Enerxía

En física, a enerxía é todo aquilo que pode transformarse en calor, traballo mecánico (movemento) ou radiación electromagnética como a luz mediante procesos físicos. Isto pode ocorrer de xeito natural e espontáneo ou grazas a unha máquina (por exemplo motor, caldeira, refrixerador, altofalante, lámpada) ou tamén a un organismo vivo (por exemplo os músculos) etc. En rigor é un concepto fundamental, aceptado pola física sen definición.

Calquera cousa que estea a traballar -por exemplo, a mover outro obxecto, a quece-lo ou a facelo atravesarse por unha corrente eléctrica - está a gastar enerxía (na verdade ocorre unha "transferencia", pois ningunha enerxía é perdida, e si transformada ou transferida a outro corpo). Polo tanto, calquera cousa que estea pronta a traballar posúe enerxía. En canto o traballo se realiza, ocorre unha transferencia de enerxía, parecendo que o suxeito está a perder enerxía. Na verdade, a enerxía está a ser transferida para outro obxecto, sobre o cal o traballo se realiza.

Así pois, o concepto de enerxía é un dos conceptos esenciais da física. Nacido no século XIX, pódese atopar en todas as disciplinas da Física (mecánica, termodinámica, electromagnetismo, mecánica cuántica etc.), así como noutras disciplinas, particularmente na química.

Apollo 11 Saturn V lifting off on July 16, 1969
Un foguete espacial posúe unha gran cantidade de enerxía química (no combustible) pronta a se utilizar en canto espera na rampla. Cando o combustíbel se queima, esta enerxía transfórmase en calor (outra forma de enerxía) e tamén en enerxía cinética debido a que os gases de escape producidos impelen o foguete para arriba.

Formas de enerxía

As civilizacións humanas dependen cada vez máis dun elevado consumo enerxético para a súa subsistencia. Para iso foron sendo desenvolvidos ao longo da historia diversos procesos de produción, transporte e almacenamentos de enerxía. As principais formas de produción de enerxía son:

Enerxía potencial

Artigo principal: Enerxía potencial.

É a enerxía que un obxecto posúe debido á súa posición. Un martelo levantado, unha moa enroscada e un arco esticado dun tirador, todos posúen enerxía potencial. Esta enerxía está pronta a modificarse noutras formas de enerxía e, consecuentemente, a producir traballo: cando o martelo caer, pregará un prego; a moa, cando solta, fará andar os punteiros dun reloxo; o arco disparará unha seta. Así que ocorrer algún movemento, a enerxía potencial da fonte diminúe, en canto se modifica en enerxía do movemento (enerxía cinética). Levantar o martelo, enrolar a mola e estricar o arco fai, pola súa vez, uso da enerxía cinética e produce un gaño de enerxía potencial. Xeneralizando, canto máis alto e máis pesado un obxecto está, máis enerxía potencial terá.

Enerxía cinética

Oebb298205
Unha vella locomotiva a vapor transforma enerxía química en enerxía cinética. A queima de madeira ou carbón na caldeira é unha reacción química que produce calor, obtendo vapor que dá enerxía á locomotiva.
Artigo principal: Enerxía cinética.

É posuída por calquera cousa en movemento; canto máis axiña un obxecto se move, maior a súa enerxía cinética. Alén diso, canto máis pesado é un obxecto, maior é a súa enerxía cinética (apenas cando está en movemento). As máquinas mecánicas - automóbiles, tornos, báteestacas ou calquera outras máquinas motorizadas - producen enerxía cinética, e esta especie de enerxía é moitas veces chamada de enerxía mecánica - Fórmula: Ec=1/2mV² .

Enerxía química

Artigo principal: Enerxía química.

É a enerxía que está almacenada nun átomo ou nunha molécula; reorganizando os átomos, ocorren reaccións químicas e a enerxía pode ser producida ou aproveitada. As reaccións químicas xeralmente producen tamén calor; un lume a arder é un exemplo. A enerxía química tamén pode transformarse en electricidade nunha batería e en enerxía cinética nos músculos, por exemplo.

Enerxía eléctrica

Artigo principal: Enerxía eléctrica.

É a enerxía asociada as cargas eléctricas en movemento. É a enerxía que se da a un obxecto facendo pasar unha corrente eléctrica a través del ou dándolle unha carga eléctrica. É convertida en enerxía mecánica nun motor eléctrico, en enerxía calorífica nun aquecedor eléctrico ou en enerxía luminosa nunha lámpada.

Enerxía radiante

Artigo principal: Enerxía radiante.

É a enerxía que pode atravesar o espazo. Inclúe a luz, as ondas de radio e os raios de calor. A calor radiante non é o mesmo que a variante de enerxía cinética chamada de «enerxía térmica», mais cando os raios de calor atinxe un obxecto fan que as súas moléculas se movan máis axiña, gañando entón enerxía térmica. Os raios de luz e de calor prodúcense tornando os obxectos tan quentes que brillan, como no caso do filamento dunha lámpada eléctrica.

Enerxía nuclear

Kkw beznau
Planta nuclear en Suíza. Un reactor nuclear produce calor modificando os átomos do seu combustible, transformando uranio ou plutonio noutros elementos. As máquinas que utilizan enerxía química modifican as moléculas do seu combustíbel e os elementos mantense inalterados.
Artigo principal: Enerxía nuclear.

É a enerxía producida pola mutación de átomos dentro dunha substancia; aparece sobre todo como calor, quer baixo control nun reactor nuclear quer nunha explosión dunha arma nuclear. O Sol produce o seu calor e a súa luz por reacción nuclear. Curiosamente, toda a vida na Terra depende desta enerxía e, non en tanto, perante a existencia das armas nucleares, está tamén ameazada por esta forma de enerxía.

Enerxía, traballo e potencia

Artigos principais: Traballo (física) e Potencia.

A enerxía e o traballo son basicamente semellantes, visto que o traballo é o gasto de enerxía. Son polo tanto, ambos medidos polas mesmas unidades, a unidade SI, sendo o Joule, así chamado en homenaxe a James Prescott Joule, que demostrou que é posíbel a conversión entre diferentes tipos de enerxía. A potencia é a taxa a que se produce traballo ou a que se dispensa enerxía.

Un fonte de enerxía que pode producir máis traballo nun tempo dado - facer calquera cousa moverse máis axiña ou quecela máis axiña, por exemplo - será máis poderosa que outra. A unidade SO de forza motriz é o Watt, así chamada en homenaxe a James Watt, o inventor da primeira máquina a vapor.

Así, a relación pode expresarse como: un Watt de enerxía (E) prodúcese en canto un Joule de traballo (W) efectuase nun segundo (δt).

Consumo de enerxía

Artigo principal: Consumo de enerxía.

O consumo de enerxía no mundo está resumido, na súa gran maioría, polas fontes de enerxías tradicionais como petróleo, carbón mineral e gas natural, esas fontes son poluentes e non-renovábeis, o que no futuro, serán substituídas inevitabelmente. Hai controversias sobre o tempo da duración dos combustíbeis fósiles mais debido a enerxías limpas e renovábeis como biomasa, enerxía eólica e enerxía maremotriz e sancións como o Protocolo de Quioto que cobra de países industriais un nivel menor de poluentes (CO2) expelidos para a atmosfera, as enerxías alternativas son un novo modelo de produción de enerxías económicas e sostibles.

Véxase tamén

Bibliografía

  • Alekseev, G. N. (1986). Energy and Entropy. Moscow: Mir Publishers.
  • Crowell, Benjamin (2011) [2003]. Light and Matter. Fullerton (California): Light and Matter.
  • Ross, John S. (23 April 2002). "Work, Power, Kinetic Energy" (PDF). Project PHYSNET. Michigan State University.
  • Smil, Vaclav (2008). Energy in nature and society: general energetics of complex systems. Cambridge, USA: MIT Press. ISBN 0-262-19565-8.
  • Walding, Richard,  Rapkins, Greg,  Rossiter, Glenn (1999-11-01). New Century Senior Physics. Melbourne, Australia: Oxford University Press. ISBN 0-19-551084-4.

Outros artigos

Ligazóns externas

Bioquímica

A Bioquímica é o estudo químico dos seres vivos, especialmente da estrutura e función dos seus compoñentes químicos específicos, como son as proteínas, carbohidratos, lípidos e ácidos nucleicos, ademais doutras pequenas moléculas presentes nas células. A bioquímica baséase no concepto de que todo ser vivo contén carbono e en xeral as moléculas biolóxicas están compostas principalmente de carbono, hidróxeno, osíxeno, nitróxeno, fósforo e xofre.

É a ciencia que estuda a mismísima base da vida: as moléculas que compón as células e os tecidos, que catalizan as reaccións químicas da dixestión, a fotosíntese e a inmunidade, entre outras.

A supervivencia dos seres vivos depende da súa capacidade para levar a cabo unha serie de reaccións químicas dirixidas ao intercambio de materia e enerxía co ambiente e a fabricación das súas estruturas vitais. A bioquímica estuda, xa que logo, todas aquelas reaccións que ocorren tanto no interior da célula como no medio interno dos organismos pluricelulares. Estas bioreaccions non se distingen esencialmente das reaccións típicas da química orgánica, ben que son caracterizadas especificamente polo feito de ocorrer todas a temperaturas relativamente baixas (en xeral, inferiores a 45 °C) grazas á axuda dos biocatalizadores, chamados enzimas, e polo feito de funcionar axustadas unhas a outras nunha complexísima rede de interrelacións, que constitúe o metabolismo. O metabolismo consta de reaccións degradadoras (catabolismo), que achegan a materia a enerxía necesarias para o organismo, e de reaccións biosintéticas (anabolismo), que utilizan a materia e a enerxía para a construción das macromoléculas e doutras estruturas complexas do organismo. A bioquímica é unha ciencia nada da converxencia e o cruzamento da química orgánica e da fisioloxía, dúas ciencias moi desenvolvidas ao longo do século XIX, que experimentaron un progreso moi importante durante os últimos cincuenta anos.

Como todas as formas de vida da actualidade descenden do mesmo antepasado común, teñen unha bioquímica xeralmente similar. Descoñécese se as bioquímicas alternativas son posibles ou prácticas.

Calcio

O calcio é un elemento químico, símbolo Ca, de número atómico 20 (20 protóns e 20 electróns) e masa atómica 40 u.

É un metal do grupo dos alcalino-terrosos, pertencente ao grupo 2 da clasificación periódica dos elementos químicos.

É un elemento sólido na temperatura ambiente, maleábel, dúctil que reacciona violentamente coa auga.

É un elemento químico esencial ao ser humano. Unha persoa ten entre 1,5 e 2% de calcio en peso, do cal o 99% encóntrase nos ósos , dentes, no restante dos tecidos, e en fluídos corporais intervindo no metabolismo celular. É rico no leite, algúns vexetais, e en espiñas de peixes. Tamén, en cunchas e estalactitas.

O calcio encóntrase abundantemente na natureza, sempre na forma de minerais. Foi descuberto en 1808 por Humphry Davy, mediante a electrólise dunha amálgama de mercurio e cal.

Costa (xeografía)

A costa, beiramar ou mariña é o lugar onde a terra se une co mar. Ten unha paisaxe inestábel, onde ás veces a terra pode crecer debido ao depósito de sedimentos e noutros casos pode diminuír polos procesos de erosión mariña. Mais as costas tamén mudan por outros factores, como o clima, a xeoloxía costeira, o vento, as ondas e as actividades humanas.

Estrela (astronomía)

Unha estrela é un corpo celeste esférico e astrogravitante, que xera enerxía no seu núcleo mediante reaccións termonucleares. A enerxía xerada emítese ó espazo en forma de radiación electromagnética, vento estelar, e unhas partículas subatómicas que se supón que posúen masa, pero nunha cantidade ínfima: os neutrinos.

As estrelas obsérvanse no ceo nocturno como puntos luminosos, titilantes debido ás distorsións ópticas que produce a turbulencia e as diferenzas de densidade da atmosfera terrestre. O Sol, ao estar tan preto, obsérvase non como un punto, senón como un disco luminoso cuxa presenza ou ausencia no ceo terrestre provoca o día ou a noite respectivamente.

As estrelas son obxectos de masa e diámetro variable pero sempre moi masivos.

Ferro

O ferro (do latín ferrum) é un elemento químico, símbolo Fe, de número atómico 26 (26 protóns e 26 electróns ) e masa atómica 56 u. A temperatura ambiente, o ferro atópase en estado sólido.

É extraído da natureza baixo a forma de mineral de ferro que, despois de distintos procesos de transformación, é usado na forma de lingotes. Se se engade carbono dáse orixe a varias formas de aceiro.

Este metal de transición atópase no grupo 8B da Clasificación Periódica dos Elementos. É o cuarto elemento máis abundante da codia terrestre (aproximadamente 5%) e, entre os metais, soamente o aluminio é máis abundante. Tamén é un dos elementos máis abundantes do Universo. O núcleo da Terra está formado principalmente por ferro e níquel (NiFe), xerando un campo magnético.O ferro foi historicamente importante, e un período da historia recibiu o nome de Idade de Ferro.

Actualmente é utilizado para a fabricación de ferramentas, máquinas, vehículos de transporte (automóbeis, navios etc.), como elemento estrutural de pontes, edificios, e infinidade doutras aplicacións.

Fosforilación

A reacción de fosforilación é a adición dun grupo fosfato inorgánico (PO43–) a calquera outra molécula. A fosforilación serve para formar enlaces "enerxéticos" (que poden ceder facilmente enerxía libre) e para regular a actividade de moléculas (encimas principalmente). É unha reacción moi importante en bioquímica e é obxecto dunha intensa investigación, sobre todo a fosforilación de proteínas.

No metabolismo, a fosforilación é o mecanismo básico de transporte de enerxía desde os lugares onde se produce ata os lugares onde se necesita.

Física

A física (do latín physica, -ae, denominación das ciencias naturais, procedente do grego phusis 'natureza'), é unha ciencia que estuda as propiedades da materia, a enerxía, o espazo-tempo e as súas interaccións, considerando unicamente os atributos susceptíbeis de seren medidos.

Fósforo (elemento)

O fósforo (P) é o elemento número 15 da táboa periódica; isto é, ten 15 protóns no seu núcleo, e, en estado neutro, outros tantos electróns. É un non metal multivalente pertencente ao grupo do nitróxeno, que se atopa na natureza combinado en fosfatos inorgánicos i en organismos vivos, pero nunca en estado nativo. É moi reactivo e oxídase espontáneamente en contacto có osíxeno atmosférico emitindo luz, dando nome ao fenómeno da fosforescencia.

Hidróxeno

O hidróxeno (en grego, 'creador de auga') é un elemento químico de número atómico 1, representado polo símbolo H. Cunha masa atómica do 1,00794 (7) u, é o máis lixeiro dos elementos da táboa periódica. Polo xeral, preséntase na súa forma molecular, formando o gas diatómico (H2) en condicións normais. Este gas é inflamable, incoloro, inodoro, non metálico e insoluble en auga.O elemento hidróxeno, por posuír distintas propiedades, non se encadra claramente en ningún grupo da táboa periódica, sendo moitas veces colocado no grupo 1 (ou familia 1A) por posuír só un electrón na capa de valencia (ou capa superior).

A súa forma monatomica (H) é a substancia química máis abundante no Universo, constituíndo aproximadamente o 75% de toda a masa bariónica. Na súa secuencia principal, as estrelas están compostas principalmente por hidróxeno en estado de plasma. O hidróxeno elemental é relativamente raro na Terra e é producido industrialmente a partir de hidrocarburos como, por exemplo, o metano. A maior parte do hidróxeno elemental obtense "in situ", é dicir, no lugar e no momento no que se necesita. Os maiores mercados no mundo gozan da utilización do hidróxeno para o melloramento de combustibles fósiles (no proceso de hidrocraqueo) e na produción de amoníaco (principalmente para o mercado de fertilizantes). O hidróxeno pode obterse a partir da auga por un proceso de electrólise, pero resulta un método moito máis caro que a obtención a partir do gas natural.O hidróxeno é o elemento máis sinxelo, cun só protón e un só electrón.

Ten tres isótopos naturais:

1H Protio, cun 99,985%de abundancia,

2H Deuterio, cun neutrón no seu núcleo xunto co protón, en abundancia de 0,015%,

3H Tricio é un isótopo inestable, cun período de semidesintegración de 12346 anos.Coñécense outros isótopos inestables, que non se atopan na natureza: 4H, 5H e 6H.

Foi descuberto en Londres no 1766 por Henry Cavendish.

Magnesio

O magnesio é o elemento químico de símbolo Mg e número atómico 12. É o sétimo elemento en abundancia constituíndo da orde do 2% da cortiza terrestre e o terceiro máis abundante disolto na auga de mar. Emprégase primordialmente como elemento de aliaxe.

Metabolismo

O metabolismo (do grego μεταβολή, metabolē, "cambio" ou de μεταβολισμός, metabolismos, "derrocamento") é o conxunto integrado das reaccións químicas que teñen lugar nunha célula ou organismo. Está constítuido por series de reaccións que forman unha rede complexa, ordenada e interconectada de vías ou rutas metabólicas catalizadas por encimas. A función destas reaccións é obter e transformar materia e enerxía. Estas reaccións catalizadas por encimas permiten que os organismos crezan e se reproduzan, manteñan as súas estruturas, e respondan ao seu medio ambiente. A palabra metabolismo tamén se refire a todas as reaccións químicas que teñen lugar nun organismo vivo, incluíndo a dixestión e o transporte de substancias ás células e entre as distintas células, polo que as reaccións que teñen lugar nas células denomínanse especificamente metabolismo intermediario.

O metabolismo divídese xeralmente en dous conxuntos de reaccións, as que forman o catabolismo e as do anabolismo. Anabolismo e catabolismo son procesos interconectados e simultáneos. O equilibrio entre ambos mantense grazas á regulación do metabolismo. Caracterízanse polo seguinte:

A parte do metabolismo na que as macromoléculas son oxidadas e degradadas noutras máis pequenas obtendo enerxía é o catabolismo. A enerxía almacénase en forma de ATP. Nas reaccións catabólicas fórmanse coencimas con capacidade redutora. As rutas catabólicas desembocan en rutas centrais, polo que o catabolismo é un proceso converxente.

A parte que que se encarga de construír moléculas grandes a partir doutras máis pequenas (gastando así enerxía e coencimas redutores) é o anabolismo. O anabolismo é un proceso redutor e as súas rutas son diverxentes (non desembocan en rutas centrais).As reaccións químicas do metabolismo están organizadas en vías metabólicas, nas cales unha substancia química se transforma por medio dunha serie de pasos noutra distinta, pola acción dunha secuencia de encimas. Os encimas son fundamentais no metabolismo porque permiten aos organismos impulsar as reaccións desexables que requiren enerxía e que non ocorren espontaneamente, ao acoplalas a reaccións espontáneas que liberan enerxía. Como os encimas actúan como catalizadores fan que estas reaccións se produzan a gran velocidade e eficientemente. Os encimas tamén permiten a regulación das vías metabólicas en resposta a cambios no ambiente da célula ou por causa de sinais procedentes doutras células.

O metabolismo dun organismo determina que substancias son para el nutritivas e cales son velenosas. Por exemplo, algúns procariotas utilizan o sulfuro de hidróxeno como nutriente, pero este gas é velenoso para os animais. A velocidade do metabolismo, chamada taxa metabólica, inflúe na cantidade de alimento que require un organismo, e tamén afecta a como pode obtelo.

Unha característica notable do metabolismo é a semelanza de todas as vías metabólicas básicas e dos seus compoñentes entre as máis diversas especies. Por exemplo, o conxunto de ácidos carboxílicos que funcionan como intermediarios do ciclo do ácido cítrico está presente en todos os organismos coñecidos, e encóntrase en especies tan diversas como organismos unicelulares como a bacteria Escherichia coli e organismos pluricelulares enormes como os elefantes ou as baleas. Estas rechamantes semellanzas nas vías metabólicas débense probablemente á súa aparición en época moi temperá na historia evolutiva da vida, e a que foron conservadas debido á súa grande eficacia.

Mitocondria

As mitocondrias (etimoloxía: do grego μίτος, mítos: fío, e κόνδρος, kóndros: gránulo) son orgánulos citoplasmáticos provistos de dobre membrana que se encontran na maioría das células eucariotas. Só carecen delas algúns eucariotas anaerobios, que no seu lugar teñen hidroxenosomas ou mitosomas, orgánulos á súa vez derivados de mitocondrias. O conxunto de mitocondrias da célula denomínase condrioma. O seu tamaño varía entre 0,5–10 micrómetros (μm) de lonxitude. As mitocondrias descríbense en ocasións como "xeradoras de enerxía" das células, debido a que producen a maior parte da subministración de adenosín trifosfato (ATP) por fosforilación oxidativa, o cal se utiliza como fonte de enerxía química. Esta expresión ("xeradora de enerxía") é, porén, unha simplificación, xa que as súas funcións son máis amplas. A mitocondria cumpre un papel central no fluxo enerxético da célula debido a que realiza unha función metabólica consistente en transferir ou transformar a enerxía química potencial almacenada nos enlaces covalentes de certas moléculas como a glicosa ou ácidos graxos en enerxía química almacenada nos enlaces covalentes entre fosfatos do ATP (enlaces anhidro). Esta última forma de enerxía química potencial é doadamente utilizable pola célula e foi seleccionada ao longo da evolución filoxenética como o mecanismo por medio do cal todos os procesos celulares que requiren o uso de enerxía dispoñen con facilidade da mesma.

Ademais de proporcionar enerxía á célula, as mitocondrias están implicadas noutros procesos, como a sinalización celular, diferenciación celular, almacenamento de calcio, morte celular programada, e control do ciclo celular e do crecemento celular. A mitocondría está involucrada, directa ou indirectamente, en todos os procesos fisicoquímicos que requiren o uso de enerxía para a súa execución, é dicir, todos aqueles procesos que, desde o punto de vista termodinámico, non se realizan espontaneamente.

Algunhas características fan únicas ás mitocondrias. O seu número varía amplamente segundo o tipo de organismo ou tecido. Algunhas células carecen de mitocondrias ou posúen só unha, entanto que outras poden conter varios miles. Este orgánulo componse de compartimentos que levan a cabo funcións especializadas. Entre estes se encontran a membrana mitocondrial externa, o espazo intermembranoso, a membrana mitocondrial interna, as cristas e a matriz mitocondrial. As proteínas mitocondriais varían dependendo do tecido e das especies: en humanos identificáronse 615 tipos de proteínas distintas en mitocondrias de músculo cardíaco; e en ratas publicáronse 940 proteínas codificadas por distintos xenes. Pénsase que o proteoma mitocondrial está suxeito a regulación dinámica. Aínda que a maior parte do ADN da célula está no núcleo celular, a mitocondria ten o seu propio xenoma, que mostra moitas semellanzas cos xenomas bacterianos.Existen varias enfermidades de orixe mitocondrial, algunhas das cales producen disfunción cardíaca, e moi probablemente participa no proceso de envellecemento.

Nucleótido

Un nucleótido é un composto monomérico formado por unha base nitroxenada, un azucre de cinco átomos de carbono (pentosa) e ácido fosfórico.

Ouro

O ouro é un elemento químico de número atómico 79 situado no grupo 11 da táboa periódica. O seu símbolo é Au (do latín aurum). O ouro é un metal de transición brando, brillante, amarelo, pesado, maleable, dúctil (trivalente e univalente) que non reacciona coa maioría de produtos químicos, pero é sensible ao cloro e á auga rexia. O metal atópase normalmente en estado puro e en forma de pebidas e depósitos aluviais e é un dos metais tradicionalmente empregados para cuñar moedas. O ouro utilízase na ourivaría, a industria e a electrónica.

Prata

A prata é un elemento químico de número atómico 47 situado no grupo 11 da táboa periódica dos elementos. O seu símbolo é Ag. É un metal de transición branco e brillante, e posúe unha alta ductilidade e maleabilidade.

Presenta as maiores condutividades térmica e eléctrica de tódolos metais, e atópase formando parte de distintos minerais (xeralmente en forma de sulfuro) ou como prata libre.

Provincia da Coruña

A Coruña é unha das catro provincias de Galicia creadas por Javier de Burgos en 1833, e ocupa a punta noroeste do país e da península Ibérica. Limita ao norte e ao oeste co océano Atlántico, ao leste coa provincia de Lugo e ao sur coa provincia de Pontevedra. A capital leva o mesmo nome, A Coruña.

Punto de ebulición

O punto de ebulición é a temperatura á cal un elemento ou composto químico pasa do estado líquido ao estado gasoso, nunhas condicións de presión determinadas. Se o proceso é á inversa chámase punto de condensación.

A temperatura dunha substancia ou corpo é unha medida da enerxía cinética das moléculas. A temperaturas inferiores ao punto de ebulición, só unha pequena fracción das moléculas na superficie ten enerxía suficiente para romper a tensión superficial e escapar.

Cando se chega ao punto de ebulición a maioría das moléculas é quen de escaparen desde tódalas partes do corpo, non só da superficie. Porén, para a creación de burbullas en todo o volume do líquido necesítanse imperfeccións ou movemento, precisamente polo fenómeno da tensión superficial.

A temperatura mantense constante durante todo o proceso de ebulición, e a achega de máis enerxía só produce o aumento do número de moléculas que foxen do líquido en forma de gas.

Sodio

O sodio é un elemento químico de símbolo Na e número atómico 11, pertencente ao grupo dos metais alcalinos.

Temperatura

A temperatura é unha magnitude física que indica a densidade de enerxía interna dun sistema referida ás nocións comúns de quente, morno ou frío que pode ser medida cun termómetro. A temperatura é un parámetro termodinámico do estado dun sistema que caracteriza a calor, ou transferencia de enerxía térmica, entre ese sistema e outros. En física, defínese como unha magnitude escalar relacionada coa enerxía interna dun sistema termodinámico, definida polo principio cero da termodinámica. Máis especificamente, está relacionada directamente coa parte da enerxía interna coñecida como «enerxía cinética», que é a enerxía asociada aos movementos das partículas do sistema, sexa nun sentido traslacional, rotacional, ou en forma de vibracións. A medida de que sexa maior a enerxía cinética dun sistema, obsérvase que este atopase máis «quente»; é dicir, que a súa temperatura é maior.

No caso dun sólido, os movementos en cuestión resultan ser as vibracións das partículas nos seus sitios dentro do sólido. No caso dun gas ideal monoatómico trátase dos movementos traslacionais das súas partículas (para os gases multiatómicos os movementos rotacional e vibracional deben tomarse en conta tamén).

O desenvolvemento de técnicas para a medición da temperatura pasou por un longo proceso histórico, xa que era necesario darlle un valor numérico a unha idea intuitiva como é o frío ou o quente.

Multitude de propiedades fisicoquímicas dos materiais ou as substancias varían en función da temperatura á que se atopen, por exemplo o seu estado (sólido, líquido, gaseoso, plasma), o seu volume, a solubilidade, a presión de vapor, a súa cor ou a condutividade eléctrica. Así mesmo é un dos factores que inflúen na velocidade á que teñen lugar as reaccións químicas.

A temperatura mídese con termómetros, os cales poden ser calibrados de acordo a unha multitude de escalas que dan lugar a unidades de medición da temperatura. O Sistema Internacional de Unidades (SIU), define unha escala e unha unidade para a temperatura termodinámica baseándose nun segundo punto de referencia facilmente reproducible como é a temperatura do punto triplo da auga. Por razóns históricas, o punto triplo da auga foi fixado en 273,16 unidades do intervalo de medida, que foi chamado kelvin (en minúscula) en honra do físico escocés William Thomson (Lord Kelvin) que definiu por primeira vez a escala kelvin ou escala absoluta, que asocia o valor «cero kelvin» (0 K) ao «cero absoluto», e gradúase cun tamaño de grao igual ao do grao Celsius. Con todo, fóra do ámbito científico o uso doutras escalas de temperatura é común. A escala máis estendida é a escala Celsius, chamada «centígrada»; e, en moita menor medida, e practicamente só nos Estados Unidos, a escala Fahrenheit. Tamén se usa ás veces a escala Rankine (°R) que establece o seu punto de referencia no mesmo punto da escala kelvin, o cero absoluto, pero cun tamaño de grao igual ao da Fahrenheit, e é usada unicamente en Estados Unidos, e só nalgúns campos da enxeñaría.

A temperatura é unha das principais propiedades estudadas no campo da termodinámica, neste campo son particularmente importantes as diferenzas de temperatura entre diferentes rexións da materia xa que estas diferenzas son a forza motriz do calor, que é a transferencia da enerxía térmica. Espontaneamente, a calor flúe só das rexións de maior temperatura cara as rexións de menor temperatura. De modo que se non se transfire calor entre dous obxectos é porque ambos os obxectos teñen a mesma temperatura.

Segundo o enfoque da termodinámica clásica, a temperatura dun obxecto varía proporcionalmente á velocidade das partículas que contén, non depende do número de partículas (da masa) senón da súa velocidade media: a maior temperatura maior velocidade media. Polo tanto, a temperatura está ligada directamente á enerxía cinética media das partículas que se moven en relación ao centro da masa do obxecto. A temperatura é unha variable intensiva, xa que é independente da cantidade das partículas contidas no interior dun obxecto, xa sexan átomos, moléculas ou electróns, é unha propiedade que é inherente ao sistema e non depende nin da cantidade de substancia nin do tipo de material. Para que se poida determinar a temperatura dun sistema, este debe estar en equilibrio termodinámico. Pódese considerar que a temperatura varía coa posición só se para cada punto hai un pequena zona o seu ao redor que se pode tratar como un sistema termodinámico en equilibrio. Na termodinámica estatística, no canto de partículas fálase de graos de liberdade.

Nun enfoque máis fundamental, a definición empírica da temperatura derívase das condicións do equilibrio térmico, que son expresadas na lei cero da termodinámica. Cando dous sistemas están en equilibrio térmico teñen a mesma temperatura. A extensión deste principio como unha relación de equivalencia entre varios sistemas xustifica fundamentalmente a utilización do termómetro e establece os principios da súa construción para medir a temperatura. Aínda que o principio cero da termodinámica permitiría a definición empírica de moitas escalas de temperatura, o segundo principio da termodinámica selecciona unha única definición como a preferida, a temperatura absoluta, coñecida como temperatura termodinámica. Esta función corresponde á variación da enerxía interna con respecto aos cambios na entropía dun sistema. A súa orixe natural, intrínseco ou punto nulo, é o cero absoluto, punto onde a entropía de calquera sistema é mínima. Aínda que esta é a temperatura mínima absoluta descrita polo modelo, o terceiro principio da termodinámica postula que o cero absoluto non pode ser alcanzado por ningún sistema físico.

Outras linguas

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.