dos linfocitos nos primitivos vertebrados mandibulados, tales como a lamprea e os mixínidos. Estes animais posúen unha gran cantidade de moléculas chamadas receptores linfocíticos variables que, como os receptores de antíxenos dos vertebrados mandibulados, prodúcense de só un pequeno número (un ou dous) de xenes. Pénsase que esas moléculas se ligan aos antíxenos patóxenos dun xeito semellante a como fan os anticorpos e co mesmo grao de especificidade.[50]

Memoria inmunolóxica

Cando se activan células B e as células T comezan a se replicar, algún dos seus descendentes converteranse en células de memoria de vida longa. Ao longo da vida dun animal, esas células de memoria recordarán cada patóxeno específico que atoparan podendo así establecer unha resposta efectiva de detectar de novo o patóxeno. Considérase adaptativa porque acontece ao longo da vida dun individuo como unha adaptación da infección con ese patóxeno que prepara o sistema inmunitario para futuros retos. A memoria inmunolóxica pode ser ben memoria pasiva e de curta duración ou ben activa e de longa duración.

Memoria pasiva

Os nenos recentemente nacidos nunca estiveron expostos previamente a microbios e son particularmente vulnerables ás infeccións. A nai proporcionalles varios niveis de protección pasiva. Durante o embarazo, un tipo particular de anticorpo, a IgG transmítese da nai ao neno directamente a través da placenta, así as crías humanas teñen altos niveis de anticorpos mesmo no nacemento, co mesmo rango de especificidade contra o antíxenos que o da súa nai.[51] O leite materno tamén contén anticorpos que se transfiren ao intestino do bebé protexéndoo contra as infeccións bacterianas ata que o recentemente nacido poida sintetizar os seus propios anticorpos.[52] Esta é inmunidade pasiva porque o feto realmente non produce células de memoria ou anticorpos, tan só os colle da nai. Esta inmunidade pasiva é normalmente de curta duración, desde uns poucos días ata varios meses. En medicina, a inmunidade pasiva protectora pódese tamén transferir artificialmente dun individuo a outro mediante soro rico en anticorpos.[53]

Immune response2
O tempo de reacción dunha resposta inmune comeza co encontro co patóxeno inicial (ou vacinación inicial) e conduce á formación e mantemento da memoria inmunolóxica activa.

Memoria activa e inmunización

A memoria activa a longo prazo acquírese logo da infección ao se activar as células B e T. A inmunidade activa pódese xerar tamén artificialmente, mediante a vacinación. O principio no que se basea a vacinación (tamén denominado inmunización) é a introdución dun antíxeno dun patóxeno para estimular o sistema inmunitario e desenvolver unha inmunidade específica contra ese patóxeno en particular sen causar a enfermidade asociada co organismo. Estra indución deliberada dunha resposta inmune é exitosa porque explota a especificidade natural do sistema inmunitaria, e tamén a súa inducibilidade. Por ser as enfermidades infecciosas unha das principais causas de morte da poboación humana, a vacinación representa a máis efectiva manipulación do sistema inmunitario desenvolvida ata agora.[54]

A maioría das vacinas virais baséanse en virus vivos atenuados, mentres a maioría das vacinas bacterinas baséanse en compoñentes acelulares de microorganismos, incluíndo compoñentes inocuos de toxinas. Xa que a maioría dos antíxenos derivados de vacinas acelulares non inducen unha resposta adaptativa forte, a moitas das vacinas bacterinas engádenselle coadxuvantes adicionais que activan as células presentadoras de antíxeno do sistema inmunitario innato para maximizar a inmunoxenicidade.[55]

Desordes da inmunidade humana

O sistema inmunitario é unha estrutura abondo efectiva que incorpora especificidade, inducibilidade e adaptación. Non obstante, ás veces falla, estes fallos clasifícanse en tres categorías principais: inmunodeficiencia, autoinmunidade e hipersensibilidade.

Inmunodeficiencias

As inmunodeficiencias acontecen cando un ou máis dos compoñentes do sistema inmunitario permanecen inactivos. A capacidade do sisterma inmunitario para responder aos patóxenos é menor tanto nos individuos máis novos como nos máis vellos, as repostas inmunitarias comezan a declinar arredor dos 50 anos debido á inmunosenescencia.[56][57] Nos países desenvolvidos, a obesidade, alcoholismo, e as drogas son causas comúns dunha mala resposta inmunolóxica. Así e todo, a malnutrición é a causa máis común de inmunodeficiencia nos países subdesenvolvidos. As dietas con insuficiente cantidade de proteínas asócianse coa inmunidade celular danada, coa actividade de complemento, a función fagocita, a IgA, concentracións de anticorpos e a produción de citocinas. A deficencia de nutrientes simples como é o caso do ferro, cobre, cinc, selenio, vitaminas (A, C, E e B6) e ácido fólico (vitamina B9) tamén reduce a resposta inmunolóxica. Ademais, a perda do timo a idades temperás por mutación xenética ou por intervención cirúrxica provoca inmunodeficiencia severa e unha alta probabillidade de infección.[58]

As inmunodeficiencias pódense tamén herdar ou adquirir. A doenza granulomatosa crónica, a cal provoca que os fagocitos teñan unha capacidade reducida para destruíren patóxenos, é un exemplo dunha inmunodeficiencia herdada ou conxénita. A SIDA e algúns tipos de cancro causan tamén inmunodeficiencia acquirida.[59][60]

Autoinmunidade

As respostas inmunitarias hiperactivas comprenden o outro cabo da disfunción inmunitaria, especialmente os desordes autoinmunes. Aquí, o sistema inmunitario falla e non distingue correctamente o propio do alleo, e ataca parte do seu organismo. En circunstancias normais, a maioría das células T e os anticorpos reaccionan con péptidos propios.[61] Unha das funcións das células especializadas (localizadas no timo e na medula ósea) é producir a maduración de linfocitos novos con antíxenos propios e eliminar aquelas células que recoñecen autoantíxenos, previndo a autoinmunidade.

Hipersensibilidade

A hipersensibilidade é unha resposta inmunitaria que dana os propios tecidos do corpo. Divídense en catro clases (Tipo I - IV) segundo os mecanismos envolvidos e a duración da reacción hipersensible. O tipo I de hipersensibilidade é unha reacción inmediata ou anafiláctica, con frecuencia asociada con alerxia, os síntomas poden variar desde un lene malestar ata a morte, neste tipo I intervén a IgE liberada por mastocitos e basófilos.[62] O tipo II de hipersensibilidade ocorre cando os anticorpos se ligan a antíxenos situados nas propias células do doente, marcándoos para a súa destrución, isto denomínase tamén hipersensibilidade dependente de anticorpos (ou citotóxica), e prodúcese por mediación dos anticorpos IgG e IgM. Os inmunocomplexos (agregación de antíxenos, proteínas de complemento e anticorpos IgG e IgM) depositados en varios tecidos desencadenan a hipersensibilidade do tipo III. A hipersensibilidade do tipo IV normalmente tardfa entre dous e tres días en se desenvolver, estas reaccións do tipo IV aparecen inseridas en moitas doenzas autoinmunes e infecciosas, pero poden tamén participar en dermatite de contacto. Esas reaccións están mediadas por células T, monocitos e macrófagos.

Outros mecanismos

É posible que un sistema inmunitario adaptativo e de múltiples compoñentes aparecese cos primeiros vertebrados, xa que os invertebrados non xeran linfocitos nin resposta humoral ningunha baseada nos anticorpos. Moitas especies, non obstante, utilizan mecanismos que semellan ser precursores deses aspectos da inmunidade dos vertebrados. Os sistemas inmunitarios aparecen mesmo nas formas de vida máis simples, como a bacteria que usa un único mecanismo de defensa, denominado sistema de restrición-modificación para se protexer de patóxenos víricos, chamados bacteriófagos.[63] Os procariotas tamén posúen inmunidade adquirida, cun sistema que usa secuencias CRISPR para reter fragmentos dos xenomas dos fagos cos que tiveran contacto no pasado, o cal permite bloquear a replicación do virus cunha forma de interferencia de ARN.[64][65]

Os receptores de recoñecemento de patróns son proteínas que usan case todos os organismos para identificar moléculas asociadas con patóxenos. Os péptidos antimicrobianos coñecidos como defensinas son un compoñente, que se conservou ao longo da evolución da resposta inmune innata, presente en todos os animais e plantas, e representan a principal forma de inmunidade sistémica dos invertebrados. O sistema do complemento e as células fagócitas úsanas tamén moitas formas de vida invertebrada. As ribonucleases e a ruta de interferencia de ARN consérvanse en todos os eucariotas, e pénsase que xoga un papel na resposta inmunitaria aos virus.[66]

Ao contrario que os animais, as plantas carecen de células fagócitas, e a resposta inmunitaria da maioría das plantas abrangue sinais químicos sistémicos que se envían ao longo da planta.[67] Cando unha parte dunha planta se infecta, a planta produce unha resposta hipersensible, mediante a que as células do lugar da infección sofren unha rápida apoptose para previr a extensión da enfermidade a outras partes da planta. A resistencia sistémica adquirida é un tipo de resposta defensiva usada polas plantas que converte a totalidade da planta en resistente a un axente infeccioso concreto. Os mecanismo de silenciamento do ARN son particularmente impotrantes nesta resposta sistémica xa que poden bloquear a replicación de virus.[68]

Inmunoloxía de tumores

Macs killing cancer cell
Macrófagos tras identificaren unha célula canceríxena (a masa grande). Fusionándose coa célula canceríxena, os macrófagos (as células brancas máis pequenas) inxectarán toxinas que matarán a célula co tumor. A Inmunoterapia para o tratamento do cancro é unha área activa da investigación médica.[69]

Notas

  1. Beck, Gregory; Gail S. Habicht (novembro de 1996). "Immunity and the Invertebrates" (PDF). Scientific American: 60–66. Consultado o 10 de maio de 2008.
  2. Litman G, Cannon J, Dishaw L (2005). "Reconstructing immune phylogeny: new perspectives.". Nat Rev Immunol 5 (11): 866-79. PMID 16261174
  3. Mayer, Gene (2006). Immunology - Chapter One: Innate (non-specific) Immunity. Microbiology and Immunology On-Line Textbook. USC School of Medicine. Consultado o 10 de maio de 2008
  4. ¿Por qué só temos a varicela unha vez? Arquivado 11/01/2012, en Wayback Machine., Diario da Universidade de Vigo, 304, 17 de abril de 2002
  5. Smith A.D. (Ed) Oxford dictionary of biochemistry and molecular biology. (1997) Oxford University Press. ISBN 0-19-854768-4
  6. [Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters (2002). Molecular Biology of the Cell; Fourth Edition. New York and London: Garland Science. ISBN 0-8153-3218-1
  7. Boyton R, Openshaw P. "Pulmonary defences to acute respiratory infection.". Br Med Bull 61: 1–12. PMID 11997295
  8. Agerberth B, Gudmundsson G. "Host antimicrobial defence peptides in human disease.". Curr Top Microbiol Immunol 306: 67–90. PMID 16909918
  9. Moreau J, Girgis D, Hume E, Dajcs J, Austin M, O'Callaghan R (2001). "Phospholipase A(2) in rabbit tears: a host defense against Staphylococcus aureus.". Invest Ophthalmol Vis Sci 42 (10): 2347–54. PMID 11527949.
  10. Hankiewicz J, Swierczek E (1974). "Lysozyme in human body fluids.". Clin Chim Acta 57 (3): 205-9. PMID 4434640.
  11. Fair W, Couch J, Wehner N (1976). "Prostatic antibacterial factor. Identity and significance.". Urology 7 (2): 169-77. PMID 54972.
  12. Yenugu S, Hamil K, Birse C, Ruben S, French F, Hall S (2003). "Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli." (PDF) Biochem J 372 . Consultado o 12 de maio de 2008.
  13. Gorbach S (1990). "Lactic acid bacteria and human health". Ann Med 22 (1): 37–41. PMID 2109988
  14. Hill L, Embil J (1986). "Vaginitis: current microbiologic and clinical concepts." (PDF). CMAJ 134 (4): 321-31.
  15. Reid G, Bruce A (2003). "Urogenital infections in women: can probiotics help?". Postgrad Med J 79 (934): 428-32.
  16. Salminen S, Gueimonde M, Isolauri E (2005). "Probiotics that modify disease risk". J Nutr 135 (5): 1294–8
  17. Reid G, Jass J, Sebulsky M, McCormick J (2003). "Potential uses of probiotics in clinical practice". Clin Microbiol Rev 16 (4): 658-72. PMID 14557292.
  18. Medzhitov R (2007). "Recognition of microorganisms and activation of the immune response". Nature 449 (7164): 819–26. doi:10.1038/nature06246
  19. Kawai T, Akira S Innate immune recognition of viral infection. Nat Immunol 7 (2): 131-7, 2006 PMID 16424890
  20. Miller, SB Prostaglandins in Health and Disease: An Overview. Seminars in Arthritis and Rheumatism 36 (1): 37–49, 2006 PMID 16887467
  21. Ogawa Y, Calhoun WJ. The role of leukotrienes in airway inflammation. J Allergy Clin Immunol. 118 (4): 789–98, 2006 PMID 17030228
  22. Le Y, Zhou Y, Iribarren P, Wang J Chemokines and chemokine receptors: their manifold roles in homeostasis and disease (PDF) Cell Mol Immunol 1 (2): 95–104, 2004. Consultado o 16 de maio de 2008
  23. Martin P, Leibovich S Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol, 15 (11): 599–607, 2005 PMID 16202600
  24. Rus H, Cudrici C, Niculescu F, The role of the complement system in innate immunity. Immunol Res 33 (2): 103-12, 2005 PMID 16234578
  25. Mayer Gene, Immunology - Chapter Two: Complement, Microbiology and Immunology On-Line Textbook.USC School of Medicine, 2006
  26. Charles Janeway et al. Immunobiology, 6th ed. Garland Science, 2005. ISBN 0-443-07310-4
  27. Liszewski M, Farries T, Lublin D, Rooney I, Atkinson J. Control of the complement system. Adv Immunol 61:201-83 PMID= 8834497
  28. Ryter A. Relationship between ultrastructure and specific functions of macrophages. Comp Immunol Microbiol Infect Dis 8 (2):119-33, 1985 PMID 3910340
  29. Langermans J, Hazenbos W, van Furth R. Antimicrobial functions of mononuclear phagocytes J Immunol Methods174 (1–2):185-94, 1994 PMID 8083520
  30. Zen K, Parkos C. Leukocyte-epithelial interactions Curr Opin Cell Biol 15 (5):557-64, 2003 PMID 14519390
  31. Stvrtinová Viera, Ján Jakubovský e Ivan Hulín Inflammation and Fever from Pathophysiology: Principles of Disease Academic Electronic Press, 1995, Computing Centre, Academia Eslovaca de Ciencias . Consultado o 20 de maio de 2008
  32. Bowers, William. Microbiology and Immunology On-Line Textbook: Immunology -Chapter Thirteen: Immunoregulation. University of South Caroline. School of Medicine, 2006. Consultado o 20 de maio de 2008
  33. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S Antigen presentation and T cell stimulation by dendritic cells Annu Rev Immunol 20:621-67 PMID 11861614
  34. Krishnaswamy G, Ajitawi O, Chi D The human mast cell: an overview. Methods Mol Biol 315:13–34 PMID 16110146
  35. Kariyawasam H, Robinson D The eosinophil: the cell and its weapons, the cytokines, its locations Semin Respir Crit Care Med 27 (2):117-27, 2006 PMID 16612762
  36. Middleton D, Curran M, Maxwell L Natural killer cells and their receptors Transpl Immunol 10 (2–3):147-64, 2002 PMID 12216946
  37. Pancer Z, Cooper M The evolution of adaptive immunity Annu Rev Immunol 24:497–518 PMID 16551257
  38. Holtmeier W, Kabelitz D gammadelta T cells link innate and adaptive immune responses Chem Immunol Allergy 86:151-83 PMID 15976493
  39. Harty J, Tvinnereim A, White D. CD8+ T cell effector mechanisms in resistance to infection Annu Rev Immunol 18:275–308 PMID 10837060
  40. Radoja S, Frey A, Vukmanovic S T-cell receptor signaling events triggering granule exocytosis Crit Rev Immunol 26 (3):265-90, 2006 PMID 16928189
  41. Abbas A, Murphy K, Sher A Functional diversity of helper T lymphocytes Nature 383 (6603):787-93, 1996 PMID 8893001
  42. McHeyzer-Williams L, Malherbe L, McHeyzer-Williams M Helper T cell-regulated B cell immunity Curr Top Microbiol Immunol 311:59–83 PMID 17048705
  43. Kovacs B, Maus M, Riley J, Derimanov G, Koretzky G, June C, Finkel T Human CD8+ T cells do not require the polarization of lipid rafts for activation and proliferation (PDF), Proc Natl Acad Sci U S A 99(23):15006–11, 2002. Consultado o 18 de xuño de 2008
  44. Grewal I, Flavell R CD40 and CD154 in cell-mediated immunity, Annu Rev Immunol 16:111–35 PMID 9597126
  45. Girardi M Immunosurveillance and immunoregulation by γδ T cells (PDF) Journal of Investigative Dermatology 126 (1):25–31, 2006
  46. Holtmeier W, Kabelitz D γδ T cells link innate and adaptive immune responses Chem Immunol Allergy 86:151–183, 2005 PMID 15976493
  47. Sproul T, Cheng P, Dykstra M, Pierce S A role for MHC class II antigen processing in B cell development International Reviews of Immunology, 19 (2–3):139–55, 2000 PMID 10763706
  48. Kehry M, Hodgkin P B-cell activation by helper T-cell membranes Critical Reviews™ in Immunology 14 (3–4):221–38, 1994 PMID 753876 7
  49. William Bowers Cells involved in immune responses en Microbiology and Immunology On-Line Textbook USC School of Medicine, 2006
  50. M.N. Alder, I.B. Rogozin, L.M. Iyer, G.V. Glazko, M.D. Cooper, Z. Pancer Diversity and Function of Adaptive Immune Receptors in a Jawless Vertebrate Science 310 (5756):1970–1973, 2005
  51. Saji F, Samejima Y, Kamiura S, Koyama M Dynamics of immunoglobulins at the feto-maternal interface (PDF) Arquivado 24 de xuño de 2008 en Wayback Machine., Reviews of Reproduction 4 (2):81–9, 1999
  52. Philippe Van de Perre Transfer of antibody via mother's milk' Vaccine 21 (24):3374–6, 2003 PMID 12850343
  53. Margaret Keller e Richard Stiehm Passive Immunity in Prevention and Treatment of Infectious Diseases Clinical Microbiology Reviews13 (4):602–614, 2000
  54. Death and DALY estimates for 2002 by cause for WHO Member States. Organización Mundial da Saúde.
  55. Singh M, O'Hagan D Advances in vaccine adjuvants, Nature Biotechnology 17(11):1075–81, 1999 PMID 10545912
  56. Aw, Danielle; Silva, Alberto B.; Palmer, Donald B. (2007-4). "Immunosenescence: emerging challenges for an ageing population". Immunology (en inglés) 120 (4): 435–446. ISSN 0019-2805. PMC 2265901. PMID 17313487. doi:10.1111/j.1365-2567.2007.02555.x.
  57. RK Chandra Nutrition and the immune system: an introduction (PDF) American Journal of Clinical Nutrition 66:460S–463S, 1997
  58. JF Miller The discovery of thymus function and of thymus-derived lymphocytes, Immunological Reviews 185:7–14, 2002 PMID 12190917
  59. Joos L, Tamm M Breakdown of pulmonary host defense in the immunocompromised host: cancer chemotherapy, The Proceedings of the American Thoracic Society 2(5):445–8, 2005
  60. Copeland K, Heeney J (PDF) T helper cell activation and human retroviral pathogenesis, Microbiological Review 60(4):722–42, 1996
  61. J F Miller Self-nonself discrimination and tolerance in T and B lymphocytes, Immunological Research 12(2):115–30, 1993 8254222
  62. Abdul Ghaffar ' Immunology - Chapter Seventeen: Hypersensitivity Reactions | work = Microbiology and Immunology On-Line Textbook, 2006
  63. Bickle T, Krüger D 'Biology of DNA restriction (PDF) Microbiological Reviews 57 (2):434–50, 1993
  64. Barrangou R, Fremaux C, Deveau H, et al CRISPR provides acquired resistance against viruses in prokaryotes Science 315 (5819):1709–12, 2007 PMID 17379808
  65. Brouns SJ, Jore MM, Lundgren M, et al Small CRISPR RNAs guide antiviral defense in prokaryotes Science 321 (5891):960–4, 2008 PMID 18703739
  66. Stram Y, Kuzntzova L. Inhibition of viruses by RNA interference Virus Genes 32 (3):299–306, 2006 16732482
  67. David Schneider (PDF) 'Innate Immunity - Lecture 4: Plant immune responses, Stanford University Department of Microbiology and Immunology, 2005
  68. Baulcombe D RNA silencing in plants , Nature 431 (7006) :356–63, 2004 PMID 15372043
  69. Morgan R et al [ http://www.sciencemag.org/cgi/content/abstract/314/5796/126 'Cancer regression in patients after transfer of genetically engineered lymphocytes']' , Science, 314: 126–129, 2006
Anticorpo

|Os anticorpos (tamén coñecidos como inmunoglobulinas, abreviado Ig) son glicoproteínas de tipo gammaglobulina, a fracción de globulinas máis abundante no plasma sanguíneo. Poden encontrarse en forma soluble no sangue ou noutros fluídos corporais dos vertebrados, ou poden estar inseridos na membrana plasmática, onde actúan como receptores nos linfocitos B. Son empregados polo sistema inmunitario para neutralizar patóxenos tales como bacterias, virus e parasitos. En xeral, considérase que anticorpo e inmunoglobulina son termos equivalentes, facendo referencia o primeiro termo á función, mentres que o segundo alude á estrutura. O termo gammaglobulina refírese ás propiedades electroforéticas das inmunoglobulinas solubles no soro sanguíneo, se ben algunhas inmunoglobulinas migran coas fraccións alfa, beta e incluso coa albumina.

Un anticorpo típico está constituído por unidades estruturais básicas, cada unha delas con dous grandes cadeas pesadas e dúas cadeas lixeiras de menor peso molecular. A molécula de anticorpo ten forma de Y; os extremos dos brazos do Y son o fragmento Fab por onde se une ao antíxeno; o pé do Y é o fragmento Fc. As moléculas dos anticorpos poden aparecer por separado, como monómeros, ou asociarse entre si formando dímeros con dúas unidades ou pentámeros con cinco unidades. Os anticorpos son sintetizados por un tipo de leucocito denominado linfocito B ou célula B. Existen distintos tipos de anticorpo, chamados isotipos, diferenciados pola forma da cadea pesada que presenten. Coñécense cinco clases de isotipos en mamíferos que desempeñan funcións diferentes, contribuíndo a dirixir a resposta inmune axeitada para cada distinto tipo de corpo estraño que encontran, que son: IgA, IgD, IgE, IgG e IgM.Aínda que a estrutura xeral de todos os anticorpos é moi semellante, unha pequena rexión do ápice da proteína é extremadamente variable, o cal permite a existencia de millóns de anticorpos, cada un cun extremo lixeiramente distinto. Esta parte da proteína coñécese como rexión hipervariable e dá lugar a millóns de anticorpos distintos. Cada unha destas variantes pode unirse a unha "diana" distinta, que é o antíxeno. Esta enorme diversidade de anticorpos permite ao sistema inmunitario recoñecer unha diversidade igualmente elevada de antíxenos. O anticorpo non recoñece o antíxeno na súa globalidade, senón que só recoñece certas partes del. Esa parte do antíxeno recoñecida polo anticorpo denomínase epítopo. Un antíxeno pode ter múltiples epítopos na súa superficie. Estes epítopos únense co seu anticorpo nunha interacción altamente específica que se denomina adaptación inducida, que permite aos anticorpos identificar e unirse soamente ao seu único antíxeno en medio dos millóns de moléculas diferentes que compoñen un organismo.

O recoñecemento dun antíxeno por un anticorpo deixa o antíxeno marcado para ser atacado por outros compoñentes do sistema inmunitario. Os anticorpos tamén poden neutralizar os seus obxectivos directamente, mediante, por exemplo, a unión a unha porción dun patóxeno necesaria para que este provoque unha infección.

A extensa poboación de anticorpos e a súa diversidade xérase por combinacións ao azar dun xogo de segmentos xenéticos que codifican diferentes lugares de unión ao antíxeno (ou parátopos), que posteriormente, durante o desenvolvemento do linfocito, sofren mutacións aleatorias nesta zona do xene do anticorpo, o cal orixina unha diversidade aínda maior. Os xenes dos anticorpos tamén se reorganizan nun proceso coñecido como cambio de clase das inmunoglobulinas que cambia a cadea pesada por outra, creando un isotipo de anticorpo diferente pero mantendo a rexión variable específica para o antíxeno diana. Isto posibilita que un só anticorpo poida ser usado polas diferentes partes do sistema inmunitario. A produción de anticorpos é a función principal do sistema inmunitario humoral.

Antíxeno

En inmunoloxía, un antíxeno é unha molécula con capacidade de inducir unha resposta inmune (para producir un anticorpo ou outra acción inmunitaria) no organismo hóspede. Ás veces os antíxenos forman parte do propio hóspede nos casos de enfermidades autoinmunes. Por tanto, un antíxeno é calquera substancia, propia ou allea, que pode ser recoñecida polo sistema inmunitario adaptativo e desencadear unha resposta inmunitaria.

Os antíxenos únense a diversos receptores celulares e a anticorpos. Na resposta inmune cada anticorpo é producido especificamente polo sistema inmunitario para unirse ao antíxeno despois de que as células presentadoras do antíxeno do sistema inmunitario entran en contacto con el; isto permite que haxa unha identificación/correspondencia precisa do antíxeno e o inicio dunha resposta á medida. O anticorpo dise que "se corresponde" co antíxeno no sentido de que pode unirse a el debido a adaptación realizada nunha rexión do anticorpo; debido a isto, prodúcense moitos anticorpos diferentes, cada un con especificidade para unirse a diferentes antíxenos aínda que todos comparten a mesma estrutura básica. Na maioría dos casos, un anticorpo adaptado só pode reaccionar e unirse a un antíxeno específico; porén, nalgúns casos os anticorpos poden establecer reaccións cruzadas e unirse a máis dun antíxeno. En realidade, os anticorpos só reaccionan cunha parte pequena do antíxeno chamada epítopo. Como os antíxenos son xeralmente grandes, adoitan ter moitos epítopos.

Ademais, un antíxeno é unnha molécula que se une a receptores específicos do antíxeno, pero non poden inducir necesariamente unha resposta inmunitaria no corpo por si mesmos. Os antíxenos xeralmente son péptidos (cadeas de aminoácidos), polisacáridos (cadeas de monosacáridos/azucres simples) ou lípidos. En xeral, os sacáridos e lípidos (a diferenza dos péptidos) considéranse antíxenos pero non inmunóxenos, xa que non poden desencadear unha resposta inmune por si sós. Ademais, para que un péptido induza unha resposta inmunitaria (activación de células T por células presentadoras de antíxenos) debe ser o suficientemente grande, xa que os péptidos demasiado pequenos tampouco desencadean unha resposta inmune. O termo antíxeno describía orixinalmente unha molécula estrutural que se unía especificacmente a un anticorpo. O seu significado foi ampliado despois para referirse a calquera molécula ou fragmento molecular linear que pode ser recoñecido por receptores do antíxeno moi variables (receptor da célula B ou BCR ou receptor da célula T ou TCR) do sistema inmunitario adaptativo.

O antíxeno pode ser unha molécula do propio corpo ("antíxeno propio") ou do ambiente externo ("non propio"). O sistema inmunitario xeralmente non reacciona contra os antíxenos propios en condicións homeostáticas normais debido á selección negativa realizadas sobre as células T no timo, pero identifica e ataca invasores con moléculas "non propias" procedentes do mundo exterior ou substancias modificadas/nocivas presentes no corpo en condicións de estrés.As células presentadoras do antíxeno presentan os antíxenos en forma de péptidos unidos a moléculas do complexo maior de histocompatibilidade da súa superficie. A célula T ou linfocito T (un subtipo de glóbulo branco sanguíneo) do sistema inmunitario adaptativo, é a que recoñece selectivamente os antíxenos así presentados. Dependendo do antíxeno e do tipo de molécula de histocompatibilidade, poden ser activados diferentes tipos de células T. Para o seu recoñecemento polo receptor da célula T (TCR), o péptido debe ser primeiro procesado, rompéndoo en pequenos fragmentos dentro da célula presentadora e despois presentado formando un complexo cunha molécula do complexo maior de histocompatibilidade (MHC). Por tanto, o antíxeno non pode desencadear a resposta inmune sen a axuda dun adxuvante inmunolóxico. De xeito similar, o compoñente adxuvante de vacinas desempeña un papel esencial na activación do sistema inmunitario innato.Un inmunóxeno é un antíxeno (ou aduto) que pode desencadear unha resposta inmunitaria humoral (innata) ou mediada por células. Inicia primeiro unha resposta inmunitaria innata, que despois causa a activación dunha resposta inmunitaria adaptativa. Un antíxeno únese a inmunorreceptores moi variables (o receptor da célula B ou o receptor da célula T) unha vez que estes foron xerados. Os inmunóxenos son aqueles antíxeno, denominados inmunoxénicos, que poden inducir unha resposta inmune.A nivel molecular, un antíxeno pode caracterizarse pola súa capacidade de unirse a unha rexión Fab variable dun anticorpo. Diferentes anticorpos teñen o potencial de discriminar entre os epítopos específicos presentes na superficie do antíxeno. Un hapteno é unha pequena molécula que cambia a estrutura dun epítopo antixénico. Para inducir unha resposta inmunitaria, necesita unirse a unha gran molécula portadora como unha proteína (ou complexo de péptidos). Os antíxenos son normalmente portados por proteínas e polisacáridos, e menos frecuentemente, lípidos. Isto inclúe partes (cubertas, cápsulas, paredes celulares, flaxelos, fimbrias e toxinas) de bacterias, virus, e outros microorganismos. Entre os antíxenos non propios non microbianos están o pole, clara de ovo e proteínas de tecidos e órganos transplantados ou que se encontran sobre a superficie de células sanguíneas transfundidas. As vacinas son exemplos de antíxenos en forma inmunoxénica, que se administran deliberadamente a un individuo receptor para inducirlle a formación de células con memoria (que lembran o antíxeno) no sistema inmunitario adaptativo que actuarán contra aos antíxenos de patóxenos que poden invadir o receptor en novas ocasións.

Autoinmunidade

A autoinmunidade é o fallo dun organismo en recoñecer os seus constituíntes como partes propias, o cal permite que se produzan respostas inmunitarias contra as propias células e tecidos. As enfermidades que se orixinan como resultado de respostas autoinmunes anormais denomínanse enfermidades autoinmunes. Exemplos importantes son: enfermidade celíaca, diabetes mellitus tipo 1 (insulina dependente), sarcoidose, lupus eritematoso sistémico, síndrome de Sjögren, síndrome de Churg-Strauss, tiroidite de Hashimoto, enfermidade de Graves, púrpura trombocitopénica idiopática, enfermidade de Addison, artrite reumatoide e alerxias.

A autoinmunidade non debe confundirse coa aloinmunidade.

Corticosteroide

Os corticosteroides ou corticoides (do latín cortex, -ĭcis 'cortiza') son unha variedade de hormonas do grupo dos esteroides (producida polo córtex das glándulas suprarrenais) e os seus derivados.

Os corticosteroides están implicados nunha variedade de mecanismos fisiolóxicos, incluíndo aqueles que regulan a inflamación, o sistema inmunitario, o metabolismo de hidratos de carbono , o catabolismo de proteínas, os niveis electrolíticos en plasma e, por último, os que caracterizan a resposta fronte ao estrés.

Estas substancias poden sintetizarse artificialmente e teñen aplicacións terapéuticas, utilizándose principalmente debido ás súas propiedades antiinflamatorias e inmunosupresoras e aos seus efectos sobre o metabolismo.

Enfermidade autoinmune

Unha enfermidade autoinmune é unha enfermidade causada porque o sistema inmunitario ataca as células do propio organismo. Neste caso, o sistema inmunitario convértese no agresor e ataca a partes do corpo no canto de protexelo. Existe unha resposta inmune esaxerada contra substancias e tecidos que normalmente están presentes no corpo. As causas son un tanto descoñecidas, pero están relacionadas co recoñecemento proteico entre as superficies das membranas celulares do sistema inmunitario e as que forman o organismo. A causa, polo tanto, ten que ver ás veces coa predisposición ou mutacións xenéticas que codifican proteínas diferentes, ben nas células inmunitarias ou ben nas orgánicas.

Fagocitose

A fagocitose (do grego fago, comer, cytos, vaso, célula, e -osis, proceso) é o proceso celular consistente en englobar e incorporar partículas sólidas realizado por fagocitos e certos protistas, formando un vacúolo interno chamado fagosoma. A fagocitose é unha forma específica de endocitose, que implica a internalización en vesículas de partículas sólidas, como, por exemplo, bacterias (a internalización de líquidos chámase pinocitose). A fagocitose está implicada na adquisición de nutrientes por algunhas células, e, no sistema inmunitario, é o principal mecanismo para eliminar patóxenos e refugallos celulares. As bacterias, células mortas dos tecidos, e pequenas partículas minerais son exemplos de obxectos que poden ser fagocitados.

O proceso só é homólogo con alimentarse para certos organismos unicelulares; nos animais pluricelulares, o proceso utilízase para a eliminación de refugallos e patóxenos, xa que neses organismos o alimento chégalle ás células en forma de moléculas pequenas disoltas (hai excepcións, como os placozoos como Trichoplax).

Ganglio linfático

Para os ganglios do sistema nervioso ver ganglio.Un ganglio linfático é unha formación vascular que pertence ao sistema linfático. Os vasos linfáticos drenan todo o corpo agás o sistema nervioso central. Recollen líquidos e transpórtano cara á circulación venosa. Serve ademais de para transportar substancias, coma filtro inmunolóxico, xa que contén numerosas células inmunes encargadas de eliminar substancias alleas ao organismo.

O ganglio é unha estrutura esférica, de pequeno tamaño, que se adoita agrupar en puntos concretos, coma a axila. Recolle linfa de varios condutos, concéntraa e o sistema inmune "revísaa". Do ganglio sae un vaso eferente, que se dirixe a outro grupo linfático ou á circulación venosa.

No caso do aparello dixestivo, existe unha rede linfática que transporta substancias da dieta cara ao sistema venoso. No caso das graxas, a célula do intestino delgado descompón o ácido graxo e empaquétao nunha estrutura de transporte, o quilomicron. Os quilomicrons son enviados ao sistema linfático, que finalmente os deposita na vea subclavia.

Hipermutación somática

A hipermutación somática é un mecanismo celular, que lle serve ao sistema inmunitario para adaptarse a novos elementos estraños (por exemplo bacterias). A súa función é diversificar os receptores que usa o sistema inmunitario para recoñecer elementos estraños (antíxenos) e permitir ao sistema inmunitario adaptar a súa resposta ás novas ameazas que se producen ao longo da vida dun organismo. A hipermutación somática consiste nun proceso de mutación programada que afecta especificamente ás rexións variables dos xenes de inmunoglobulina, que codifican os sitios de unión ao antíxeno do anticorpo. A diferenza de moitos outros tipos de mutación, a hipermutación somática afecta só a linfocitos concretos e as súas mutacións non se trasmiten de pais a fillos.Estase a estudar a posibilidade de que unha hipermutación somática mal dirixida sexa un posible mecanismo do desenvolvemento de linfomas de linfocitos B.

Inmunidade (medicina)

Inmunidade é un termo médico que describe o estado de ter suficientes defensas biolóxicas para evitar a infección, enfermidade ou outra invasión biolóxica non desexada. A inmunidade implica a compoñentes específicos contra determinados axentes infecciosos e a outros non específicos. Os compoñentes non específicos actúan como barreiras ou como eliminadores de patóxenos para deter a infección por microorganismos antes de que estes poidan causar a doenza. Outros compoñentes do sistema inmunitario adáptanse a cada nova doenza encontrada e son capaces de xerar inmunidade específica contra o xerme patóxeno.

Inmunidade humoral

A inmunidade humoral é a parte da inmunidade que está mediada por macromoléculas (a diferenza da inmunidade mediada por células), as cales se encontran nos fluídos extracelulares e poden ser anticorpos, proteínas do sistema do complemento ou certos péptidos antimicrobianos. A inmunidade humoral denomínase así porque depende de substancias que se encontran nos humores corporais (fluídos do corpo).

O estudo dos compoñentes moleculares e celulares que comprenden o sistema inmunitario, incluíndo a súa función e interaccións, é o obxectivo da inmunoloxía. O sistema inmunitario divídese en sistema inmunitario innato, máis primitivo, e sistema inmunitario adaptativo ou adquirido propio dos vertebrados ; cada un destes sistemas contén compoñentes humorais e celulares.

A inmunidade humoral refírese á produción de anticorpos e os procesos accesorios que a acompañan, incluíndo: a activación de linfocitos Th2 e da produción de citocinas, formación de centros xerminais nos ganglios linfáticos, cambio de isotipos, maduración da afinidade e xeración de células de memoria. Tamén se refire ás funcións efectoras dos anticorpos, que inclúen a neutralización de patóxenos e toxinas, activación do complemento clásica, e a promoción da fagocitose por opsonización e a eliminación do patóxeno.

Inmunodeficiencia

A imunodeficiencia é o estado no cal a capacidade do sistema inmunitario de loitar contra as enfermidades infecciosas é deficiente (comprometida) ou nula. A inmunodeficiencia pode tamén diminuír a inmunovixilancia do cancro, que exerce o sistema inmunitario para detectar e eliminar tumores. Moitos casos de inmunodeficiencia son adquiridos ao longo da vida (secundarios), pero tamén hai algunhas persoas que nacen con defectos xenéticos que afectan ao seu sistema inmunitario e teñen inmunodeficiencias primarias desde o nacemento. Tamén presentan unha inmunodeficiencia os pacientes sometidos a transplantes que toman medicación para suprimir o seu sistema inmunitario como medida contra o rexeitamento do transplante, e tamén as persoas que padecen dun sistema inmunitario sobrerreactivo. Unha persoa que ten unha inmunodeficiencia de calquera tipo dise que está inmunocomprometido. Unha persoa inmunocomprometida pode ser especialmente vulnerable a infeccións oportunistas, ademais das infeccións normais que poderían afectar a calquera.

Inmunoglobulina G

A Inmunoglobulina G (IgG) é un isotipo de anticorpo. Está composta por catro cadeas polipeptídicas, dous cadeas pesadas gamma (γ) idénticas entre si e dúas cadeas lixeiras idénticas entre si, dispostas formando unha molécula con forma de Y, como é característico nos monómeros dos anticorpos. Cada IgG ten dous sitios de unión aos antíxenos no extremo dos brazos do Y (rexión Fab). As IgG representan aproximadamente o 75% das inmunoglobulinas do soro sanguíneo humano, polo que son o isotipo de anticorpo máis abundante na circulación. As IgG son producidas e segregadas polas células plasmáticas (linfocitos B activados).

Inmunosupresión

A inmunosupresión é o fenómeno que reduce a activación ou eficacia do sistema inmunitario. Algunhas partes do propio sistema inmunitario teñen efectos inmunosupresores sobre outras partes do sistema inmunitario, para modular a súa resposta, pero a inmunosupresión pode ocorrer como resultado adverso dun tratamento ou outras condicións como certas infeccións, ou pode ser inducida deliberadamente.

En xeral, a inmunosupresión inducida deliberadamente realízase como prevención ante o rexeitamento de transplantes de órganos, ou para tratar a enfermidade de enxerto contra o hóspede despois dun transplante de medula ósea, ou para o tratamento de enfermidades autoinmunes como a artrite reumatoide ou a enfermidade de Crohn. Isto faise tipicamente utilizando certas drogas, pero pode implicar cirurxía (esplenectomía ou ablación do bazo), plasmaférese (extracción, tratamento e devolución do plasma sanguíneo), ou o uso de radiación.

Unha persoa que está experimentando uha inmunosupresión, ou cuxo sistema inmunitario é feble por outras razóns (por exemplo, quimioterapia, infección por VIH/SIDA, ou lupus eritematoso sistémico), dise que está inmunocomprometida.

Linfocito

Os linfocitos son un tipo de glóbulo branco do sangue que forma parte do sistema inmunitario dos vertebrados. Encárganse de producir anticorpos, ou secretar substancias citotóxicas ou regulatorias, segundo os casos.Vistos co microscopio óptico, os linfocitos poden dividirse en linfocitos grandes e pequenos. Os linfocitos pequenos inclúen os linfocitos B e os T. Os linfocitos grandes granulares inclúen as células asasinas naturais ou NK.

Resposta policlonal das células B

A resposta policlonal das células B é un tipo natural de resposta inmune que presenta o sistema inmunitario adaptativo dos mamíferos. Posibilita que un determinado antíxeno sexa recoñecido e atacado polas súas partes solapantes, chamadas epítopos, por múltiples clons de células B.No decurso dunha resposta inmunitaria normal, algunhas partes do patóxeno (por exemplo, unha bacteria) son recoñecidos polo sistema inmunitario como algo alleo (non propio), e eliminadas ou neutralizadas para reducir os posibles danos que poderían causar. A substancia recoñecible chámase antíxeno. O sistema inmunitario pode responder de moitas maneiras ao antíxeno; unha característica fundamental desta resposta é a produción de anticorpos polas células B (ou linfocitos B) que interveñen nun conxunto de accións do sistema inmunitario chamado inmunidade humoral. Os anticorpos son solubles e non requiren para o seu funcionamento un contacto directo célula a célula entre o patóxeno e a célula B.

Os antíxenos poden ser substancias grandes e complexas, e calquera anticorpo pode só unirse a unha área pequena e específica do antíxeno. En consecuencia, unha resposta inmune efectiva implica a miúdo a produción de moitos anticorpos distintos por células B moi diferentes contra o mesmo antíxeno. De aí o termo "policlonal", que deriva das palabras gregas poly, que significa 'moitos', e klon, 'brote', 'ramiña'. Un clon é un grupo de células que se orixinan a partir da división dunha célula "parental" común. Os anticorpos así producidos nunha resposta policlonal denomínanse anticorpos policlonais. Os anticorpos policlonais son heteroxéneos e distintos das moléculas de anticorpos monoclonais, as cales son idénticas e reaccionan contra un só epítopo, é dicir, son máis específicas.

Aínda que a resposta policlonal lle dá certas vantaxes ao sistema inmunitario, como ter unha maior probabilidade de reaccionar contra os patóxenos, tamén incrementa as posibilidades de desenvolver certas doenzas autoinmunes que resultan da reacción do sistema inmunitario contra moléculas nativas producidas polo propio hóspede.

Sistema inmunitario adaptativo

O sistema inmunitario adaptativo, tamén chamado sistema inmunitario adquirido ou sistema inmunitario específico, está composto por un conxunto de células e procesos moi especializados, que permiten eliminar ou impedir o crecemento de patóxenos, que se desenvolven ao longo da vida do organismo. Son mecanismos propios deste sistema, por exemplo, a produción de anticorpos, a actividade citotóxica das células T CD8+, ou a inmunización por formación de células de memoria.

Estes mecanismos da inmunidade adaptativa contrapóñense aos da chamada inmunidade innata no sentido de que os receptores específicos para os patóxenos da inmunidade innata están codificados xa na liña xerminal, mentres que os receptores específicos de patóxenos da inmunidade adquirida adquírense por medio dun proceso de expresión somática durante a vida do organismo (por exemplo forma un receptor ou un anticorpo específicos contra un antíxeno co que o corpo tivo contacto). Pode dicirse que ambos os sistemas inmunitarios son "adaptativos" no sentido fisiolóxico e evolutivo, xa que ambos os dous permiten que o organismo se adapte ás condicións externas cambiantes. Ambos os dous poden ser tamén desadaptativos no sentido de que a súa sobreactivación pode dar lugar a unha inflamación patolóxica ou a autoinmunidade. Tanto os receptores de patóxenos dos mecanismos da inmunidade innata coma da adquirida son específicos, pero esta especificidade é distinta, xa que a da innata evolucionou durante millóns de anos para facer fronte ás características moleculares moi conservadas do mundo microbiano, mentres que a especificidade da adaptativa madura en cada organismo. Por esta razón, o termo adquirida prefírese en xeral ao de adaptativa ou específica.

Todos os vertebrados adquiriron na súa evolución sistemas inmunitarios. Os vertebrados ágnatos (sen mandíbula, como as lampreas) xeraron receptores do sistema inmunitario adquirido utilizando segmentos variables baseados en repeticións ricas en leucina que se reordenaron no ADN por medio da actividade dun encima citosina desaminase. Polo contrario, os vertebrados mandibulados (gnatóstomos) xeraron receptores do sistema inmunitario adquirido utilizando segmentos variables relacionados coa familia das inmunoglobulinas reordenados no ADN por unha recombinase RAG. O sistema inmunitario adquirido actívase polo máis vello evolutivamente e “non específico” sistema inmunitario innato (que é o principal sistema de defensa contra os patóxenos de case todos os outros seres vivos non vertebrados). As respostas inmunitarias adquiridas proporcionan ao sistema inmunitario dos vertebrados a capacidade de recoñecer e lembrar patóxenos específicos (para xerar inmunidade), e para organizar un ataque máis potente cada vez que se encontre co mesmo patóxeno. É "adaptativo" no sentido de que prepara o sistema inmunitario do corpo para futuros ataques polo mesmo patóxeno. Pero é "desadaptativo" cando dá lugar a un proceso de autoinmune.

O sistema é moi adaptable debido a que se producen hipermutacións somáticas (un proceso de mutación somática acelerada), e recombinación V(D)J (unha recombinación xenética irreversible de segmentos dos xenes dos receptores de antíxenos). Este mecanismo permite que un pequeno número de xenes orixine un enorme número de receptores de antíxenos diferentes, que despois se expresarán unicamente nun determinado linfocito. Como a reordenación de xenes dá lugar a un cambio irreversible no ADN de cada célula, todas células orixinadas por división da primeira herdarán os xenes que codifican a mesma especificidade de receptor, incluíndo as células B de memoria e as células T de memoria que son a chave para que exista unha inmunidade específica a longo prazo.

A teoría da rede inmune, elaborada principalmente por Niels Kaj Jerne, explica como funciona o sistema inmunitario adquirido, e está baseada nas interaccións entre "idiotipos" (características moleculares únicas dun clonotipo) e "anti-idiotipos" (receptores antixénicos que reaccionan co idiotipo como se este fose un antíxeno estraño).

Sistema inmunitario innato

O sistema inmunitario innato, tamén chamado sistema inmunitario inespecífico e primeira liña de defensa contra patóxenos, comprende as células e os mecanismos que defenden ao hóspede das infeccións orixinadas por outros organismos dunha forma non específica e herdada nas células da liña xerminal (non adquirida ao longo da vida). Isto significa que as células do sistema innato recoñecen e responden aos patóxenos dun modo xenérico, pero a diferenza do sistema inmunitario adaptativo, non lle confiren unha protección inmunitaria a longo prazo ao hóspede. Aínda que os receptores das células da inmunidade innata teñen unha especificidade de tipo xeral, nunca é comparable coa especificidade que ten, por exemplo, un anticorpo producido na inmunidade adaptativa para o seu antíxeno. Os sistemas inmunitarios innatos proporcionan unha defensa inmediata contra a infección, e encóntranse en todos os tipos de plantas e animais.

O sistema inmunitario innato pénsase que constitúe unha estratexia de defensa evolutivamente máis antiga ca a adaptativa, e é o sistema inmunitario dominante das plantas, fungos, insectos, e dos organismos multicelulares primitivos.As principais funcións do sistema inmunitario innato dos vertebrados inclúen:

Recrutamento de células inmunes cara aos sitios de infección, por medio da produción de factores químicos, como mediadores químicos especializados, chamados citocinas.

Activación da cascada do complemento para identificar as bacterias, activar células e promover a eliminación de células mortas ou inmunocomplexos.

Identificación e eliminación de substancias estrañas presentes en órganos, tecidos, sangue e linfa, por glóbulos brancos especializados.

Activación do sistema inmunitario adaptativo por medio dun proceso chamado presentación de antíxenos.

Actuación como unha barreira física e química ante os axentes infecciosos.

Sistema linfático

O sistema linfático é unha rede complexa de órganos linfoides, ganglios linfáticos, condutos linfáticos, tecidos linfáticos, capilares linfáticos e vasos linfáticos que producen e transportan o fluído linfático (linfa) dos tecidos para o sistema circulatorio. O sistema linfático é un importante compoñente do sistema imunolóxico, pois colabora cos glóbulos brancos para a protección contra bacterias e virus invasores.

O sistema linfático posúe tres funcións interrelacionadas:

1 Eliminación dos fluídos en exceso dos tecidos corporais,

2 Absorción dos ácidos graxos e transporte posterior da graxa para o sistema circulatorio e,

3 Produción de células inmunes (como linfocitos, monocitos e células produtoras de anticorpos coñecidas como plasmocitos).A linfa é un líquido transparente e esbrancazado, levemente amarelado ou rosado, alcalino e de sabor salgado, constituído esencialmente polo plasma sanguíneo, proteínas e por glóbulos brancos. A linfa é transportada polos vasos linfáticos en sentido unidireccional e filtrada nos ganglios linfáticos (tamén coñecidos como nódulos linfáticos). Despois da filtraxe, a linfa é lanzada no sangue, desembocando nas grandes veas torácicas.

Os vasos linfáticos teñen a función de drenar o exceso de líquido que sae do sangue e baña as células. Ese exceso de líquido que circula nos vasos linfáticos e que é devolvido ao sangue é o que se chama linfa.

Timo

O timo é un órgano linfático que está localizado na porción anterosuperior da cavidade torácica.

Limita, superiormente coa traquea, a vea xugular interna e a arteria carótide común, lateralmente cos pulmóns e inferior e posteriormente co corazón. Ao longo da vida, o timo involuciona (diminúe de tamaño) e é substituído por tecido adiposo.

TA 2-4:
Músculo-esquelético
TA 5-11:
espláncnico/
vísceras
TA 12-16
Non-TA

Outras linguas

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.