Water column

A water column is a conceptual column of water from the surface of a sea, river or lake to the bottom sediment.[1] Descriptively, the deep sea water column is divided into five parts—pelagic zones (from Greek πέλαγος (pélagos), 'open sea')—from the surface to below the floor, as follows: epipelagic, from the surface to 200 meters below the surface; mesopelagic, from 200 to 1000 meters below the surface; bathypelagic, from 1000 to 4000 meters below the surface; abyssopelagic, from 4000 meters below the surface to the level sea floor; hadopelagic, depressions and crevices below the level sea floor.

The concept of water column is useful since many aquatic phenomena are explained by the incomplete vertical mixing of chemical, physical or biological parameters. For example, when studying the metabolism of benthic organisms, it is the specific bottom layer concentration of available chemicals in the water column that is meaningful, rather than the average value of those chemicals throughout the water column.

Water columns are used chiefly for environmental studies evaluating the stratification or mixing of the thermal or chemically stratified layers in a lake, stream or ocean: for example, by wind-induced currents. Some of the common parameters analyzed in the water column are pH, turbidity, temperature, hydrostatic pressure, salinity, total dissolved solids, various pesticides, pathogens and a wide variety of chemicals and biota.

The term water column is also commonly used in scuba diving to describe the vertical space through which divers ascend and descend.

Deep sea water column

See also


  1. ^ Munson, B.H., Axler, R., Hagley C., Host G., Merrick G., Richards C. (2004). "Glossary". Water on the Web. University of Minnesota-Duluth. Retrieved 27 May 2014.

External links


Benthos is the community of organisms that live on, in, or near the seabed, river, lake, or stream bottom, also known as the benthic zone. This community lives in or near marine or freshwater sedimentary environments, from tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths.

Many organisms adapted to deep-water pressure cannot survive in the upperparts of the water column. The pressure difference can be very significant (approximately one atmosphere for each 10 metres of water depth).Because light is absorbed before it can reach deep ocean-water, the energy source for deep benthic ecosystems is often organic matter from higher up in the water column that drifts down to the depths. This dead and decaying matter sustains the benthic food chain; most organisms in the benthic zone are scavengers or detritivores.

The term benthos, coined by Haeckel in 1891, comes from the Greek noun βένθος "depth of the sea". Benthos is used in freshwater biology to refer to organisms at the bottom of freshwater bodies of water, such as lakes, rivers, and streams. There is also a redundant synonym, benthon.


The genus Ceratium includes species of freshwater and marine dinoflagellates. Most species of Ceratium are unicellular organisms that are characterized by their armored plates, two flagella, and horns. Species of Ceratium are found worldwide and are of concern due to their blooms.

Demersal zone

The demersal zone is the part of the sea or ocean (or deep lake) consisting of the part of the water column near to (and significantly affected by) the seabed and the benthos. The demersal zone is just above the benthic zone and forms a layer of the larger profundal zone.

Being just above the ocean floor, the demersal zone is variable in depth and can be part of the photic zone where light can penetrate and photosynthetic organisms grow, or the aphotic zone, which begins between depths of roughly 200 and 1,000 m (700 and 3,300 ft) and extends to the ocean depths, where no light penetrates.


An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea.Estuaries form a transition zone between river environments and maritime environments. They are subject both to marine influences—such as tides, waves, and the influx of saline water—and to riverine influences—such as flows of fresh water and sediment. The mixing of seawater and fresh water provide high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world.Most existing estuaries formed during the Holocene epoch with the flooding of river-eroded or glacially scoured valleys when the sea level began to rise about 10,000–12,000 years ago. Estuaries are typically classified according to their geomorphological features or to water-circulation patterns. They can have many different names, such as bays, harbors, lagoons, inlets, or sounds, although some of these water bodies do not strictly meet the above definition of an estuary and may be fully saline.

Many estuaries suffer degradation from a variety of factors including: sedimentation from soil erosion from deforestation, overgrazing, and other poor farming practices; overfishing; drainage and filling of wetlands; eutrophication due to excessive nutrients from sewage and animal wastes; pollutants including heavy metals, polychlorinated biphenyls, radionuclides and hydrocarbons from sewage inputs; and diking or damming for flood control or water diversion.

Gelatinous zooplankton

Gelatinous zooplankton are fragile animals that live in the water column in the ocean. They have very delicate bodies that are easily damaged or destroyed. Gelatinous zooplankton are often transparent. All jellyfish are gelatinous zooplankton, but not all gelatinous zooplankton are jellyfish. The most commonly encountered organisms include ctenophores, medusae, salps, and Chaetognatha in coastal waters. However, almost all marine phyla, including Annelida, Mollusca and Arthropoda, contain gelatinous species, but many of those odd species live in the open ocean and the deep sea and are less available to the casual ocean observer. Gelatinous zooplankton have also been called "Gelata".


Holoplankton are organisms that are planktic (they live in the water column and cannot swim against a current) for their entire life cycle. Examples of holoplankton include some diatoms, radiolarians, some dinoflagellates, foraminifera, amphipods, krill, copepods, and salps, as well as some gastropod mollusk species. Holoplankton dwell in the pelagic zone as opposed to the benthic zone. Holoplankton include both phytoplankton and zooplankton and vary in size. The most common plankton are protists.

Hypoxia (environmental)

Hypoxia refers to low oxygen conditions. Normally, 20.9% of the gas in the atmosphere is oxygen. The partial pressure of oxygen in the atmosphere is 20.9% of the total barometric pressure. In water, oxygen levels are much lower, approximately 1%, and fluctuate locally depending on the presence of photosynthetic organisms and relative distance to the surface (if there is more oxygen in the air, it will diffuse across the partial pressure gradient).


Ichthyoplankton (from Greek: ἰχθύς, ikhthus, "fish"; and πλαγκτός, planktos, "drifter") are the eggs and larvae of fish. They are mostly found in the sunlit zone of the water column, less than 200 metres deep, which is sometimes called the epipelagic or photic zone. Ichthyoplankton are planktonic, meaning they cannot swim effectively under their own power, but must drift with the ocean currents. Fish eggs cannot swim at all, and are unambiguously planktonic. Early stage larvae swim poorly, but later stage larvae swim better and cease to be planktonic as they grow into juveniles. Fish larvae are part of the zooplankton that eat smaller plankton, while fish eggs carry their own food supply. Both eggs and larvae are themselves eaten by larger animals.Fish can produce high numbers of eggs which are often released into the open water column. Fish eggs typically have a diameter of about 1 millimetre (0.039 in). The newly hatched young of oviparous fish are called larvae. They are usually poorly formed, carry a large yolk sac (for nourishment) and are very different in appearance from juvenile and adult specimens. The larval period in oviparous fish is relatively short (usually only several weeks), and larvae rapidly grow and change appearance and structure (a process termed metamorphosis) to become juveniles. During this transition larvae must switch from their yolk sac to feeding on zooplankton prey, a process which depends on typically inadequate zooplankton density, starving many larvae.

Ichthyoplankton can be a useful indicator of the state and health of an aquatic ecosystem. For instance, most late stage larvae in ichthyoplankton have usually been preyed on, so ichthyoplankton tends to be dominated by eggs and early stage larvae. This means that when fish, such as anchovies and sardines, are spawning, ichthyoplankton samples can reflect their spawning output and provide an

index of relative population size for the fish. Increases or decreases in the number of adult fish stocks can be detected more rapidly and sensitively by monitoring the ichthyoplankton associated with them, compared to monitoring the adults themselves. It is also usually easier and more cost effective to sample trends in egg and larva populations than to sample trends in adult fish populations.

Lake ecosystem

A lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions.Lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. Lentic waters range from ponds to lakes to wetlands, and much of this article applies to lentic ecosystems in general. Lentic ecosystems can be compared with lotic ecosystems, which involve flowing terrestrial waters such as rivers and streams. Together, these two fields form the more general study area of freshwater or aquatic ecology.

Lentic systems are diverse, ranging from a small, temporary rainwater pool a few inches deep to Lake Baikal, which has a maximum depth of 1642 m. The general distinction between pools/ponds and lakes is vague, but Brown states that ponds and pools have their entire bottom surfaces exposed to light, while lakes do not. In addition, some lakes become seasonally stratified (discussed in more detail below.) Ponds and pools have two regions: the pelagic open water zone, and the benthic zone, which comprises the bottom and shore regions. Since lakes have deep bottom regions not exposed to light, these systems have an additional zone, the profundal. These three areas can have very different abiotic conditions and, hence, host species that are specifically adapted to live there.


Limnology ( lim-NOL-ə-jee; from Greek λίμνη, limne, "lake" and λόγος, logos, "knowledge"), is the study of inland aquatic ecosystems.

The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics and functions of inland waters (running and standing waters, fresh and saline, natural or man-made). This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. A more recent sub-discipline of limnology, termed landscape limnology, studies, manages, and seeks to conserve these ecosystems using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its watershed. Recently, the need to understand global inland waters as part of the Earth System created a sub-discipline called global limnology. This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global biogeochemical cycles.Limnology is closely related to aquatic ecology and hydrobiology, which study aquatic organisms and their interactions with the abiotic (non-living) environment. While limnology has substantial overlap with freshwater-focused disciplines (e.g., freshwater biology), it also includes the study of inland salt lakes.

List of wave power stations

The following page lists most power stations that run on wave power. Wave farms are classified into 8 types based on the technology used, such as Surface-following attenuator, Point absorber, Oscillating wave surge converter, Oscillating water column, Overtopping/Terminator, Submerged pressure differential, Bulge wave device, and Rotating mass.

Marine snow

In the deep ocean, marine snow is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone. Because of the role of export production in the ocean's biological pump, it is typically measured in units of carbon (e.g. mg C m−2 d−1).The term was first coined by the explorer William Beebe as he observed it from his bathysphere. As the origin of marine snow lies in activities within the productive photic zone, the prevalence of marine snow changes with seasonal fluctuations in photosynthetic activity and ocean currents. Marine snow can be an important food source for organisms living in the aphotic zone, particularly for organisms which live very deep in the water column.

Oreti River

The Oreti River is one of the main rivers of Southland, New Zealand, and is 170 kilometres (110 mi) long. The river has been identified as an Important Bird Area by BirdLife International because, for much of its length, it supports breeding colonies of black-billed gulls.The Oreti has its headwaters close to the Mavora Lakes between Lake Te Anau and Lake Wakatipu, and flows south across the Southland Plains to its outflow into Foveaux Strait at the southeastern end of Oreti Beach. En route, it runs through the towns of Lumsden and Winton, before passing through the city of Invercargill, close to the river's estuary.

For the final part of the river's length, around the city of Invercargill and the river's estuary just south of the city, it is known as the New River, a name occasionally encountered to refer to the whole river. It shares this estuary with several smaller rivers, most notably the Waihopai River.

The New River Estuary, which meets the end of the Oreti River before it reaches the sea, is in decline. Recent science reports show that regions of the upper estuary are under stress and showing eutrophication. There is excessive macroalgal growth including sediment quality decline and high concentrations of chlorophyll-a in the water column. Chlorophyll-a was used as an indicator of eutrophic conditions in the water column, and is a colour pigment present in many types of algae that can give an indication of how much algae is present in the water column.The Invercargill Rowing Club relocated to the river in 1958.

Pelagic zone

The pelagic zone consists of the water column of the open ocean, and can be further divided into regions by depth. The word "pelagic" is derived from Ancient Greek πέλαγος (pélagos), meaning 'open sea'. The pelagic zone can be thought of in terms of an imaginary cylinder or water column that goes from the surface of the sea almost to the bottom. Conditions differ deeper in the water column such that as pressure increases with depth, the temperature drops and less light penetrates. Depending on the depth, the water column, rather like the Earth's atmosphere, may be divided into different layers.

The pelagic zone occupies 1,330 million km3 (320 million mi3) with a mean depth of 3.68 km (2.29 mi) and maximum depth of 11 km (6.8 mi). Fish that live in the pelagic zone are called pelagic fish. Pelagic life decreases with increasing depth. It is affected by light intensity, pressure, temperature, salinity, the supply of dissolved oxygen and nutrients, and the submarine topography, which is called bathymetry. In deep water, the pelagic zone is sometimes called the open-ocean zone and can be contrasted with water that is near the coast or on the continental shelf. In other contexts, coastal water not near the bottom is still said to be in the pelagic zone.

The pelagic zone can be contrasted with the benthic and demersal zones at the bottom of the sea. The benthic zone is the ecological region at the very bottom of the sea. It includes the sediment surface and some subsurface layers. Marine organisms living in this zone, such as clams and crabs, are called benthos. The demersal zone is just above the benthic zone. It can be significantly affected by the seabed and the life that lives there. Fish that live in the demersal zone are called demersal fish, and can be divided into benthic fish, which are denser than water so they can rest on the bottom, and benthopelagic fish, which swim in the water column just above the bottom. Demersal fish are also known as bottom feeders and groundfish.

Photic zone

The photic zone, euphotic zone (Greek for "well lit": εὖ "well" + φῶς "light"), or sunlight (or sunlit) zone is the uppermost layer of water in a lake or ocean that is exposed to intense sunlight. It corresponds roughly to the layer above the compensation point, i.e. depth where the rate of carbon dioxide uptake, or equivalently, the rate of photosynthetic oxygen production, is equal to the rate of carbon dioxide production, equivalent to the rate of respiratory oxygen consumption, i.e. the depth where net carbon dioxide assimilation is zero.

It extends from the surface down to a depth where light intensity falls to one percent of that at the surface, called the euphotic depth. Accordingly, its thickness depends on the extent of light attenuation in the water column. Typical euphotic depths vary from only a few centimetres in highly turbid eutrophic lakes, to around 200 meters in the open ocean. It also varies with seasonal changes in turbidity.

Since the photic zone is where almost all of the photosynthesis occurs, the depth of the photic zone is generally proportional to the level of primary production that occurs in that area of the ocean. About 90% of all marine life lives in the photic zone. A small amount of primary production is generated deep in the abyssal zone around the hydrothermal vents which exist along some mid-oceanic ridges.

The zone which extends from the base of the euphotic zone to about 200 metres is sometimes called the disphotic zone. While there is some light, it is insufficient for photosynthesis, or at least insufficient for photosynthesis at a rate greater than respiration. The euphotic zone together with the disphotic zone coincides with the epipelagic zone. The bottommost zone, below the euphotic zone, is called the aphotic zone. Most deep ocean waters belong to this zone.

The transparency of the water, which determines the depth of the photic zone, is measured simply with a Secchi disk. It may also be measured with a photometer lowered into the water.

Squat lobster

Squat lobsters are dorsoventrally flattened crustaceans with long tails held curled beneath the cephalothorax. They are found in the two superfamilies Galatheoidea and Chirostyloidea, which form part of the decapod infraorder Anomura, alongside groups including the hermit crabs and mole crabs. They are distributed worldwide in the oceans, and occur from near the surface to deep sea hydrothermal vents, with one species occupying caves above sea level. More than 900 species have been described, in around 60 genera. Some species form dense aggregations, either on the sea floor or in the water column, and a small number are commercially fished.

Thin layers (oceanography)

Thin layers are congregations of phytoplankton and zooplankton in the water column which were discovered with advances in instrumentation and deployment technologies allowed samples at the temporal and spatial scales where patterns were revealed. Although they may extend for kilometers, thin layers are only a few tens of centimeters in vertical thickness. They have distinct physical, biological, chemical, optical and acoustical signatures. Thin layers of phytoplankton or zooplankton may contain densities of organisms ranging up to 1000 times those found just above, or below the structure.

These extraordinary concentrations of living material must have important implications for many aspects of marine ecology (e.g., phytoplankton growth dynamics, micro- and macrozooplankton grazing, behaviour, life histories, predation, harmful algal blooms), as well as for ocean optics and acoustics. Thin layers occur in a wide variety of ocean environments, including estuaries, fjords, bays, and the open ocean, and they are often associated with some form of vertical structure in the water column, such as a pycnocline, and in zones of reduced flow.

Water crane

A water crane is a device used for delivering a large volume of water into the tank or tender of a steam locomotive. The device is sometimes also called a water column in the United States. As a steam locomotive consumes large quantities of water, water cranes were a vital part of railway station equipment, often situated at the end of a platform, so that water could be refilled during a stop at the station.

Whitefish (fisheries term)

Whitefish or white fish is a fisheries term for several species of demersal fish with fins, particularly Atlantic cod (Gadus morhua), whiting (Merluccius bilinearis), haddock (Melanogrammus aeglefinus), hake (Urophycis), pollock (Pollachius), and others. Whitefish (Coregonidae) is also the name of several species of Atlantic freshwater fish.

Whitefish live on or near the seafloor, and can be contrasted with the oily or pelagic fish which live in the water column away from the seafloor. Unlike oily fish, whitefish contain oils only in their liver, rather than in their gut, and can therefore be gutted as soon as they are caught, on board the ship. Whitefish have dry and white flesh.

Whitefish can be divided into benthopelagic fish (round fish which live near the sea bed, such as cod and coley) and benthic fish (which live on the sea bed, such as flatfish like plaice).

Whitefish is sometimes eaten straight but is often used reconstituted for fishsticks, gefilte fish, lutefisk, surimi (imitation crabmeat), etc. For centuries it was preserved by drying as stockfish and clipfish and traded as a world commodity. It is commonly used as the fish in the classic British dish of fish and chips.

Ocean zones
Sea level

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.