Waves and shallow water

When waves travel into areas of shallow water, they begin to be affected by the ocean bottom. The free orbital motion of the water is disrupted, and water particles in orbital motion no longer return to their original position. As the water becomes shallower, the swell becomes higher and steeper, ultimately assuming the familiar sharp-crested wave shape. After the wave breaks, it becomes a wave of translation and erosion of the ocean bottom intensifies.

Shallow water wave

See also

External links

Bahama Banks

The Bahama Banks are the submerged carbonate platforms that make up much of the Bahama Archipelago. The term is usually applied in referring to either the Great Bahama Bank around Andros Island, or the Little Bahama Bank of Grand Bahama Island and Great Abaco, which are the largest of the platforms, and the Cay Sal Bank north of Cuba. The islands of these banks are politically part of the Bahamas. Other banks are the three banks of the Turks and Caicos Islands, namely the Caicos Bank of the Caicos Islands, the bank of the Turks Islands, and wholly submerged Mouchoir Bank. Further southeast are the equally wholly submerged Silver Bank and Navidad Bank north of the Dominican Republic.

Boussinesq approximation (water waves)

In fluid dynamics, the Boussinesq approximation for water waves is an approximation valid for weakly non-linear and fairly long waves. The approximation is named after Joseph Boussinesq, who first derived them in response to the observation by John Scott Russell of the wave of translation (also known as solitary wave or soliton). The 1872 paper of Boussinesq introduces the equations now known as the Boussinesq equations.The Boussinesq approximation for water waves takes into account the vertical structure of the horizontal and vertical flow velocity. This results in non-linear partial differential equations, called Boussinesq-type equations, which incorporate frequency dispersion (as opposite to the shallow water equations, which are not frequency-dispersive). In coastal engineering, Boussinesq-type equations are frequently used in computer models for the simulation of water waves in shallow seas and harbours.

While the Boussinesq approximation is applicable to fairly long waves – that is, when the wavelength is large compared to the water depth – the Stokes expansion is more appropriate for short waves (when the wavelength is of the same order as the water depth, or shorter).

Breaking wave

In fluid dynamics, a breaking wave is a wave whose amplitude reaches a critical level at which some process can suddenly start to occur that causes large amounts of wave energy to be transformed into turbulent kinetic energy. At this point, simple physical models that describe wave dynamics often become invalid, particularly those that assume linear behaviour.

The most generally familiar sort of breaking wave is the breaking of water surface waves on a coastline. Wave breaking generally occurs where the amplitude reaches the point that the crest of the wave actually overturns—the types of breaking water surface waves are discussed in more detail below. Certain other effects in fluid dynamics have also been termed "breaking waves," partly by analogy with water surface waves. In meteorology, atmospheric gravity waves are said to break when the wave produces regions where the potential temperature decreases with height, leading to energy dissipation through convective instability; likewise Rossby waves are said to break when the potential vorticity gradient is overturned. Wave breaking also occurs in plasmas, when the particle velocities exceed the wave's phase speed.

Carbonate platform

A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms (usually microbes) which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha (during the Cambrian) or extinct cnidaria (tabulata and rugosa) were important reef builders.

Index of physics articles (W)

The index of physics articles is split into multiple pages due to its size.

To navigate by individual letter use the table of contents below.

Index of wave articles

This is a list of Wave topics.

Indiana Dunes National Park

Indiana Dunes National Park is a United States National Park located in Northwestern Indiana, managed by the National Park Service. It was authorized by Congress in 1966 as the Indiana Dunes National Lakeshore, the name by which it was known until it was designated the nation's newest and 61st national park on February 15, 2019. The park runs for nearly 25 miles (40 km) along the southern shore of Lake Michigan; it contains approximately 15,000 acres (6,100 ha). Its visitors center is in Porter, Indiana. Located in the park are sand dune, wetland, prairie, river, and forest ecosystems.

Indiana Dunes National Park has acquired about 95% of the property within the authorized boundaries. Several of its holdings are non-contiguous and do not include the adjacent 2,182-acre (883 ha) Indiana Dunes State Park (1925), which is owned, managed, and protected by the state of Indiana. The park is divided into 15 parcels of various acreage. Along the lakefront, the eastern area is roughly the lake shore south to U.S. 12 or U.S. 20 between Michigan City, Indiana, on the east and the ArcelorMittal steel plant on the west. A small extension, south of the steel mill continues west along Salt Creek to Indiana 249. The western area is roughly the shoreline south to U.S. 12 between the Burns Ditch west to Broadway in downtown Gary, Indiana. In addition, there are several outlying areas, including; Pinhook Bog, in LaPorte County to the east. The Heron Rookery in Porter County, the center of the park, and the Calumet Prairie State Nature Preserve and the Hobart Prairie Grove, both in Lake County, the western end of the park. Also within the National Park is the Hoosier Prairie State Nature Preserve, managed by the Indiana Department of Natural Resources.

List of submarine volcanoes

A list of active and extinct submarine volcanoes and seamounts located under the world's oceans. There are estimated to be 40,000 to 55,000 seamounts in the global oceans. Almost all are not well-mapped and many may not have been identified at all. Most are unnamed and unexplored. This list is therefore confined to seamounts that are notable enough to have been named and/or explored.

Oceanic plateau

An oceanic or submarine plateau is a large, relatively flat elevation that is higher than the surrounding relief with one or more relatively steep sides.There are 184 oceanic plateaus covering an area of 18,486,600 km2 (7,137,700 sq mi), or about 5.11% of the oceans. The South Pacific region around Australia and New Zealand contains the greatest number of oceanic plateaus (see map).

Oceanic plateaus produced by large igneous provinces are often associated with hotspots, mantle plumes, and volcanic islands — such as Iceland, Hawaii, Cape Verde, and Kerguelen. The three largest plateaus, the Caribbean, Ontong Java, and Mid-Pacific Mountains, are located on thermal swells. Other oceanic plateaus, however, are made of rifted continental crust, for example Falkland Plateau, Lord Howe Rise, and parts of Kerguelen, Seychelles, and Arctic ridges.

Plateaus formed by large igneous provinces were formed by the equivalent of continental flood basalts such as the Deccan Traps in India and the Snake River Plain in the United States.

In contrast to continental flood basalts, most igneous oceanic plateaus erupt through young and thin (6–7 km (3.7–4.3 mi)) mafic or ultra-mafic crust and are therefore uncontaminated by felsic crust and representative for their mantle sources.

These plateaus often rise 2–3 km (1.2–1.9 mi) above the surrounding ocean floor and are more buoyant than oceanic crust. They therefore tend to withstand subduction, more-so when thick and when reaching subduction zones shortly after their formations. As a consequence, they tend to "dock" to continental margins and be preserved as accreted terranes. Such terranes are often better preserved than the exposed parts of continental flood basalts and are therefore a better record of large-scale volcanic eruptions throughout Earth's history. This "docking" also means that oceanic plateaus are important contributors to the growth of continental crust. Their formations often had a dramatic impact on global climate, such as the most recent plateaus formed, the three, large, Cretaceous oceanic plateaus in the Pacific and Indian Ocean: Ontong Java, Kerguelen, and Caribbean.

Outline of oceanography

The following outline is provided as an overview of and introduction to Oceanography.

Outline of underwater diving

The following outline is provided as an overview of and topical guide to underwater diving:

Underwater diving – as a human activity, is the practice of descending below the water's surface to interact with the environment.

Physical oceanography

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Physical oceanography is one of several sub-domains into which oceanography is divided. Others include biological, chemical and geological oceanography.

Physical oceanography may be subdivided into descriptive and dynamical physical oceanography.Descriptive physical oceanography seeks to research the ocean through observations and complex numerical models, which describe the fluid motions as precisely as possible.

Dynamical physical oceanography focuses primarily upon the processes that govern the motion of fluids with emphasis upon theoretical research and numerical models. These are part of the large field of Geophysical Fluid Dynamics (GFD) that is shared together with meteorology. GFD is a sub field of Fluid dynamics describing flows occurring on spatial and temporal scales that are greatly influenced by the Coriolis force.

Shallow water

Shallow water may refer to:

Shallow water blackout

Waves and shallow water

Shallow water equations

Boussinesq equations (water waves)

Shallow Water, Kansas, unincorporated community, United States

Shallow Water (album)

Undersea mountain range

Undersea mountain ranges are mountain ranges that are mostly or entirely underwater, and specifically under the surface of an ocean. If originated from current tectonic forces, they are often referred to as a mid-ocean ridge. In contrast, if formed by past above-water volcanism, they are known as a seamount chain. The largest and best known undersea mountain range is a mid-ocean ridge, the Mid-Atlantic Ridge. It has been observed that, "similar to those on land, the undersea mountain ranges are the loci of frequent volcanic and earthquake activity".

Upper shoreface

Upper Shoreface refers to the portion of the seafloor that is shallow enough to be agitated by everyday wave action, the wave base. Below that is the lower shoreface.

Wave base

The wave base, in physical oceanography, is the maximum depth at which a water wave's passage causes significant water motion. For water depths deeper than the wave base, bottom sediments and the seafloor are no longer stirred by the wave motion above.

Wave shoaling

In fluid dynamics, wave shoaling is the effect by which surface waves entering shallower water change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.

In shallow water and parallel depth contours, non-breaking waves will increase in wave height as the wave packet enters shallower water. This is particularly evident for tsunamis as they wax in height when approaching a coastline, with devastating results.

Wind wave

In fluid dynamics, wind waves, or wind-generated waves, are water surface waves that occur on the free surface of the oceans and other bodies (like lakes, rivers, canals, puddles or ponds). They result from the wind blowing over an area of fluid surface. Waves in the oceans can travel thousands of miles before reaching land. Wind waves on Earth range in size from small ripples, to waves over 100 ft (30 m) high.When directly generated and affected by local waters, a wind wave system is called a wind sea. After the wind ceases to blow, wind waves are called swells. More generally, a swell consists of wind-generated waves that are not significantly affected by the local wind at that time. They have been generated elsewhere or some time ago. Wind waves in the ocean are called ocean surface waves.

Wind waves have a certain amount of randomness: subsequent waves differ in height, duration, and shape with limited predictability. They can be described as a stochastic process, in combination with the physics governing their generation, growth, propagation, and decay—as well as governing the interdependence between flow quantities such as: the water surface movements, flow velocities and water pressure. The key statistics of wind waves (both seas and swells) in evolving sea states can be predicted with wind wave models.

Although waves are usually considered in the water seas of Earth, the hydrocarbon seas of Titan may also have wind-driven waves.

Ocean zones
Sea level

Diving equipment
Diving safety:
risks and


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.