Ytterbium is a chemical element with symbol Yb and atomic number 70. It is the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density and melting and boiling points differ significantly from those of most other lanthanides.

In 1878, the Swiss chemist Jean Charles Galissard de Marignac separated from the rare earth "erbia" another independent component, which he called "ytterbia", for Ytterby, the village in Sweden near where he found the new component of erbium. He suspected that ytterbia was a compound of a new element that he called "ytterbium" (in total, four elements were named after the village, the others being yttrium, terbium and erbium). In 1907, the new earth "lutecia" was separated from ytterbia, from which the element "lutecium" (now lutetium) was extracted by Georges Urbain, Carl Auer von Welsbach, and Charles James. After some discussion, Marignac's name "ytterbium" was retained. A relatively pure sample of the metal was not obtained until 1953. At present, ytterbium is mainly used as a dopant of stainless steel or active laser media, and less often as a gamma ray source.

Natural ytterbium is a mixture of seven stable isotopes, which altogether are present at concentrations of 3 parts per million. This element is mined in China, the United States, Brazil, and India in form of the minerals monazite, euxenite, and xenotime. The ytterbium concentration is low because it is found only among many other rare earth elements; moreover, it is among the least abundant. Once extracted and prepared, ytterbium is somewhat hazardous as an eye and skin irritant. The metal is a fire and explosion hazard.

Ytterbium,  70Yb
Pronunciation/ɪˈtɜːrbiəm/ (i-TUR-bee-əm)
Appearancesilvery white; with a pale yellow tint[1]
Standard atomic weight Ar, std(Yb)173.045(10)[2][3][4]
Ytterbium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)70
Groupgroup n/a
Periodperiod 6
Element category  lanthanide
Electron configuration[Xe] 4f14 6s2
Electrons per shell
2, 8, 18, 32, 8, 2
Physical properties
Phase at STPsolid
Melting point1097 K ​(824 °C, ​1515 °F)
Boiling point1469 K ​(1196 °C, ​2185 °F)
Density (near r.t.)6.90 g/cm3
when liquid (at m.p.)6.21 g/cm3
Heat of fusion7.66 kJ/mol
Heat of vaporization129 kJ/mol
Molar heat capacity26.74 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 736 813 910 1047 (1266) (1465)
Atomic properties
Oxidation states+1, +2, +3 (a basic oxide)
ElectronegativityPauling scale: 1.1 (?)
Ionization energies
  • 1st: 603.4 kJ/mol
  • 2nd: 1174.8 kJ/mol
  • 3rd: 2417 kJ/mol
Atomic radiusempirical: 176 pm
Covalent radius187±8 pm
Color lines in a spectral range
Spectral lines of ytterbium
Other properties
Natural occurrenceprimordial
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for ytterbium
Speed of sound thin rod1590 m/s (at 20 °C)
Thermal expansionβ, poly: 26.3 µm/(m·K) (r.t.)
Thermal conductivity38.5 W/(m·K)
Electrical resistivityβ, poly: 0.250 µΩ·m (at r.t.)
Magnetic orderingparamagnetic
Magnetic susceptibility+249.0·10−6 cm3/mol (2928 K)[5]
Young's modulusβ form: 23.9 GPa
Shear modulusβ form: 9.9 GPa
Bulk modulusβ form: 30.5 GPa
Poisson ratioβ form: 0.207
Vickers hardness205–250 MPa
Brinell hardness340–440 MPa
CAS Number7440-64-4
Namingafter Ytterby (Sweden), where it was mined
DiscoveryJean Charles Galissard de Marignac (1878)
First isolationCarl Auer von Welsbach (1906)
Main isotopes of ytterbium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
166Yb syn 56.7 h ε 166Tm
168Yb 0.126% stable
169Yb syn 32.026 d ε 169Tm
170Yb 3.023% stable
171Yb 14.216% stable
172Yb 21.754% stable
173Yb 16.098% stable
174Yb 31.896% stable
175Yb syn 4.185 d β 175Lu
176Yb 12.887% stable
177Yb syn 1.911 h β 177Lu


Physical properties

Ytterbium is a soft, malleable and ductile chemical element that displays a bright silvery luster when pure. It is a rare earth element, and it is readily dissolved by the strong mineral acids. It reacts slowly with cold water and it oxidizes slowly in air.[6]

Ytterbium has three allotropes labeled by the Greek letters alpha, beta and gamma; their transformation temperatures are −13 °C and 795 °C,[6] although the exact transformation temperature depends on the pressure and stress.[7] The beta allotrope (6.966 g/cm3) exists at room temperature, and it has a face-centered cubic crystal structure. The high-temperature gamma allotrope (6.57 g/cm3) has a body-centered cubic crystalline structure.[6] The alpha allotrope (6.903 g/cm3) has a hexagonal crystalline structure and is stable at low temperatures.[8] The beta allotrope has a metallic electrical conductivity at normal atmospheric pressure, but it becomes a semiconductor when exposed to a pressure of about 16,000 atmospheres (1.6 GPa). Its electrical resistivity increases ten times upon compression to 39,000 atmospheres (3.9 GPa), but then drops to about 10% of its room-temperature resistivity at about 40,000 atm (4.0 GPa).[6][9]

In contrast with the other rare-earth metals, which usually have antiferromagnetic and/or ferromagnetic properties at low temperatures, ytterbium is paramagnetic at temperatures above 1.0 kelvin.[10] However, the alpha allotrope is diamagnetic.[7] With a melting point of 824 °C and a boiling point of 1196 °C, ytterbium has the smallest liquid range of all the metals.[6]

Contrary to most other lanthanides, which have a close-packed hexagonal lattice, ytterbium crystallizes in the face-centered cubic system. Ytterbium has a density of 6.973 g/cm3, which is significantly lower than those of the neighboring lanthanides, thulium (9.32 g/cm3) and lutetium (9.841 g/cm3). Its melting and boiling points are also significantly lower than those of thulium and lutetium. This is due to the closed-shell electron configuration of ytterbium ([Xe] 4f14 6s2), which causes only the two 6s electrons to be available for metallic bonding (in contrast to the other lanthanides where three electrons are available) and increases ytterbium's metallic radius.[8]

Chemical properties

Ytterbium metal tarnishes slowly in air. Finely dispersed ytterbium readily oxidizes in air and under oxygen. Mixtures of powdered ytterbium with polytetrafluoroethylene or hexachloroethane burn with a luminous emerald-green flame.[11] Ytterbium reacts with hydrogen to form various non-stoichiometric hydrides. Ytterbium dissolves slowly in water, but quickly in acids, liberating hydrogen gas.[8]

Ytterbium is quite electropositive, and it reacts slowly with cold water and quite quickly with hot water to form ytterbium(III) hydroxide:[12]

2 Yb (s) + 6 H2O (l) → 2 Yb(OH)3 (aq) + 3 H2 (g)

Ytterbium reacts with all the halogens:[12]

2 Yb (s) + 3 F2 (g) → 2 YbF3 (s) [white]
2 Yb (s) + 3 Cl2 (g) → 2 YbCl3 (s) [white]
2 Yb (s) + 3 Br2 (g) → 2 YbBr3 (s) [white]
2 Yb (s) + 3 I2 (g) → 2 YbI3 (s) [white]

The ytterbium(III) ion absorbs light in the near infrared range of wavelengths, but not in visible light, so ytterbia, Yb2O3, is white in color and the salts of ytterbium are also colorless. Ytterbium dissolves readily in dilute sulfuric acid to form solutions that contain the colorless Yb(III) ions, which exist as nonahydrate complexes:[12]

2 Yb (s) + 3 H2SO4 (aq) + 18 H
(l) → 2 [Yb(H2O)9]3+ (aq) + 3 SO2−
(aq) + 3 H2 (g)

Yb(II) vs. Yb(III)

Although usually trivalent, ytterbium readily forms divalent compounds. This behavior is unusual for lanthanides, which almost exclusively form compounds with an oxidation state of +3. The +2 state has a valence electron configuration of 4f14 because the fully filled f-shell gives more stability. The yellow-green ytterbium(II) ion is a very strong reducing agent and decomposes water, releasing hydrogen gas, and thus only the colorless ytterbium(III) ion occurs in aqueous solution. Samarium and thulium also behave this way in the +2 state, but europium(II) is stable in aqueous solution. Ytterbium metal behaves similarly to europium metal and the alkaline earth metals, dissolving in ammonia to form blue electride salts.[8]


Natural ytterbium is composed of seven stable isotopes: 168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, and 176Yb, with 174Yb being the most common, at 31.8% of the natural abundance). 27 radioisotopes have been observed, with the most stable ones being 169Yb with a half-life of 32.0 days, 175Yb with a half-life of 4.18 days, and 166Yb with a half-life of 56.7 hours. All of its remaining radioactive isotopes have half-lives that are less than two hours and most of these have half-lives are less than 20 minutes. Ytterbium also has 12 meta states, with the most stable being 169mYb (t1/2 46 seconds).[13][14]

The isotopes of ytterbium range in atomic weight from 147.9674 atomic mass unit (u) for 148Yb to 180.9562 u for 181Yb. The primary decay mode of ytterbium isotopes lighter than the most abundant stable isotope, 174Yb, is electron capture, and the primary decay mode for those heavier than 174Yb is beta decay. The primary decay products of ytterbium isotopes lighter than 174Yb are thulium isotopes, and the primary decay products of ytterbium isotopes with heavier than 174Yb are lutetium isotopes.[13][14]


Ytterbium is found with other rare earth elements in several rare minerals. It is most often recovered commercially from monazite sand (0.03% ytterbium). The element is also found in euxenite and xenotime. The main mining areas are China, the United States, Brazil, India, Sri Lanka, and Australia. Reserves of ytterbium are estimated as one million tonnes. Ytterbium is normally difficult to separate from other rare earths, but ion-exchange and solvent extraction techniques developed in the mid- to late 20th century have simplified separation. Compounds of ytterbium are rare and have not yet been well characterized. The abundance of ytterbium in the Earth's crust is about 3 mg/kg.[9]

As an even-numbered lanthanide, in accordance with the Oddo-Harkins rule, ytterbium is significantly more abundant than its immediate neighbors, thulium and lutetium, which occur in the same concentrate at levels of about 0.5% each. The world production of ytterbium is only about 50 tonnes per year, reflecting that it has few commercial applications.[9] Microscopic traces of ytterbium are used as a dopant in the Yb:YAG laser, a solid-state laser in which ytterbium is the element that undergoes stimulated emission of electromagnetic radiation.[15]

Ytterbium is often the most common substitute in yttrium minerals. In very few known cases/occurrences ytterbium prevails over yttrium, as, e.g., in xenotime-(Yb). A report of native ytterbium from the Moon's regolith is known.[16]


It is relatively difficult to separate ytterbium from other lanthanides due to its similar properties. As a result, the process is somewhat long. First, minerals such as monazite or xenotime are dissolved into various acids, such as sulfuric acid. Ytterbium can then be separated from other lanthanides by ion exchange, as can other lanthanides. The solution is then applied to a resin, which different lanthanides bind in different matters. This is then dissolved using complexing agents, and due to the different types of bonding exhibited by the different lanthanides, it is possible to isolate the compounds.[17][18]

Ytterbium is separated from other rare earths either by ion exchange or by reduction with sodium amalgam. In the latter method, a buffered acidic solution of trivalent rare earths is treated with molten sodium-mercury alloy, which reduces and dissolves Yb3+. The alloy is treated with hydrochloric acid. The metal is extracted from the solution as oxalate and converted to oxide by heating. The oxide is reduced to metal by heating with lanthanum, aluminium, cerium or zirconium in high vacuum. The metal is purified by sublimation and collected over a condensed plate.[19]


The chemical behavior of ytterbium is similar to that of the rest of the lanthanides. Most ytterbium compounds are found in the +3 oxidation state, and its salts in this oxidation state are nearly colorless. Like europium, samarium, and thulium, the trihalides of ytterbium can be reduced to the dihalides by hydrogen, zinc dust, or by the addition of metallic ytterbium.[8] The +2 oxidation state occurs only in solid compounds and reacts in some ways similarly to the alkaline earth metal compounds; for example, ytterbium(II) oxide (YbO) shows the same structure as calcium oxide (CaO).[8]


Kristallstruktur Lanthanoid-C-Typ
Crystal structure of ytterbium(III) oxide

Ytterbium forms both dihalides and trihalides with the halogens fluorine, chlorine, bromine, and iodine. The dihalides are susceptible to oxidation to the trihalides at room temperature and disproportionate to the trihalides and metallic ytterbium at high temperature:[8]

3 YbX2 → 2 YbX3 + Yb (X = F, Cl, Br, I)

Some ytterbium halides are used as reagents in organic synthesis. For example, ytterbium(III) chloride (YbCl3) is a Lewis acid and can be used as a catalyst in the Aldol[20] and Diels–Alder reactions.[21] Ytterbium(II) iodide (YbI2) may be used, like samarium(II) iodide, as a reducing agent for coupling reactions.[22] Ytterbium(III) fluoride (YbF3) is used as an inert and non-toxic tooth filling as it continuously releases fluoride ions, which are good for dental health, and is also a good X-ray contrast agent.[23]


Ytterbium reacts with oxygen to form ytterbium(III) oxide (Yb2O3), which crystallizes in the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quarter of the anions removed, leading to ytterbium atoms in two different six coordinate (non-octahedral) environments.[24] Ytterbium(III) oxide can be reduced to ytterbium(II) oxide (YbO) with elemental ytterbium, which crystallizes in the same structure as sodium chloride.[8]


Ytterbium was discovered by the Swiss chemist Jean Charles Galissard de Marignac in the year 1878. While examining samples of gadolinite, Marignac found a new component in the earth then known as erbia, and he named it ytterbia, for Ytterby, the Swedish village near where he found the new component of erbium. Marignac suspected that ytterbia was a compound of a new element that he called "ytterbium".[9][23]

In 1907, the French chemist Georges Urbain separated Marignac's ytterbia into two components: neoytterbia and lutecia. Neoytterbia later became known as the element ytterbium, and lutecia became known as the element lutetium. The Austrian chemist Carl Auer von Welsbach independently isolated these elements from ytterbia at about the same time, but he called them aldebaranium and cassiopeium;[9] the American chemist Charles James also independently isolated these elements at about the same time.[25] Urbain and Welsbach accused each other of publishing results based on the other party.[26][27][28] The Commission on Atomic Mass, consisting of Frank Wigglesworth Clarke, Wilhelm Ostwald, and Georges Urbain, which was then responsible for the attribution of new element names, settled the dispute in 1909 by granting priority to Urbain and adopting his names as official ones, based on the fact that the separation of lutetium from Marignac's ytterbium was first described by Urbain.[26] After Urbain's names were recognized, neoytterbium was reverted to ytterbium.

The chemical and physical properties of ytterbium could not be determined with any precision until 1953, when the first nearly pure ytterbium metal was produced by using ion-exchange processes.[9] The price of ytterbium was relatively stable between 1953 and 1998 at about US $1,000/kg.[29]


Source of gamma rays

The 169Yb isotope (with a half-life of 32 days), which is created along with the short-lived 175Yb isotope (half-life 4.2 days) by neutron activation during the irradiation of ytterbium in nuclear reactors, has been used as a radiation source in portable X-ray machines. Like X-rays, the gamma rays emitted by the source pass through soft tissues of the body, but are blocked by bones and other dense materials. Thus, small 169Yb samples (which emit gamma rays) act like tiny X-ray machines useful for radiography of small objects. Experiments show that radiographs taken with a 169Yb source are roughly equivalent to those taken with X-rays having energies between 250 and 350 keV. 169Yb is also used in nuclear medicine.[30]

High-stability atomic clocks

Ytterbium clocks hold the record for stability with ticks stable to within less than two parts in 1 quintillion (2×10−18).[31] The clocks developed at the National Institute of Standards and Technology (NIST) rely on about 10,000 rare-earth atoms cooled to 10 microkelvin (10 millionths of a degree above absolute zero) and trapped in an optical lattice—a series of pancake-shaped wells made of laser light. Another laser that "ticks" 518 trillion times per second provokes a transition between two energy levels in the atoms. The large number of atoms is key to the clocks' high stability.

Visible light waves oscillate faster than microwaves, and therefore optical clocks can be more precise than caesium atomic clocks. The Physikalisch-Technische Bundesanstalt is working on several such optical clocks. The model with one single ytterbium ion caught in an ion trap is highly accurate. The optical clock based on it is exact to 17 digits after the decimal point.[32] A pair of experimental atomic clocks based on ytterbium atoms at the National Institute of Standards and Technology has set a record for stability. NIST physicists reported in the August 22, 2013 issue of Science Express that the ytterbium clocks' ticks are stable to within less than two parts in 1 quintillion (1 followed by 18 zeros), roughly 10 times better than the previous best published results for other atomic clocks. The clocks would be accurate within a second for a period comparable to the age of the universe.[33]

Doping of stainless steel

Ytterbium can also be used as a dopant to help improve the grain refinement, strength, and other mechanical properties of stainless steel. Some ytterbium alloys have rarely been used in dentistry.[6][9]

Ytterbium as dopant of active media

The ytterbium +3 ion is used as a doping material in active laser media, specifically in solid state lasers and double clad fiber lasers. Ytterbium lasers are highly efficient, have long lifetimes and can generate short pulses; ytterbium can also easily be incorporated into the material used to make the laser.[34] Ytterbium lasers commonly radiate in the 1.06–1.12 µm band being optically pumped at wavelength 900 nm–1 µm, dependently on the host and application. The small quantum defect makes ytterbium a prospective dopant for efficient lasers and power scaling.[35]

The kinetic of excitations in ytterbium-doped materials is simple and can be described within the concept of effective cross-sections; for most ytterbium-doped laser materials (as for many other optically pumped gain media), the McCumber relation holds,[36][37][38] although the application to the ytterbium-doped composite materials was under discussion.[39][40]

Usually, low concentrations of ytterbium are used. At high concentrations, the ytterbium-doped materials show photodarkening[41] (glass fibers) or even a switch to broadband emission[42] (crystals and ceramics) instead of efficient laser action. This effect may be related with not only overheating, but also with conditions of charge compensation at high concentrations of ytterbium ions.[43]

Much progress has been made in the power scaling lasers and amplifiers produced with ytterbium (Yb) doped optical fibers. Power levels have increased from the 1 kW regimes due to the advancements in components as well as the Yb-doped fibers. Fabrication of Low NA, Large Mode Area fibers enable achievement of near perfect beam qualities (M2<1.1) at power levels of 1.5 kW to greater than 2 kW at ~1064 nm in a broadband configuration.[44] Ytterbium-doped LMA fibers also have the advantages of a larger mode field diameter, which negates the impacts of nonlinear effects such as stimulated Brillouin scattering and stimulated Raman scattering, which limit the achievement of higher power levels, and provide a distinct advantage over single mode ytterbium-doped fibers.

In order to achieve even higher power levels in ytterbium-based fiber systems. all factors of the fiber must be considered. These can be achieved only via optimization of all the ytterbium fiber parameters, ranging from the core background losses to the geometrical properties, in order to reduce the splice losses within the cavity. Power scaling also requires optimization of matching passive fibers within the optical cavity.[45] The optimization of the ytterbium-doped glass itself through host glass modification of various dopants also plays a large part in reducing the background loss of the glass, improvements in slope efficiency of the fiber, and improved photodarkening performance, all of which contribute to increased power levels in 1 µm systems.


Ytterbium metal increases its electrical resistivity when subjected to high stresses. This property is used in stress gauges to monitor ground deformations from earthquakes and explosions.[46]

Currently, ytterbium is being investigated as a possible replacement for magnesium in high density pyrotechnic payloads for kinematic infrared decoy flares. As ytterbium(III) oxide has a significantly higher emissivity in the infrared range than magnesium oxide, a higher radiant intensity is obtained with ytterbium-based payloads in comparison to those commonly based on magnesium/Teflon/Viton (MTV).[47]


Although ytterbium is fairly stable chemically, it is stored in airtight containers and in an inert atmosphere such as a nitrogen-filled dry box to protect it from air and moisture.[48] All compounds of ytterbium are treated as highly toxic, although studies appear to indicate that the danger is minimal. However, ytterbium compounds cause irritation to human skin and eyes, and some might be teratogenic.[49] Metallic ytterbium dust can spontaneously combust,[50] and the resulting fumes are hazardous. Ytterbium fires cannot be extinguished using water, and only dry chemical class D fire extinguishers can extinguish the fires.[51]


  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 112. ISBN 0-08-037941-9.
  2. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  3. ^ "Standard Atomic Weights 2015". Commission on Isotopic Abundances and Atomic Weights. 12 October 2015. Retrieved 18 February 2017.
  4. ^ "Standard Atomic Weight of Ytterbium Revised". Chemistry International. October 2015. p. 26. doi:10.1515/ci-2015-0512. eISSN 0193-6484. ISSN 0193-6484.
  5. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  6. ^ a b c d e f Hammond, C. R. (2000). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0481-1.
  7. ^ a b Bucher, E.; Schmidt, P.; Jayaraman, A.; Andres, K.; Maita, J.; Nassau, K.; Dernier, P. (1970). "New First-Order Phase Transition in High-Purity Ytterbium Metal". Physical Review B. 2 (10): 3911. Bibcode:1970PhRvB...2.3911B. doi:10.1103/PhysRevB.2.3911.
  8. ^ a b c d e f g h Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils (1985). "Die Lanthanoide". Lehrbuch der Anorganischen Chemie (in German) (91–100 ed.). Walter de Gruyter. pp. 1265–1279. ISBN 978-3-11-007511-3.
  9. ^ a b c d e f g Emsley, John (2003). Nature's building blocks: an A-Z guide to the elements. Oxford University Press. pp. 492–494. ISBN 978-0-19-850340-8.
  10. ^ Jackson, M. (2000). "Magnetism of Rare Earth". The IRM quarterly 10(3): 1
  11. ^ Koch, E. C.; Weiser, V.; Roth, E.; Knapp, S.; Kelzenberg, S. (2012). "Combustion of Ytterbium Metal". Propellants, Explosives, Pyrotechnics. 37: 9–11. doi:10.1002/prep.201100141.
  12. ^ a b c "Chemical reactions of Ytterbium". Webelements. Retrieved 2009-06-06.
  13. ^ a b "Nucleonica: Universal Nuclide Chart". Nucleonica. 2007–2011. Retrieved July 22, 2011.
  14. ^ a b Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. CiteSeerX doi:10.1016/j.nuclphysa.2003.11.001.
  15. ^ Lacovara, P.; Choi, H. K.; Wang, C. A.; Aggarwal, R. L.; Fan, T. Y. (1991). "Room-Temperature Diode-Pumped Yb:YAG laser". Optics Letters. 16 (14): 1089–1091. Bibcode:1991OptL...16.1089L. doi:10.1364/OL.16.001089. PMID 19776885.
  16. ^ Hudson Institute of Mineralogy (1993–2018). "". Retrieved 7 April 2018.
  17. ^ Gelis, V. M.; Chuveleva, E. A.; Firsova, L. A.; Kozlitin, E. A.; Barabanov, I. R. (2005). "Optimization of Separation of Ytterbium and Lutetium by Displacement Complexing Chromatography". Russian Journal of Applied Chemistry. 78 (9): 1420. doi:10.1007/s11167-005-0530-6.
  18. ^ Hubicka, H.; Drobek, D. (1997). "Anion-Exchange Method for Separation of Ytterbium from Holmium and Erbium". Hydrometallurgy. 47: 127–136. doi:10.1016/S0304-386X(97)00040-6.
  19. ^ Patnaik, Pradyot (2003). Handbook of Inorganic Chemical Compounds. McGraw-Hill. pp. 973–975. ISBN 978-0-07-049439-8. Retrieved 2009-06-06.
  20. ^ Lou, S.; Westbrook, J. A.; Schaus, S. E. (2004). "Decarboxylative Aldol Reactions of Allyl β-Keto Esters via Heterobimetallic Catalysis". Journal of the American Chemical Society. 126 (37): 11440–11441. doi:10.1021/ja045981k. PMID 15366881.
  21. ^ Fang, X.; Watkin, J. G.; Warner, B. P. (2000). "Ytterbium Trichloride-Catalyzed Allylation of Aldehydes with Allyltrimethylsilane". Tetrahedron Letters. 41 (4): 447. doi:10.1016/S0040-4039(99)02090-0.
  22. ^ Girard, P.; Namy, J. L.; Kagan, H. B. (1980). "Divalent Lanthanide Derivatives in Organic Synthesis. 1. Mild Preparation of Samarium Iodide and Ytterbium Iodide and Their Use as Reducing or Coupling Agents". Journal of the American Chemical Society. 102 (8): 2693. doi:10.1021/ja00528a029.
  23. ^ a b Enghag, Per (2004). Encyclopedia of the elements: technical data, history, processing, applications. John Wiley & Sons, ISBN 978-3-527-30666-4, p. 448.
  24. ^ Wells A.F. (1984) Structural Inorganic Chemistry 5th edition, Oxford Science Publications, ISBN 0-19-855370-6
  25. ^ "Separaton [sic] of Rare Earth Elements by Charles James". National Historic Chemical Landmarks. American Chemical Society. Retrieved 2014-02-21.
  26. ^ a b Urbain, M.G. (1908). "Un nouvel élément, le lutécium, résultant du dédoublement de l'ytterbium de Marignac". Comptes Rendus. 145: 759–762.
  27. ^ Urbain, G. (1909). "Lutetium und Neoytterbium oder Cassiopeium und Aldebaranium – Erwiderung auf den Artikel des Herrn Auer v. Welsbach". Monatshefte für Chemie. 31 (10): 1. doi:10.1007/BF01530262.
  28. ^ von Welsbach, Carl A. (1908). "Die Zerlegung des Ytterbiums in seine Elemente". Monatshefte für Chemie. 29 (2): 181–225. doi:10.1007/BF01558944.
  29. ^ Hedrick, James B. "Rare-Earth Metals" (PDF). USGS. Retrieved 2009-06-06.
  30. ^ Halmshaw, R. (1995). Industrial radiology: theory and practice. Springer. pp. 168–169. ISBN 978-0-412-62780-4.
  31. ^ NIST (2013-08-22) Ytterbium Atomic Clocks Set Record for Stability.
  32. ^ Peik, Ekkehard (2012-03-01). New "pendulum" for the ytterbium clock.
  33. ^ "NIST ytterbium atomic clocks set record for stability". August 22, 2013.
  34. ^ Ostby, Eric (2009). "Photonic Whispering-Gallery Resonations in New Environments" (PDF). California institute of technology. Retrieved 21 December 2012.
  35. ^ Grukh, Dmitrii A.; Bogatyrev, V. A.; Sysolyatin, A. A.; Paramonov, Vladimir M.; Kurkov, Andrei S.; Dianov, Evgenii M. (2004). "Broadband Radiation Source Based on an Ytterbium-Doped Fibre With Fibre-Length-Distributed Pumping". Quantum Electronics. 34 (3): 247. Bibcode:2004QuEle..34..247G. doi:10.1070/QE2004v034n03ABEH002621.
  36. ^ Kouznetsov, D.; Bisson, J.-F.; Takaichi, K.; Ueda, K. (2005). "Single-mode solid-state laser with short wide unstable cavity". JOSA B. 22 (8): 1605–1619. Bibcode:2005JOSAB..22.1605K. doi:10.1364/JOSAB.22.001605.
  37. ^ McCumber, D.E. (1964). "Einstein Relations Connecting Broadband Emission and Absorption Spectra". Physical Review B. 136 (4A): 954–957. Bibcode:1964PhRv..136..954M. doi:10.1103/PhysRev.136.A954.
  38. ^ Becker, P.C.; Olson, N.A.; Simpson, J.R. (1999). Erbium-Doped Fiber Amplifiers: Fundamentals and Theory. Academic press.
  39. ^ Kouznetsov, D. (2007). "Comment on Efficient diode-pumped Yb:Gd2SiO5 laser". Applied Physics Letters. 90 (6): 066101. Bibcode:2007ApPhL..90f6101K. doi:10.1063/1.2435309.
  40. ^ Zhao, Guangjun; Su, Liangbi; Xu, Jun; Zeng, Heping (2007). "Response to Comment on Efficient diode-pumped Yb:Gd2SiO5 laser". Applied Physics Letters. 90 (6): 066103. Bibcode:2007ApPhL..90f6103Z. doi:10.1063/1.2435314.
  41. ^ Koponen, Joona J.; Söderlund, Mikko J.; Hoffman, Hanna J. & Tammela, Simo K. T. (2006). "Measuring photodarkening from single-mode ytterbium doped silica fibers". Optics Express. 14 (24): 11539–11544. Bibcode:2006OExpr..1411539K. doi:10.1364/OE.14.011539. PMID 19529573.
  42. ^ Bisson, J.-F.; Kouznetsov, D.; Ueda, K.; Fredrich-Thornton, S. T.; Petermann, K.; Huber, G. (2007). "Switching of Emissivity and Photoconductivity in Highly Doped Yb3+:Y2O3 and Lu2O3 Ceramics". Applied Physics Letters. 90 (20): 201901. Bibcode:2007ApPhL..90t1901B. doi:10.1063/1.2739318.
  43. ^ Sochinskii, N.V.; Abellan, M.; Rodriguez-Fernandez, J.; Saucedo, E.; Ruiz, C.M.; Bermudez, V. (2007). "Effect of Yb concentration on the resistivity and lifetime of CdTe:Ge:Yb codoped crystals" (PDF). Applied Physics Letters. 91 (20): 202112. Bibcode:2007ApPhL..91t2112S. doi:10.1063/1.2815644. hdl:10261/46803.
  44. ^ Samson, Bryce; Carter, Adrian; Tankala, Kanishka (2011). "Doped fibres: Rare-earth fibres power up". Nature Photonics. 5 (8): 466. Bibcode:2011NaPho...5..466S. doi:10.1038/nphoton.2011.170.
  45. ^ "Fiber for Fiber Lasers: Matching Active and Passive Fibers Improves Fiber Laser Performance". Laser Focus World. 2012-01-01.
  46. ^ Gupta, C.K. & Krishnamurthy, Nagaiyar (2004). Extractive metallurgy of rare earths. CRC Press. p. 32. ISBN 978-0-415-33340-5.
  47. ^ Koch, E. C.; Hahma, A. (2012). "Metal-Fluorocarbon Pyrolants. XIV: High Density-High Performance Decoy Flare Compositions Based on Ytterbium/Polytetrafluoroethylene/Viton®". Zeitschrift für Anorganische und Allgemeine Chemie. 638 (5): 721. doi:10.1002/zaac.201200036.
  48. ^ Ganesan, M.; Bérubé, C. D.; Gambarotta, S.; Yap, G. P. A. (2002). "Effect of the Alkali-Metal Cation on the Bonding Mode of 2,5-Dimethylpyrrole in Divalent Samarium and Ytterbium Complexes". Organometallics. 21 (8): 1707. doi:10.1021/om0109915.
  49. ^ Gale, T.F. (1975). "The Embryotoxicity of Ytterbium Chloride in Golden Hamsters". Teratology. 11 (3): 289–95. doi:10.1002/tera.1420110308. PMID 807987.
  50. ^ Ivanov, V. G.; Ivanov, G. V. (1985). "High-Temperature Oxidation and Spontaneous Combustion of Rare-Earth Metal Powders". Combustion, Explosion, and Shock Waves. 21 (6): 656. doi:10.1007/BF01463665.
  51. ^ "Material safety data sheet". Retrieved 2009-06-06.

Further reading

  • Guide to the Elements – Revised Edition, Albert Stwertka, (Oxford University Press; 1998) ISBN 0-19-508083-1

External links

Isotopes of ytterbium

Naturally occurring Ytterbium (70Yb) is composed of 7 stable isotopes, 168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, and 176Yb, with 174Yb being the most abundant (31.83% natural abundance). Twenty-seven radioisotopes have been characterized, with the most stable being 169Yb with a half-life of 32.026 days, 175Yb with a half-life of 4.185 days, and 166Yb with a half-life of 56.7 hours. All of the remaining radioactive isotopes have half-lives that are less than 2 hours, and the majority of these have half-lives that are less than 20 minutes. This element also has 12 meta states, with the most stable being 169mYb (t1/2 46 seconds).

The isotopes of ytterbium range in atomic weight from 147.967 u (148Yb) to 180.9562 u (181Yb). The primary decay mode before the most abundant stable isotope, 174Yb is electron capture, and the primary mode after is beta emission. The primary decay products before 174Yb are isotopes of thulium, and the primary products after are isotopes of lutetium. Of interest to modern quantum optics, the different ytterbium isotopes follow either Bose–Einstein statistics or Fermi–Dirac statistics, leading to interesting behavior in optical lattices.

Jean Charles Galissard de Marignac

Jean Charles Galissard de Marignac (24 April 1817 – 15 April 1894) was a Swiss chemist whose work with atomic weights suggested the possibility of isotopes and the packing fraction of nuclei and whose study of the rare earth elements led to his discovery of ytterbium in 1878 and co-discovery of gadolinium in 1880.

Kondo effect

In physics, the Kondo effect describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change in electrical resistivity with temperature.

The effect was first described by Jun Kondo, who applied third-order perturbation theory to the problem to account for s-d electron scattering. Kondo's model predicted that the scattering rate of conduction electrons of the magnetic impurity should diverge as the temperature approaches 0 K. Extended to a lattice of magnetic impurities, the Kondo effect likely explains the formation of heavy fermions and Kondo insulators in intermetallic compounds, especially those involving rare earth elements like cerium, praseodymium, and ytterbium, and actinide elements like uranium. The Kondo effect has also been observed in quantum dot systems.

List of chemical elements naming controversies

The currently accepted names and symbols of the chemical elements are determined by the International Union of Pure and Applied Chemistry (IUPAC), usually following recommendations by the recognized discoverers of each element. However the names of several elements have been the subject of controversies until IUPAC established an official name. In most cases the controversy was due to a priority dispute as to who first found conclusive evidence for the existence of an element, or as to what evidence was in fact conclusive.


Lutetium is a chemical element with symbol Lu and atomic number 71. It is a silvery white metal, which resists corrosion in dry air, but not in moist air. Lutetium is the last element in the lanthanide series, and it is traditionally counted among the rare earths. Lutetium is sometimes considered the first element of the 6th-period transition metals, although lanthanum is more often considered as such.

Lutetium was independently discovered in 1907 by French scientist Georges Urbain, Austrian mineralogist Baron Carl Auer von Welsbach, and American chemist Charles James. All of these researchers found lutetium as an impurity in the mineral ytterbia, which was previously thought to consist entirely of ytterbium. The dispute on the priority of the discovery occurred shortly after, with Urbain and Welsbach accusing each other of publishing results influenced by the published research of the other; the naming honor went to Urbain, as he had published his results earlier. He chose the name lutecium for the new element, but in 1949 the spelling of element 71 was changed to lutetium. In 1909, the priority was finally granted to Urbain and his names were adopted as official ones; however, the name cassiopeium (or later cassiopium) for element 71 proposed by Welsbach was used by many German scientists until the 1950s.

Lutetium is not a particularly abundant element, although it is significantly more common than silver in the earth's crust. It has few specific uses. Lutetium-176 is a relatively abundant (2.5%) radioactive isotope with a half-life of about 38 billion years, used to determine the age of minerals and meteorites. Lutetium usually occurs in association with the element yttrium and is sometimes used in metal alloys and as a catalyst in various chemical reactions. 177Lu-DOTA-TATE is used for radionuclide therapy (see Nuclear medicine) on neuroendocrine tumours. Lutetium has the highest Brinell hardness of any lanthanide, at 890–1300 MPa.

Lutetium(III) oxide

Lutetium(III) oxide, a white solid, is a cubic compound of lutetium sometimes used in the preparation of specialty glasses. It is also called lutecia. It is a lanthanide oxide, also known as a rare earth.

Major actinide

Major actinides is a term used in the nuclear power industry that refers to the plutonium and uranium present in used nuclear fuel, as opposed to the minor actinides neptunium, americium, curium, berkelium, and californium.

Mercury laser

The Mercury laser is a high-average-power laser system developed at Lawrence Livermore National Laboratory as a prototype for systems to drive inertial confinement fusion. Like the National Ignition Facility, it is intended to produce narrow pulses of extremely high power, using diode-pumped solid-state lasers. Unlike the NIF system, the Mercury laser aims to achieve a high repetition rate: its goals are 10 pulses per second, each delivering 100 J with a 10% efficient conversion of electricity to laser light.

The active gain medium is Yb:SFAP (Ytterbium-doped Sr5(PO4)3), which is cooled by fast-flowing helium to allow high repetition rates. Infrared light at 900 nm from 8 arrays of laser diodes pumps the laser.


Nobelium is a synthetic chemical element with symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penultimate member of the actinide series. Like all elements with atomic number over 100, nobelium can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of twelve nobelium isotopes are known to exist; the most stable is 259No with a half-life of 58 minutes, but the shorter-lived 255No (half-life 3.1 minutes) is most commonly used in chemistry because it can be produced on a larger scale.

Chemistry experiments have confirmed that nobelium behaves as a heavier homolog to ytterbium in the periodic table. The chemical properties of nobelium are not completely known: they are mostly only known in aqueous solution. Before nobelium's discovery, it was predicted that it would show a stable +2 oxidation state as well as the +3 state characteristic of the other actinides: these predictions were later confirmed, as the +2 state is much more stable than the +3 state in aqueous solution and it is difficult to keep nobelium in the +3 state.

In the 1950s and 1960s, many claims of the discovery of nobelium were made from laboratories in Sweden, the Soviet Union, and the United States. Although the Swedish scientists soon retracted their claims, the priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and it was not until 1997 that International Union of Pure and Applied Chemistry (IUPAC) credited the Soviet team with the discovery, but retained nobelium, the Swedish proposal, as the name of the element due to its long-standing use in the literature.

Stable nuclide

Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

The 80 elements with one or more stable isotopes comprise a total of 253 nuclides that have not been known to decay using current equipment (see list at the end of this article). Of these elements, 26 have only one stable isotope; they are thus termed monoisotopic. The rest have more than one stable isotope. Tin has ten stable isotopes, the largest number of isotopes known for an element.


Xenotime is a rare-earth phosphate mineral, the major component of which is yttrium orthophosphate (YPO4). It forms a solid solution series with chernovite-(Y) (YAsO4) and therefore may contain trace impurities of arsenic, as well as silicon dioxide and calcium. The rare-earth elements dysprosium, erbium, terbium and ytterbium, as well as metal elements such as thorium and uranium (all replacing yttrium) are the expressive secondary components of xenotime. Due to uranium and thorium impurities, some xenotime specimens may be weakly to strongly radioactive. Lithiophyllite, monazite and purpurite are sometimes grouped with xenotime in the informal "anhydrous phosphates" group. Xenotime is used chiefly as a source of yttrium and heavy lanthanide metals (dysprosium, ytterbium, erbium and gadolinium). Occasionally, gemstones are also cut from the finer xenotime crystals.

Ytterbium(II) chloride

Ytterbium(II) chloride (YbCl2) is an inorganic chemical compound. It was first prepared in 1929 by W. K. Klemm and W. Schuth, by reduction of ytterbium(III) chloride, YbCl3, using hydrogen.

2 YbCl3 + H2 → 2 YbCl2 + 2 HClLike other Yb(II) compounds and other low-valence rare earth compounds, it is a strong reducing agent. It is unstable in aqueous solution, reducing water to hydrogen gas.

Ytterbium(III) bromide

Ytterbium(III) bromide (YbBr3) is an inorganic chemical compound.

Refer to the adjacent table for the main properties of Ytterbium(III) bromide.

Conditions/substances to avoid in the use of Ytterbium(III) bromide are: moisture, water and oxidizing agents

Ytterbium(III) chloride

Ytterbium(III) chloride (YbCl3) is an inorganic chemical compound. It reacts with NiCl2 to form a very effective catalyst for the reductive dehalogenation of aryl halides. It is poisonous if injected, and mildly toxic by ingestion. It is an experimental teratogen, known to irritate the skin and eyes. When heated to decomposition it emits toxic fumes of Cl−.

Ytterbium(III) fluoride

Ytterbium(III) fluoride (YbF3) is an inorganic chemical compound.

Ytterbium(III) oxide

Ytterbium(III) oxide is the chemical compound with the formula Yb2O3. It is one of the more commonly encountered compounds of ytterbium. It has the "rare-earth C-type sesquioxide" structure which is related to the fluorite structure with one quarter of the anions removed, leading to ytterbium atoms in two different six coordinate (non-octahedral) environments.

Ytterbium(III) sulfate

Ytterbium(III) sulfate (ytterbium sulphate) is a ytterbium salt of sulfuric acid, with formula Yb2(SO4)3. It is used mostly for research.

Ytterbium dirhodium disilicide

Ytterbium dirhodium disilicide (YbRh2Si2) is a heavy fermion solid state compound of ytterbium, rhodium and silicon. It becomes superconducting when cooled to 2 mK. Just above this temperature the heat capacity is extremely high, and the electrons behave as if they were 1,000,000 times heavier than they really are.


Ytterby (Swedish pronunciation: [²ʏtːɛrˌbyː]) is a village on the Swedish island of Resarö, in Vaxholm Municipality in the Stockholm archipelago. Today the residential area is dominated by suburban homes.

The name of the village translates to "outer village". Ytterby is perhaps most famous for having the single richest source of elemental discoveries in the world; the chemical elements Yttrium (Y), Ytterbium (Yb), Erbium (Er) and Terbium (Tb) are all named after Ytterby.

Ytterbium compounds

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.