# Wave setup

In fluid dynamics, wave setup is the increase in mean water level due to the presence of breaking waves. Similarly, wave setdown is a wave-induced decrease of the mean water level before the waves break (during the shoaling process). For short, the whole phenomenon is often denoted as wave setup, including both increase and decrease of mean elevation. This setup is primarily present in and near the coastal surf zone. Besides a spatial variation in the (mean) wave setup, also a variation in time may be present – known as surf beat – causing infragravity wave radiation.

Wave setup can be mathematically modeled by considering the variation in radiation stress (Longuet-Higgins & Stewart 1962). Radiation stress is the tensor of excess horizontal-momentum fluxes due to the presence of the waves.

## In and near the coastal surf zone

As a progressive wave approaches shore and the water depth decreases, the wave height increases due to wave shoaling. As a result, there is additional wave-induced flux of horizontal momentum. The horizontal momentum equations of the mean flow requires this additional wave-induced flux to be balanced: this causes a decrease in the mean water level before the waves break, called a "setdown".

After the waves break, the wave energy flux is no longer constant, but decreasing due to energy dissipation. The radiation stress therefore decreases after the break point, causing a free surface level increase to balance: wave setup. Both of the above descriptions are specifically for beaches with mild bed slope.

Wave setup is particularly of concern during storm events, when the effects of big waves generated by wind from the storm are able to increase the mean sea level (by wave setup), enhancing the risks of damage to coastal infrastructure.

## References

• Longuet-Higgins, M. S.; Stewart, R. W. (1962), "Radiation stress and mass transport in gravity waves, with application to 'surf beats'", Journal of Fluid Mechanics, 13 (4): 481–504, Bibcode:1962JFM....13..481L, doi:10.1017/S0022112062000877
• Bowen, A. J.; Inman, D. L.; Simmons, V. P. (1968), "Wave 'Set-Down' and Set-Up", Journal of Geophysical Research, 73 (8): 2569–2577, Bibcode:1968JGR....73.2569B, doi:10.1029/JB073i008p02569
• Dean, Robert G.; Walton, Todd L. (2009), "Wave setup", in Kim, Young C. (ed.), Handbook of coastal and ocean engineering, World Scientific, pp. 1–23, ISBN 978-981-281-929-1
Bahama Banks

The Bahama Banks are the submerged carbonate platforms that make up much of the Bahama Archipelago. The term is usually applied in referring to either the Great Bahama Bank around Andros Island, or the Little Bahama Bank of Grand Bahama Island and Great Abaco, which are the largest of the platforms, and the Cay Sal Bank north of Cuba. The islands of these banks are politically part of the Bahamas. Other banks are the three banks of the Turks and Caicos Islands, namely the Caicos Bank of the Caicos Islands, the bank of the Turks Islands, and wholly submerged Mouchoir Bank. Further southeast are the equally wholly submerged Silver Bank and Navidad Bank north of the Dominican Republic.

Carbonate platform

A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms (usually microbes) which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha (during the Cambrian) or extinct cnidaria (tabulata and rugosa) were important reef builders.

Chennai Port

Chennai Port, formerly known as Madras Port, is the second largest container port of India, behind Mumbai's Nhava Sheva. The port is the largest one in the Bay of Bengal. It is the third-oldest port among the 13 major ports of India with official port operations beginning in 1881, although maritime trade started much earlier in 1639 on the undeveloped shore. It is an artificial and all-weather port with wet docks. Once a major travel port, it became a major container port in the post-Independence era. The port remains a primary reason for the economic growth of Tamil Nadu, especially for the manufacturing boom in South India, and has contributed greatly to the development of the city. It is due of the existence of the port that the city of Chennai eventually became known as the Gateway of South India. The port has become a hub port for containers, cars and project cargo in the east coast of India. From handling a meagre volume of cargo in the early years of its existence, consisting chiefly of imports of oil and motors and the export of groundnuts, granite and ores, the port has started handling more than 60 million tonnes of cargo in recent years. In 2008, the port's container traffic crossed 1 million twenty-foot equivalent units (TEUs). It is currently ranked the 86th largest container port in the world and there are plans to expand the capacity to about 140 million tonnes per annum. It is an ISO 14001:2004 and ISPS-certified port and has become a main line port having direct connectivity to more than 50 ports around the world.

Coastal flooding

Coastal flooding occurs when normally dry, low-lying land is flooded by seawater. The extent of coastal flooding is a function of the elevation inland flood waters penetrate which is controlled by the topography of the coastal land exposed to flooding. The seawater can flood the land via from several different paths:

Direct flooding — where the sea height exceeds the elevation of the land, often where waves have not built up a natural barrier such as a dune system

Overtopping of a barrier — the barrier may be natural or human engineered and overtopping occurs due to swell conditions during storm or high tides often on open stretches of the coast. The height of the waves exceeds the height of the barrier and water flows over the top of the barrier to flood the land behind it. Overtopping can result in high velocity flows that can erode significant amounts of the land surface which can undermine defense structures.

Breaching of a barrier — again the barrier may be natural (sand dune) or human engineered (sea wall), and breaching occurs on open coasts exposed to large waves. Breaching is where the barrier is broken down or destroyed by waves allowing the seawater to extend inland and flood the areas.Coastal flooding is largely a natural event, however human influence on the coastal environment can exacerbate coastal flooding. Extraction of water from groundwater reservoirs in the coastal zone can enhance subsidence of the land increasing the risk of flooding. Engineered protection structures along the coast such as sea walls alter the natural processes of the beach, often leading to erosion on adjacent stretches of the coast which also increases the risk of flooding.

Index of physics articles (W)

The index of physics articles is split into multiple pages due to its size.

List of submarine volcanoes

A list of active and extinct submarine volcanoes and seamounts located under the world's oceans. There are estimated to be 40,000 to 55,000 seamounts in the global oceans. Almost all are not well-mapped and many may not have been identified at all. Most are unnamed and unexplored. This list is therefore confined to seamounts that are notable enough to have been named and/or explored.

Oceanic plateau

An oceanic or submarine plateau is a large, relatively flat elevation that is higher than the surrounding relief with one or more relatively steep sides.There are 184 oceanic plateaus covering an area of 18,486,600 km2 (7,137,700 sq mi), or about 5.11% of the oceans. The South Pacific region around Australia and New Zealand contains the greatest number of oceanic plateaus (see map).

Oceanic plateaus produced by large igneous provinces are often associated with hotspots, mantle plumes, and volcanic islands — such as Iceland, Hawaii, Cape Verde, and Kerguelen. The three largest plateaus, the Caribbean, Ontong Java, and Mid-Pacific Mountains, are located on thermal swells. Other oceanic plateaus, however, are made of rifted continental crust, for example Falkland Plateau, Lord Howe Rise, and parts of Kerguelen, Seychelles, and Arctic ridges.

Plateaus formed by large igneous provinces were formed by the equivalent of continental flood basalts such as the Deccan Traps in India and the Snake River Plain in the United States.

In contrast to continental flood basalts, most igneous oceanic plateaus erupt through young and thin (6–7 km (3.7–4.3 mi)) mafic or ultra-mafic crust and are therefore uncontaminated by felsic crust and representative for their mantle sources.

These plateaus often rise 2–3 km (1.2–1.9 mi) above the surrounding ocean floor and are more buoyant than oceanic crust. They therefore tend to withstand subduction, more-so when thick and when reaching subduction zones shortly after their formations. As a consequence, they tend to "dock" to continental margins and be preserved as accreted terranes. Such terranes are often better preserved than the exposed parts of continental flood basalts and are therefore a better record of large-scale volcanic eruptions throughout Earth's history. This "docking" also means that oceanic plateaus are important contributors to the growth of continental crust. Their formations often had a dramatic impact on global climate, such as the most recent plateaus formed, the three, large, Cretaceous oceanic plateaus in the Pacific and Indian Ocean: Ontong Java, Kerguelen, and Caribbean.

Outline of oceanography

The following outline is provided as an overview of and introduction to Oceanography.

Physical oceanography

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Physical oceanography is one of several sub-domains into which oceanography is divided. Others include biological, chemical and geological oceanography.

Physical oceanography may be subdivided into descriptive and dynamical physical oceanography.Descriptive physical oceanography seeks to research the ocean through observations and complex numerical models, which describe the fluid motions as precisely as possible.

Dynamical physical oceanography focuses primarily upon the processes that govern the motion of fluids with emphasis upon theoretical research and numerical models. These are part of the large field of Geophysical Fluid Dynamics (GFD) that is shared together with meteorology. GFD is a sub field of Fluid dynamics describing flows occurring on spatial and temporal scales that are greatly influenced by the Coriolis force.

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

The radiation stress tensor describes the additional forcing due to the presence of the waves, which changes the mean depth-integrated horizontal momentum in the fluid layer. As a result, varying radiation stresses induce changes in the mean surface elevation (wave setup) and the mean flow (wave-induced currents).

For the mean energy density in the oscillatory part of the fluid motion, the radiation stress tensor is important for its dynamics, in case of an inhomogeneous mean-flow field.

The radiation stress tensor, as well as several of its implications on the physics of surface gravity waves and mean flows, were formulated in a series of papers by Longuet-Higgins and Stewart in 1960–1964.

Tropical cyclone

A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain or squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane (), typhoon (), tropical storm, cyclonic storm, tropical depression, and simply cyclone. A hurricane is a tropical cyclone that occurs in the Atlantic Ocean and northeastern Pacific Ocean, and a typhoon occurs in the northwestern Pacific Ocean; in the south Pacific or Indian Ocean, comparable storms are referred to simply as "tropical cyclones" or "severe cyclonic storms"."Tropical" refers to the geographical origin of these systems, which form almost exclusively over tropical seas. Most of these systems will form over very warm waters. Therefore, they intensify. "Cyclone" refers to their winds moving in a circle, whirling round their central clear eye, with their winds blowing counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. The opposite direction of circulation is due to the Coriolis effect. Tropical cyclones typically form over large bodies of relatively warm water. They derive their energy through the evaporation of water from the ocean surface, which ultimately recondenses into clouds and rain when moist air rises and cools to saturation. This energy source differs from that of mid-latitude cyclonic storms, such as nor'easters and European windstorms, which are fueled primarily by horizontal temperature contrasts. Tropical cyclones are typically between 100 and 2,000 km (62 and 1,243 mi) in diameter.

The strong rotating winds of a tropical cyclone are a result of the conservation of angular momentum imparted by the Earth's rotation as air flows inwards toward the axis of rotation. As a result, they rarely form within 5° of the equator. Tropical cyclones are almost unknown in the South Atlantic due to a consistently strong wind shear and a weak Intertropical Convergence Zone. Also, the African easterly jet and areas of atmospheric instability which give rise to cyclones in the Atlantic Ocean and Caribbean Sea, along with the Asian monsoon and Western Pacific Warm Pool, are features of the Northern Hemisphere and Australia.

Coastal regions are particularly vulnerable to the impact of a tropical cyclone, compared to inland regions. The primary energy source for these storms is warm ocean waters. These forms are therefore typically strongest when over or near water, and weaken quite rapidly over land. Coastal damage may be caused by strong winds and rain, high waves (due to winds), storm surges (due to wind and severe pressure changes), and the potential of spawning tornadoes. Tropical cyclones also draw in air from a large area—which can be a vast area for the most severe cyclones—and concentrate the precipitation of the water content in that air (made up from atmospheric moisture and moisture evaporated from water) into a much smaller area. This continual replacement of moisture-bearing air by new moisture-bearing air after its moisture has fallen as rain, which may cause extremely heavy rain and river flooding up to 40 kilometres (25 mi) from the coastline, far beyond the amount of water that the local atmosphere holds at any one time.

Though their effects on human populations are often devastating, tropical cyclones can relieve drought conditions. They also carry heat energy away from the tropics and transport it toward temperate latitudes, which may play an important role in modulating regional and global climate.

Undersea mountain range

Undersea mountain ranges are mountain ranges that are mostly or entirely underwater, and specifically under the surface of an ocean. If originated from current tectonic forces, they are often referred to as a mid-ocean ridge. In contrast, if formed by past above-water volcanism, they are known as a seamount chain. The largest and best known undersea mountain range is a mid-ocean ridge, the Mid-Atlantic Ridge. It has been observed that, "similar to those on land, the undersea mountain ranges are the loci of frequent volcanic and earthquake activity".

Wave base

The wave base, in physical oceanography, is the maximum depth at which a water wave's passage causes significant water motion. For water depths deeper than the wave base, bottom sediments and the seafloor are no longer stirred by the wave motion above.

Waves
Circulation
Tides
Landforms
Plate
tectonics
Ocean zones
Sea level
Acoustics
Satellites
Related

### Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.