Weak interaction

In particle physics, the weak interaction, which is also often called the weak force or weak nuclear force, is the mechanism of interaction between subatomic particles that is responsible for the radioactive decay of atoms. The weak interaction serves an essential role in nuclear fission, and the theory regarding it in terms of both its behavior and effects is sometimes called quantum flavordynamics (QFD). However, the term QFD is rarely used because the weak force is better understood in terms of electroweak theory (EWT).[1] In addition to this, QFD is related to quantum chromodynamics (QCD), which deals with the strong interaction, and quantum electrodynamics (QED), which deals with the electromagnetic force.

The effective range of the weak force is limited to subatomic distances, and is less than the diameter of a proton. It is one of the four known force-related fundamental interactions of nature, alongside the strong interaction, electromagnetism, and gravitation.

Beta-minus Decay
The radioactive beta decay is due to the weak interaction, which transforms a neutron into: a proton, an electron, and an electron antineutrino.

Background

The Standard Model ofparticle physics provides a uniform framework for understanding the electromagnetic, weak, and strong interactions. An interaction occurs when two particles (typically but not necessarily half-integer spin fermions) exchange integer-spin, force-carrying bosons. The fermions involved in such exchanges can be either elementary (e.g. electrons or quarks) or composite (e.g. protons or neutrons), although at the deepest levels, all weak interactions ultimately are between elementary particles.

In the case of the weak interaction, fermions can exchange three distinct types of force carriers known as the W+, W, and Z bosons. The mass of each of these bosons is far greater than the mass of a proton or neutron, which is consistent with the short range of the weak force. The force is in fact termed weak because its field strength over a given distance is typically several orders of magnitude less than that of the strong nuclear force or electromagnetic force.

Quarks, which make up composite particles like neutrons and protons, come in six "flavors" – up, down, strange, charm, top and bottom – which give those composite particles their properties. The weak interaction is unique in that it allows for quarks to swap their flavor for another. The swapping of those properties is mediated by the force carrier bosons. For example, during beta minus decay, a down quark within a neutron is changed into an up quark, thus converting the neutron to a proton and resulting in the emission of an electron and an electron antineutrino.

The weak interaction is the only fundamental interaction that breaks parity-symmetry, and similarly, the only one to break charge parity symmetry.

Other important examples of phenomena involving the weak interaction include beta decay, and the fusion of hydrogen into helium that powers the Sun's thermonuclear process. Most fermions will decay by a weak interaction over time. Such decay makes radiocarbon dating possible, as carbon-14 decays through the weak interaction to nitrogen-14. It can also create radioluminescence, commonly used in tritium illumination, and in the related field of betavoltaics.[2]

During the quark epoch of the early universe, the electroweak force separated into the electromagnetic and weak forces.

History

In 1933, Enrico Fermi proposed the first theory of the weak interaction, known as Fermi's interaction. He suggested that beta decay could be explained by a four-fermion interaction, involving a contact force with no range.[3][4]

However, it is better described as a non-contact force field having a finite range, albeit very short. In 1968, Sheldon Glashow, Abdus Salam and Steven Weinberg unified the electromagnetic force and the weak interaction by showing them to be two aspects of a single force, now termed the electroweak force.[5][6]

The existence of the W and Z bosons was not directly confirmed until 1983.[7]

Properties

Weak Decay (flipped)
A diagram depicting the various decay routes due to the weak interaction and some indication of their likelihood. The intensity of the lines is given by the CKM parameters.

The weak interaction is unique in a number of respects:

Due to their large mass (approximately 90 GeV/c2[8]) these carrier particles, termed the W and Z bosons, are short-lived with a lifetime of under 10−24 seconds.[9] The weak interaction has a coupling constant (an indicator of interaction strength) of between 10−7 and 10−6, compared to the strong interaction's coupling constant of 1 and the electromagnetic coupling constant of about 10−2;[10] consequently the weak interaction is weak in terms of strength.[11] The weak interaction has a very short effective range (around 10−17 to 10−16 m[11]).[10] At distances around 10−18 meters, the weak interaction has a strength of a similar magnitude to the electromagnetic force, but this starts to decrease exponentially with increasing distance. Scaled up by just one and a half orders of magnitude, at distances of around 3×10−17 m, the weak interaction becomes 10,000 times weaker.[12]

The weak interaction affects all the fermions of the Standard Model, as well as the Higgs boson; neutrinos interact through gravity and the weak interaction only, and neutrinos were the original reason for the name weak force.[11] The weak interaction does not produce bound states nor does it involve binding energy – something that gravity does on an astronomical scale, that the electromagnetic force does at the atomic level, and that the strong nuclear force does inside nuclei.[13]

Its most noticeable effect is due to its first unique feature: flavor changing. A neutron, for example, is heavier than a proton (its sister nucleon), but it cannot decay into a proton without changing the flavor (type) of one of its two down quarks to an up quark. Neither the strong interaction nor electromagnetism permit flavor changing, so this proceeds by weak decay; without weak decay, quark properties such as strangeness and charm (associated with the quarks of the same name) would also be conserved across all interactions.

All mesons are unstable because of weak decay.[14] In the process known as beta decay, a down quark in the neutron can change into an up quark by emitting a virtual
W
boson which is then converted into an electron and an electron antineutrino.[15] Another example is the electron capture, a common variant of radioactive decay, wherein a proton and an electron within an atom interact, and are changed to a neutron (an up quark is changed to a down quark) and an electron neutrino is emitted.

Due to the large masses of the W bosons, particle transformations or decays (e.g., flavor change) that depend on the weak interaction typically occur much more slowly than transformations or decays that depend only on the strong or electromagnetic forces. For example, a neutral pion decays electromagnetically, and so has a life of only about 10−16 seconds. In contrast, a charged pion can only decay through the weak interaction, and so lives about 10−8 seconds, or a hundred million times longer than a neutral pion.[16] A particularly extreme example is the weak-force decay of a free neutron, which takes about 15 minutes.[15]

Weak isospin and weak hypercharge

Left-handed fermions in the Standard Model[17]
Generation 1 Generation 2 Generation 3
Fermion Symbol Weak
isospin
Fermion Symbol Weak
isospin
Fermion Symbol Weak
isospin
Electron neutrino Muon neutrino Tau neutrino
Electron Muon Tau
Up quark Charm quark Top quark
Down quark Strange quark Bottom quark
All of the above left-handed (regular) particles have corresponding
right-handed anti-particles with equal and opposite weak isospin.
All right-handed (regular) particles and left-handed antiparticles have weak isospin of 0.

All particles have a property called weak isospin (symbol T3), which serves as a quantum number and governs how that particle behaves in the weak interaction. Weak isospin plays the same role in the weak interaction as does electric charge in electromagnetism, and color charge in the strong interaction. All left-handed fermions have a weak isospin value of either +​12 or −​12. For example, the up quark has a T3 of +​12 and the down quark −​12. A quark never decays through the weak interaction into a quark of the same T3: Quarks with a T3 of +​12 only decay into quarks with a T3 of −​12 and vice versa.

PiPlus muon decay

π+
decay through the weak interaction

In any given interaction, weak isospin is conserved: the sum of the weak isospin numbers of the particles entering the interaction equals the sum of the weak isospin numbers of the particles exiting that interaction. For example, a (left-handed)
π+
, with a weak isospin of 1 normally decays into a
ν
μ
(+​12) and a
μ+
(as a right-handed antiparticle, +​12).[16]

Following the development of the electroweak theory, another property, weak hypercharge, was developed. It is dependent on a particle's electrical charge and weak isospin, and is defined by:

where YW is the weak hypercharge of a given type of particle, Q is its electrical charge (in elementary charge units) and T3 is its weak isospin. Whereas some particles have a weak isospin of zero, all spin-​12 particles have non-zero weak hypercharge. Weak hypercharge is the generator of the U(1) component of the electroweak gauge group.

Interaction types

There are two types of weak interaction (called vertices). The first type is called the "charged-current interaction" because it is mediated by particles that carry an electric charge (the
W+
or
W
bosons
), and is responsible for the beta decay phenomenon. The second type is called the "neutral-current interaction" because it is mediated by a neutral particle, the Z boson.

Charged-current interaction

Beta Negative Decay
The Feynman diagram for beta-minus decay of a neutron into a proton, electron and electron anti-neutrino, via an intermediate heavy
W
boson

In one type of charged current interaction, a charged lepton (such as an electron or a muon, having a charge of −1) can absorb a
W+
boson
(a particle with a charge of +1) and be thereby converted into a corresponding neutrino (with a charge of 0), where the type ("flavor") of neutrino (electron, muon or tau) is the same as the type of lepton in the interaction, for example:

Similarly, a down-type quark (d with a charge of −​13) can be converted into an up-type quark (u, with a charge of +​23), by emitting a
W
boson or by absorbing a
W+
boson. More precisely, the down-type quark becomes a quantum superposition of up-type quarks: that is to say, it has a possibility of becoming any one of the three up-type quarks, with the probabilities given in the CKM matrix tables. Conversely, an up-type quark can emit a
W+
boson, or absorb a
W
boson, and thereby be converted into a down-type quark, for example:

The W boson is unstable so will rapidly decay, with a very short lifetime. For example:

Decay of the W boson to other products can happen, with varying probabilities.[18]

In the so-called beta decay of a neutron (see picture, above), a down quark within the neutron emits a virtual
W
boson and is thereby converted into an up quark, converting the neutron into a proton. Because of the energy involved in the process (i.e., the mass difference between the down quark and the up quark), the
W
boson can only be converted into an electron and an electron-antineutrino.[19] At the quark level, the process can be represented as:

Neutral-current interaction

In neutral current interactions, a quark or a lepton (e.g., an electron or a muon) emits or absorbs a neutral Z boson. For example:

Like the W boson, the Z boson also decays rapidly,[18] for example:

Electroweak theory

The Standard Model of particle physics describes the electromagnetic interaction and the weak interaction as two different aspects of a single electroweak interaction. This theory was developed around 1968 by Sheldon Glashow, Abdus Salam and Steven Weinberg, and they were awarded the 1979 Nobel Prize in Physics for their work.[20] The Higgs mechanism provides an explanation for the presence of three massive gauge bosons (
W+
,
W
,
Z0
, the three carriers of the weak interaction) and the massless photon (γ, the carrier of the electromagnetic interaction).[21]

According to the electroweak theory, at very high energies, the universe has four components of the Higgs field whose interactions are carried by four massless gauge bosons – each similar to the photon – forming a complex scalar Higgs field doublet. However, at low energies, this gauge symmetry is spontaneously broken down to the U(1) symmetry of electromagnetism, since one of the Higgs fields acquires a vacuum expectation value. This symmetry-breaking would be expected to produce three massless bosons, but instead they become integrated by the other three fields and acquire mass through the Higgs mechanism. These three boson integrations produce the
W+
,
W
and
Z0
bosons of the weak interaction. The fourth gauge boson is the photon of electromagnetism, and remains massless.[21]

This theory has made a number of predictions, including a prediction of the masses of the Z and W-bosons before their discovery. On 4 July 2012, the CMS and the ATLAS experimental teams at the Large Hadron Collider independently announced that they had confirmed the formal discovery of a previously unknown boson of mass between 125–127 GeV/c2, whose behaviour so far was "consistent with" a Higgs boson, while adding a cautious note that further data and analysis were needed before positively identifying the new boson as being a Higgs boson of some type. By 14 March 2013, the Higgs boson was tentatively confirmed to exist.[22]

If the electroweak symmetry breaking scale were lowered, the unbroken SU(2) interaction would eventually become confining. Alternative models where SU(2) becomes confining above that scale are quantitatively similar to the Standard Model at lower energies, but dramatically different above symmetry breaking.[23]

Violation of symmetry

Right left helicity
Left- and right-handed particles: p is the particle's momentum and S is its spin. Note the lack of reflective symmetry between the states.

The laws of nature were long thought to remain the same under mirror reflection. The results of an experiment viewed via a mirror were expected to be identical to the results of a mirror-reflected copy of the experimental apparatus. This so-called law of parity conservation was known to be respected by classical gravitation, electromagnetism and the strong interaction; it was assumed to be a universal law.[24] However, in the mid-1950s Chen-Ning Yang and Tsung-Dao Lee suggested that the weak interaction might violate this law. Chien Shiung Wu and collaborators in 1957 discovered that the weak interaction violates parity, earning Yang and Lee the 1957 Nobel Prize in Physics.[25]

Although the weak interaction was once described by Fermi's theory, the discovery of parity violation and renormalization theory suggested that a new approach was needed. In 1957, Robert Marshak and George Sudarshan and, somewhat later, Richard Feynman and Murray Gell-Mann proposed a V−A (vector minus axial vector or left-handed) Lagrangian for weak interactions. In this theory, the weak interaction acts only on left-handed particles (and right-handed antiparticles). Since the mirror reflection of a left-handed particle is right-handed, this explains the maximal violation of parity. The V−A theory was developed before the discovery of the Z boson, so it did not include the right-handed fields that enter in the neutral current interaction.

However, this theory allowed a compound symmetry CP to be conserved. CP combines parity P (switching left to right) with charge conjugation C (switching particles with antiparticles). Physicists were again surprised when in 1964, James Cronin and Val Fitch provided clear evidence in kaon decays that CP symmetry could be broken too, winning them the 1980 Nobel Prize in Physics.[26] In 1973, Makoto Kobayashi and Toshihide Maskawa showed that CP violation in the weak interaction required more than two generations of particles,[27] effectively predicting the existence of a then unknown third generation. This discovery earned them half of the 2008 Nobel Prize in Physics.[28]

Unlike parity violation, CP violation occurs only in limited circumstances. Despite its rarity, it is widely believed to be the reason that there is much more matter than antimatter in the universe, and thus forms one of Andrei Sakharov's three conditions for baryogenesis.[29]

See also

References

Citations

  1. ^ Griffiths, David (2009). Introduction to Elementary Particles. pp. 59–60. ISBN 978-3-527-40601-2.
  2. ^ "The Nobel Prize in Physics 1979: Press Release". NobelPrize.org. Nobel Media. Retrieved 22 March 2011.
  3. ^ Fermi, Enrico (1934). "Versuch einer Theorie der β-Strahlen. I". Zeitschrift für Physik A. 88 (3–4): 161–177. Bibcode:1934ZPhy...88..161F. doi:10.1007/BF01351864.
  4. ^ Wilson, Fred L. (December 1968). "Fermi's Theory of Beta Decay". American Journal of Physics. 36 (12): 1150–1160. Bibcode:1968AmJPh..36.1150W. doi:10.1119/1.1974382.
  5. ^ "Steven Weinberg, Weak Interactions, and Electromagnetic Interactions".
  6. ^ "1979 Nobel Prize in Physics". Nobel Prize. Archived from the original on 7 July 2014.
  7. ^ Cottingham & Greenwood (1986, 2001), p. 8
  8. ^ W.-M. Yao et al. (Particle Data Group) (2006). "Review of Particle Physics: Quarks" (PDF). Journal of Physics G. 33: 1–1232. arXiv:astro-ph/0601168. Bibcode:2006JPhG...33....1Y. doi:10.1088/0954-3899/33/1/001.
  9. ^ Peter Watkins (1986). Story of the W and Z. Cambridge: Cambridge University Press. p. 70. ISBN 978-0-521-31875-4.
  10. ^ a b "Coupling Constants for the Fundamental Forces". HyperPhysics. Georgia State University. Retrieved 2 March 2011.
  11. ^ a b c J. Christman (2001). "The Weak Interaction" (PDF). Physnet. Michigan State University. Archived from the original (PDF) on 20 July 2011.
  12. ^ "Electroweak". The Particle Adventure. Particle Data Group. Retrieved 3 March 2011.
  13. ^ Walter Greiner; Berndt Müller (2009). Gauge Theory of Weak Interactions. Springer. p. 2. ISBN 978-3-540-87842-1.
  14. ^ Cottingham & Greenwood (1986, 2001), p. 29
  15. ^ a b Cottingham & Greenwood (1986, 2001), p. 28
  16. ^ a b Cottingham & Greenwood (1986, 2001), p. 30
  17. ^ Baez, John C.; Huerta, John (2009). "The Algebra of Grand Unified Theories". Bull. Am. Math. Soc. 0904: 483–552. arXiv:0904.1556. Bibcode:2009arXiv0904.1556B. doi:10.1090/s0273-0979-10-01294-2. Retrieved 15 October 2013.
  18. ^ a b K. Nakamura et al. (Particle Data Group) (2010). "Gauge and Higgs Bosons" (PDF). Journal of Physics G. 37. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7a/075021.
  19. ^ K. Nakamura et al. (Particle Data Group) (2010). "n" (PDF). Journal of Physics G. 37: 7. Bibcode:2010JPhG...37g5021N. doi:10.1088/0954-3899/37/7a/075021.
  20. ^ "The Nobel Prize in Physics 1979". NobelPrize.org. Nobel Media. Retrieved 26 February 2011.
  21. ^ a b C. Amsler et al. (Particle Data Group) (2008). "Review of Particle Physics – Higgs Bosons: Theory and Searches" (PDF). Physics Letters B. 667: 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018.
  22. ^ "New results indicate that new particle is a Higgs boson | CERN". Home.web.cern.ch. Retrieved 20 September 2013.
  23. ^ Claudson, M.; Farhi, E.; Jaffe, R. L. (1 August 1986). "Strongly coupled standard model". Physical Review D. 34 (3): 873–887. doi:10.1103/PhysRevD.34.873. Retrieved 4 February 2019.
  24. ^ Charles W. Carey (2006). "Lee, Tsung-Dao". American scientists. Facts on File Inc. p. 225. ISBN 9781438108070.
  25. ^ "The Nobel Prize in Physics 1957". NobelPrize.org. Nobel Media. Retrieved 26 February 2011.
  26. ^ "The Nobel Prize in Physics 1980". NobelPrize.org. Nobel Media. Retrieved 26 February 2011.
  27. ^ M. Kobayashi; T. Maskawa (1973). "CP-Violation in the Renormalizable Theory of Weak Interaction" (PDF). Progress of Theoretical Physics. 49 (2): 652–657. Bibcode:1973PThPh..49..652K. doi:10.1143/PTP.49.652. hdl:2433/66179.
  28. ^ "The Nobel Prize in Physics 1980". NobelPrize.org. Nobel Media. Retrieved 17 March 2011.
  29. ^ Paul Langacker (2001) [1989]. "Cp Violation and Cosmology". In Cecilia Jarlskog (ed.). CP violation. London, River Edge: World Scientific Publishing Co. p. 552. ISBN 9789971505615.

General readers

  • R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics. Plume. ISBN 978-0-13-236678-6.
  • B.A. Schumm (2004). Deep Down Things: The Breathtaking Beauty of Particle Physics. Johns Hopkins University Press. ISBN 0-8018-7971-X.

Texts

  • Walter Greiner; B. Müller (2000). Gauge Theory of Weak Interactions. Springer. ISBN 3-540-67672-4.
  • G.D. Coughlan; J.E. Dodd; B.M. Gripaios (2006). The Ideas of Particle Physics: An Introduction for Scientists (3rd ed.). Cambridge University Press. ISBN 978-0-521-67775-2.
  • W.N. Cottingham; D.A. Greenwood (2001) [1986]. An introduction to nuclear physics (2nd ed.). Cambridge University Press. p. 30. ISBN 978-0-521-65733-4.
  • D.J. Griffiths (1987). Introduction to Elementary Particles. John Wiley & Sons. ISBN 0-471-60386-4.
  • G.L. Kane (1987). Modern Elementary Particle Physics. Perseus Books. ISBN 0-201-11749-5.
  • D.H. Perkins (2000). Introduction to High Energy Physics. Cambridge University Press. ISBN 0-521-62196-8.

External links

Bottom quark

The bottom quark or b quark, also known as the beauty quark, is a third-generation quark with a charge of −1/3 e.

All quarks are described in a similar way by electroweak and quantum chromodynamics, but the bottom quark has exceptionally low rates of transition to lower-mass quarks. The bottom quark is also notable because it is a product in almost all top quark decays, and is a frequent decay product of the Higgs boson.

Charm (quantum number)

Charm (symbol C) is a flavour quantum number representing the difference between the number of charm quarks (
c
) and charm antiquarks (
c
) that are present in a particle:

By convention, the sign of flavour quantum numbers agree with the sign of the electric charge carried by the quarks of corresponding flavour. The charm quark, which carries an electric charge (Q) of +​23, therefore carries a charm of +1. The charm antiquarks have the opposite charge (Q = −​23), and flavour quantum numbers (C = −1).

As with any flavour-related quantum numbers, charm is preserved under strong and electromagnetic interaction, but not under weak interaction (see CKM matrix). For first-order weak decays, that is processes involving only one quark decay, charm can only vary by 1 (ΔC= ±1,0). Since first-order processes are more common than second-order processes (involving two quark decays), this can be used as an approximate "selection rule" for weak decays.

Contact force

A contact force is any force that requires contact to occur. Contact forces are ubiquitous and are responsible for most visible interactions between macroscopic collections of matter. Moving a couch across a floor, pushing a car up a hill, kicking a ball or pushing a desk across a room are some of the everyday examples where contact forces are at work. In the first case the force is continuously applied by the person on the car, while in the second case the force is delivered in a short impulse. Contact forces are often decomposed into orthogonal components, one perpendicular to the surface(s) in contact called the normal force, and one parallel to the surface(s) in contact, called the friction force.In the Standard Model of modern physics, the four fundamental forces of nature are known to be non-contact forces. The strong and weak interaction primarily deal with forces within atoms, while gravitational effects are only obvious on an ultra-macroscopic scale. Molecular and quantum physics show that the electromagnetic force is the fundamental interaction responsible for contact forces. The interaction between macroscopic objects can be roughly described as resulting from the electromagnetic interactions between protons and electrons of the atomic constituents of these objects. Everyday objects do not actually touch; rather, contact forces are the result of the interactions of the electrons at or near the surfaces of the objects.

D meson

The D mesons are the lightest particle containing charm quarks. They are often studied to gain knowledge on the weak interaction. The strange D mesons (Ds) were called the "F mesons" prior to 1986.

Electroweak epoch

In physical cosmology, the electroweak epoch was the period in the evolution of the early universe when the temperature of the universe had fallen enough that the strong force separated from the electroweak interaction, but was high enough for electromagnetism and the weak interaction to remain merged into a single electroweak interaction (above energies of about 246 GeV,). Some cosmologists place this event at the start of the inflationary epoch, approximately 10−36 seconds after the Big Bang. Others place it at approximately 10−32 seconds after the Big Bang when the potential energy of the inflaton field that had driven the inflation of the universe during the inflationary epoch was released, filling the universe with a dense, hot quark–gluon plasma. Particle interactions in this phase were energetic enough to create large numbers of exotic particles, including W and Z bosons and Higgs bosons. As the universe expanded and cooled, interactions became less energetic and when the universe was about 10−12 seconds old, W and Z bosons ceased to be created. The remaining W and Z bosons decayed quickly, and the weak interaction became a short-range force in the following quark epoch.

The physics of the electroweak epoch is less speculative and much better understood than the physics of previous periods of the early universe. The existence of W, Z, and Higgs bosons has been demonstrated, and other predictions of electroweak theory have been experimentally verified.

Fundamental interaction

In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life, and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions. Some scientists hypothesize that a fifth force might exist, but the hypotheses remain speculative.

Each of the known fundamental interactions can be described mathematically as a field. The gravitational force is attributed to the curvature of spacetime, described by Einstein's general theory of relativity. The other three are discrete quantum fields, and their interactions are mediated by elementary particles described by the Standard Model of particle physics.

Within the Standard Model, the strong interaction is carried by a particle called the gluon, and is responsible for quarks binding together to form hadrons, such as protons and neutrons. As a residual effect, it creates the nuclear force that binds the latter particles to form atomic nuclei. The weak interaction is carried by particles called W and Z bosons, and also acts on the nucleus of atoms, mediating radioactive decay. The electromagnetic force, carried by the photon, creates electric and magnetic fields, which are responsible for the attraction between orbital electrons and atomic nuclei which holds atoms together, as well as chemical bonding and electromagnetic waves, including visible light, and forms the basis for electrical technology. Although the electromagnetic force is far stronger than gravity, it tends to cancel itself out within large objects, so over large distances (on the scale of planets and galaxies), gravity tends to be the dominant force.

All four fundamental forces are believed to be related, and to unite into a single force at high energies on a minuscule scale, the Planck scale, but particle accelerators cannot produce the enormous energies required to experimentally probe this. Efforts to devise a common theoretical framework that would explain the relation between the forces are perhaps the greatest goal of today's theoretical physicists. The weak and electromagnetic forces have already been unified with the electroweak theory of Sheldon Glashow, Abdus Salam, and Steven Weinberg for which they received the 1979 Nobel Prize in physics. Progress is currently being made in uniting the electroweak and strong fields within a Grand Unified Theory (GUT). A bigger challenge is to find a way to quantize the gravitational field, resulting in a theory of quantum gravity (QG) which would unite gravity in a common theoretical framework with the other three forces. Some theories, notably string theory, seek both QG and GUT within one framework, unifying all four fundamental interactions along with mass generation within a theory of everything (ToE).

Grand unification epoch

In physical cosmology, assuming that nature is described by a Grand Unified Theory, the grand unification epoch was the period in the evolution of the early universe following the Planck epoch, starting at about 10−43 seconds after the Big Bang, in which the temperature of the universe was comparable to the characteristic temperatures of grand unified theories. If the grand unification energy is taken to be 1015 GeV, this corresponds to temperatures higher than 1027 K. During this period, three of the four fundamental interactions—electromagnetism, the strong interaction, and the weak interaction—were unified as the electronuclear force. Gravity had separated from the electronuclear force at the end of the Planck era. During the grand unification epoch, physical characteristics such as mass, charge, flavour and colour charge were meaningless.

The grand unification epoch ended at approximately 10−36 seconds after the Big Bang. At this point several key events took place. The strong force separated from the other fundamental forces.

It is possible that some part of this decay process violated the conservation of baryon number and gave rise to a small excess of matter over antimatter (see baryogenesis). This phase transition is also thought to have triggered the process of cosmic inflation that dominated the development of the universe during the following inflationary epoch.

History of subatomic physics

The idea that matter consists of smaller particles and that there exists a limited number of sorts of primary, smallest particles in nature has existed in natural philosophy at least since the 6th century BC. Such ideas gained physical credibility beginning in the 19th century, but the concept of "elementary particle" underwent some changes in its meaning: notably, modern physics no longer deems elementary particles indestructible. Even elementary particles can decay or collide destructively; they can cease to exist and create (other) particles in result.

Increasingly small particles have been discovered and researched: they include molecules, which are constructed of atoms, that in turn consist of subatomic particles, namely atomic nuclei and electrons. Many more types of subatomic particles have been found. Most such particles (but not electrons) were eventually found to be composed of even smaller particles such as quarks. Particle physics studies these smallest particles and their behaviour under high energies, whereas nuclear physics studies atomic nuclei and their (immediate) constituents: protons and neutrons.

James Cronin

James Watson Cronin (September 29, 1931 – August 25, 2016) was an American particle physicist.Cronin was born in Chicago, Illinois, and attended Southern Methodist University in Dallas, Texas. He and co-researcher Val Logsdon Fitch were awarded the 1980 Nobel Prize in Physics for a 1964 experiment that proved that certain subatomic reactions do not adhere to fundamental symmetry principles. Specifically, they proved, by examining the decay of kaons, that a reaction run in reverse does not merely retrace the path of the original reaction, which showed that the interactions of subatomic particles are not invariant under time reversal. Thus the phenomenon of CP violation was discovered.Cronin received the Ernest Orlando Lawrence Award in 1976 for major experimental contributions to particle physics including fundamental work on weak interactions culminating in the discovery of asymmetry under time reversal. In 1999, he was awarded the National Medal of Science.Cronin was Professor Emeritus at the University of Chicago and a spokesperson emeritus for the Auger project. He was a member of the Board of Sponsors of the Bulletin of the Atomic Scientists.

Lepton

In particle physics, a lepton is an elementary particle of half-integer spin (spin ​1⁄2) that does not undergo strong interactions. Two main classes of leptons exist: charged leptons (also known as the electron-like leptons), and neutral leptons (better known as neutrinos). Charged leptons can combine with other particles to form various composite particles such as atoms and positronium, while neutrinos rarely interact with anything, and are consequently rarely observed. The best known of all leptons is the electron.

There are six types of leptons, known as flavours, grouped in three generations. The first-generation leptons, also called electronic leptons, comprise the electron (e−) and the electron neutrino (νe); the second are the muonic leptons, comprising the muon (μ−) and the muon neutrino (νμ); and the third are the tauonic leptons, comprising the tau (τ−) and the tau neutrino (ντ). Electrons have the least mass of all the charged leptons. The heavier muons and taus will rapidly change into electrons and neutrinos through a process of particle decay: the transformation from a higher mass state to a lower mass state. Thus electrons are stable and the most common charged lepton in the universe, whereas muons and taus can only be produced in high energy collisions (such as those involving cosmic rays and those carried out in particle accelerators).

Leptons have various intrinsic properties, including electric charge, spin, and mass. Unlike quarks however, leptons are not subject to the strong interaction, but they are subject to the other three fundamental interactions: gravitation, the weak interaction, and to electromagnetism, of which the latter is proportional to charge, and is thus zero for the electrically neutral neutrinos.

For every lepton flavor there is a corresponding type of antiparticle, known as an antilepton, that differs from the lepton only in that some of its properties have equal magnitude but opposite sign. According to certain theories, neutrinos may be their own antiparticle. It is not currently known whether this is the case.

The first charged lepton, the electron, was theorized in the mid-19th century by several scientists and was discovered in 1897 by J. J. Thomson. The next lepton to be observed was the muon, discovered by Carl D. Anderson in 1936, which was classified as a meson at the time. After investigation, it was realized that the muon did not have the expected properties of a meson, but rather behaved like an electron, only with higher mass. It took until 1947 for the concept of "leptons" as a family of particle to be proposed. The first neutrino, the electron neutrino, was proposed by Wolfgang Pauli in 1930 to explain certain characteristics of beta decay. It was first observed in the Cowan–Reines neutrino experiment conducted by Clyde Cowan and Frederick Reines in 1956. The muon neutrino was discovered in 1962 by Leon M. Lederman, Melvin Schwartz, and Jack Steinberger, and the tau discovered between 1974 and 1977 by Martin Lewis Perl and his colleagues from the Stanford Linear Accelerator Center and Lawrence Berkeley National Laboratory. The tau neutrino remained elusive until July 2000, when the DONUT collaboration from Fermilab announced its discovery.Leptons are an important part of the Standard Model. Electrons are one of the components of atoms, alongside protons and neutrons. Exotic atoms with muons and taus instead of electrons can also be synthesized, as well as lepton–antilepton particles such as positronium.

Nicola Cabibbo

Nicola Cabibbo (10 April 1935 – 16 August 2010) was an Italian physicist, best known for his work on the weak interaction.

Parity (physics)

In quantum mechanics, a parity transformation (also called parity inversion) is the flip in the sign of one spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection):

It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions.

A matrix representation of P (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotation, which has a determinant equal to 1. In a two-dimensional plane, a simultaneous flip of all coordinates in sign is not a parity transformation; it is the same as a 180°-rotation.

In quantum mechanics, wave functions which are unchanged by a parity transformation are described as even functions, while those which change sign under a parity transformation are odd functions.

Quark

A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. Due to a phenomenon known as color confinement, quarks are never directly observed or found in isolation; they can be found only within hadrons, which include baryons (such as protons and neutrons) and mesons. For this reason, much of what is known about quarks has been drawn from observations of hadrons.

Quarks have various intrinsic properties, including electric charge, mass, color charge, and spin. They are the only elementary particles in the Standard Model of particle physics to experience all four fundamental interactions, also known as fundamental forces (electromagnetism, gravitation, strong interaction, and weak interaction), as well as the only known particles whose electric charges are not integer multiples of the elementary charge.

There are six types, known as flavors, of quarks: up, down, strange, charm, bottom, and top. Up and down quarks have the lowest masses of all quarks. The heavier quarks rapidly change into up and down quarks through a process of particle decay: the transformation from a higher mass state to a lower mass state. Because of this, up and down quarks are generally stable and the most common in the universe, whereas strange, charm, bottom, and top quarks can only be produced in high energy collisions (such as those involving cosmic rays and in particle accelerators). For every quark flavor there is a corresponding type of antiparticle, known as an antiquark, that differs from the quark only in that some of its properties (such as the electric charge) have equal magnitude but opposite sign.

The quark model was independently proposed by physicists Murray Gell-Mann and George Zweig in 1964. Quarks were introduced as parts of an ordering scheme for hadrons, and there was little evidence for their physical existence until deep inelastic scattering experiments at the Stanford Linear Accelerator Center in 1968. Accelerator experiments have provided evidence for all six flavors. The top quark, first observed at Fermilab in 1995, was the last to be discovered.

Quark epoch

In physical cosmology the Quark epoch was the period in the evolution of the early universe when the fundamental interactions of gravitation, electromagnetism, the strong interaction and the weak interaction had taken their present forms, but the temperature of the universe was still too high to allow quarks to bind together to form hadrons. The quark epoch began approximately 10−12 seconds after the Big Bang, when the preceding electroweak epoch ended as the electroweak interaction separated into the weak interaction and electromagnetism. During the quark epoch the universe was filled with a dense, hot quark–gluon plasma, containing quarks, leptons and their antiparticles. Collisions between particles were too energetic to allow quarks to combine into mesons or baryons. The quark epoch ended when the universe was about 10−6 seconds old, when the average energy of particle interactions had fallen below the binding energy of hadrons. The following period, when quarks became confined within hadrons, is known as the hadron epoch.

Strong interaction

In particle physics, the strong interaction is the mechanism responsible for the strong nuclear force (also called the strong force, nuclear strong force, or colour force), and is one of the four known fundamental interactions, with the others being electromagnetism, the weak interaction, and gravitation. At the range of 10−15 m (1 femtometer), the strong force is approximately 137 times as strong as electromagnetism, a million times as strong as the weak interaction, and 1038 times as strong as gravitation. The strong nuclear force holds most ordinary matter together because it confines quarks into hadron particles such as the proton and neutron. In addition, the strong force binds neutrons and protons to create atomic nuclei. Most of the mass of a common proton or neutron is the result of the strong force field energy; the individual quarks provide only about 1% of the mass of a proton.

The strong interaction is observable at two ranges and mediated by two force carriers. On a larger scale (about 1 to 3 fm), it is the force (carried by mesons) that binds protons and neutrons (nucleons) together to form the nucleus of an atom. On the smaller scale (less than about 0.8 fm, the radius of a nucleon), it is the force (carried by gluons) that holds quarks together to form protons, neutrons, and other hadron particles. In the latter context, it is often known as the color force. The strong force inherently has such a high strength that hadrons bound by the strong force can produce new massive particles. Thus, if hadrons are struck by high-energy particles, they give rise to new hadrons instead of emitting freely moving radiation (gluons). This property of the strong force is called color confinement, and it prevents the free "emission" of the strong force: instead, in practice, jets of massive particles are produced.

In the context of atomic nuclei, the same strong interaction force (that binds quarks within a nucleon) also binds protons and neutrons together to form a nucleus. In this capacity it is called the nuclear force (or residual strong force). So the residuum from the strong interaction within protons and neutrons also binds nuclei together. As such, the residual strong interaction obeys a quite different distance-dependent behavior between nucleons, from when it is acting to bind quarks within nucleons. Differences in the binding energy of the nuclear force between different nuclei power nuclear fusion and nuclear fission. Nuclear fusion accounts for most energy production in the Sun and other stars. Nuclear fission allows for decay of radioactive elements and isotopes, although it is often mediated by the weak interaction. Artificially, the energy associated with the nuclear force is partially released in nuclear power and nuclear weapons, both in uranium or plutonium-based fission weapons and in fusion weapons like the hydrogen bomb.The strong interaction is mediated by the exchange of massless particles called gluons that act between quarks, antiquarks, and other gluons. Gluons are thought to interact with quarks and other gluons by way of a type of charge called color charge. Color charge is analogous to electromagnetic charge, but it comes in three types (±red, ±green, ±blue) rather than one, which results in a different type of force, with different rules of behavior. These rules are detailed in the theory of quantum chromodynamics (QCD), which is the theory of quark-gluon interactions.

WITCH experiment

WITCH (standing for "Weak Interaction Trap for Charged particles"), or experiment IS433, is a double Penning trap experiment to measure the recoil energy of decaying nuclei. A spectrometer in combination with a position-sensitive microchannel plate detector is used to count ions (with the MCP) while scanning their energy (using the spectrometer). The experiment is located at the ISOLDE Radioactive Ion Beam Facility in CERN. The beam from ISOLDE is bunched by REXTRAP after which it is transferred to the WITCH set-up.

W and Z bosons

The W and Z bosons are together known as the weak or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are W+, W−, and Z. The W bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The Z boson is electrically neutral and is its own antiparticle. The three particles have a spin of 1. The W bosons have a magnetic moment, but the Z has none. All three of these particles are very short-lived, with a half-life of about 3×10−25 s. Their experimental discovery was a triumph for what is now known as the Standard Model of particle physics.

The W bosons are named after the weak force. The physicist Steven Weinberg named the additional particle the "Z particle", and later gave the explanation that it was the last additional particle needed by the model. The W bosons had already been named, and the Z bosons have zero electric charge.The two W bosons are verified mediators of neutrino absorption and emission. During these processes, the W boson charge induces electron or positron emission or absorption, thus causing nuclear transmutation. The Z boson is not involved in the absorption or emission of electrons and positrons.

The Z boson mediates the transfer of momentum, spin and energy when neutrinos scatter elastically from matter (a process which conserves charge). Such behavior is almost as common as inelastic neutrino interactions and may be observed in bubble chambers upon irradiation with neutrino beams. Whenever an electron is observed as a new free particle suddenly moving with kinetic energy, it is inferred to be a result of a neutrino interacting directly with the electron, since this behavior happens more often when the neutrino beam is present. In this process, the neutrino simply strikes the electron and then scatters away from it, transferring some of the neutrino's momentum to the electron.

Because neutrinos are neither affected by the strong force nor the electromagnetic force, and because the gravitational force between subatomic particles is negligible, such an interaction can only happen via the weak force. Since such an electron is not created from a nucleon, and is unchanged except for the new force impulse imparted by the neutrino, this weak force interaction between the neutrino and the electron must be mediated by an electromagnetically neutral, weak-force boson particle. Thus, this interaction requires a Z boson.

Weak isospin

In particle physics, weak isospin is a quantum number relating to the weak interaction, and parallels the idea of isospin under the strong interaction. Weak isospin is usually given the symbol T or I with the third component written as , , or . It can be understood as the eigenvalue of a charge operator.

The weak isospin conservation law relates the conservation of ; all weak interactions must preserve . It is also conserved by the electromagnetic, and strong interactions. However, one of the interactions is with the Higgs field. Since the Higgs field vacuum expectation value is nonzero, particles interact with this field all the time even in vacuum. This changes their weak isospin (and weak hypercharge). Only a specific combination of them, (electric charge), is conserved. is more important than T and often the term "weak isospin" refers to the "3rd component of weak isospin".

Wu experiment

The Wu experiment was a nuclear physics experiment conducted in 1956 by the Chinese American physicist Chien-Shiung Wu in collaboration with the Low Temperature Group of the US National Bureau of Standards. The experiment's purpose was to establish whether or not conservation of parity (P-conservation), which was previously established in the electromagnetic and strong interactions, also applied to weak interactions. If P-conservation were true, a mirrored version of the world (where left is right and right is left) would behave as the mirror image of the current world. If P-conservation were violated, then it would be possible to distinguish between a mirrored version of the world and the mirror image of the current world.

The experiment established that conservation of parity was violated (P-violation) by the weak interaction. This result was not expected by the physics community, which had previously regarded parity as a conserved quantity. Tsung-Dao Lee and Chen-Ning Yang, the theoretical physicists who originated the idea of parity nonconservation and proposed the experiment, received the 1957 Nobel Prize in physics for this result. Chien-Shiung Wu’s role in the discovery was mentioned in the Nobel prize acceptance speech, but was not honored until 1978, when she was awarded the first Wolf Prize.

Physical forces
Radiations
Hypothetical forces
Background
Constituents
Beyond the
Standard Model
Experiments

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.