Water clock

A water clock or clepsydra (Greek κλεψύδρα from κλέπτειν kleptein, 'to steal'; ὕδωρ hydor, 'water') is any timepiece by which time is measured by the regulated flow of liquid into (inflow type) or out from (outflow type) a vessel, and where the amount is then measured.

Water clocks are one of the oldest time-measuring instruments.[1] They were invented in ancient Egypt. The bowl-shaped outflow is the simplest form of a water clock and is known to have existed in Babylon and in Egypt around the 16th century BC. Other regions of the world, including India and China, also have early evidence of water clocks, but the earliest dates are less certain. Some authors, however, claim that water clocks appeared in China as early as 4000 BC.[2]

Some modern timepieces are called "water clocks" but work differently from the ancient ones. Their timekeeping is governed by a pendulum, but they use water for other purposes, such as providing the power needed to drive the clock by using a water wheel or something similar, or by having water in their displays.

The Greeks and Romans advanced water clock design to include the inflow clepsydra with an early feedback system, gearing, and escapement mechanism, which were connected to fanciful automata and resulted in improved accuracy. Further advances were made in Byzantium, Syria and Mesopotamia, where increasingly accurate water clocks incorporated complex segmental and epicyclic gearing, water wheels, and programmability, advances which eventually made their way to Europe. Independently, the Chinese developed their own advanced water clocks, incorporating gears, escapement mechanisms, and water wheels, passing their ideas on to Korea and Japan.

Some water clock designs were developed independently and some knowledge was transferred through the spread of trade. These early water clocks were calibrated with a sundial. While never reaching a level of accuracy comparable to today's standards of timekeeping, the water clock was the most accurate and commonly used timekeeping device for millennia, until it was replaced by more accurate pendulum clocks in 17th-century Europe.

A water clock uses a flow of water to measure time. If viscosity is neglected, the physical principle required to study such clocks is Torricelli's law. There are two types of water clocks: inflow and outflow. In an outflow water clock, a container is filled with water, and the water is drained slowly and evenly out of the container. This container has markings that are used to show the passage of time. As the water leaves the container, an observer can see where the water is level with the lines and tell how much time has passed. An inflow water clock works in basically the same way, except instead of flowing out of the container, the water is filling up the marked container. As the container fills, the observer can see where the water meets the lines and tell how much time has passed.

AGMA Clepsydre
A display of two outflow water clocks from the Ancient Agora Museum in Athens. The top is an original from the late 5th century BC. The bottom is a reconstruction of a clay original.
Using a Water clock for Goldbeating a Goldleaf in Mandalay (Myanmar).

Regional development


Clock Tower from Su Song's Book desmear
The water-powered mechanism of Su Song's astronomical clock tower, featuring a clepsydra tank, waterwheel, escapement mechanism, and chain drive to power an armillary sphere and 113 striking clock jacks to sound the hours and to display informative plaques

In ancient China, as well as throughout East Asia, water clocks were very important in the study of astronomy and astrology. The oldest written reference dates the use of the water-clock in China to the 6th century BC.[3] From about 200 BC onwards, the outflow clepsydra was replaced almost everywhere in China by the inflow type with an indicator-rod borne on a float.[3] The Han dynasty philosopher and politician Huan Tan (40 BC – AD 30), a Secretary at the Court in charge of clepsydrae, wrote that he had to compare clepsydrae with sundials because of how temperature and humidity affected their accuracy, demonstrating that the effects of evaporation, as well as of temperature on the speed at which water flows, were known at this time.[4] In 976, the Song dynasty military engineer and astronomer Zhang Sixun addressed the problem of the water in clepsydrae freezing in cold weather by using liquid mercury instead.[5] Again, instead of using water, the early Ming Dynasty engineer Zhan Xiyuan (c. 1360-1380) created a sand-driven wheel clock, improved upon by Zhou Shuxue (c. 1530-1558).[6]

The use of clepsydrae to drive mechanisms illustrating astronomical phenomena began with the Han Dynasty polymath Zhang Heng (78-139) in 117, who also employed a waterwheel.[7] Zhang Heng was the first in China to add an extra compensating tank between the reservoir and the inflow vessel, which solved the problem of the falling pressure head in the reservoir tank.[3] Zhang's ingenuity led to the creation by the Tang dynasty mathematician and engineer Yi Xing (683–727) and Liang Lingzan in 725 of a clock driven by a waterwheel linkwork escapement mechanism.[8] The same mechanism would be used by the Song dynasty polymath Su Song (1020–1101) in 1088 to power his astronomical clock tower, as well as a chain drive.[9] Su Song's clock tower, over 30 feet (9.1 m) tall, possessed a bronze power-driven armillary sphere for observations, an automatically rotating celestial globe, and five front panels with doors that permitted the viewing of changing mannequins which rang bells or gongs, and held tablets indicating the hour or other special times of the day. In the 2000s, in Beijing's Drum Tower an outflow clepsydra is operational and displayed for tourists. It is connected to automata so that every quarter-hour a small brass statue of a man claps his cymbals.[10]


N. Kameswara Rao suggested that pots excavated from Mohenjo daro may have been used as water clocks. They are tapered at the bottom, have a hole on the side, and are similar to the utensil used to perform abhishekam (pour holy water) on shivalingam.[11] N. Narahari Achar[12] and Subhash Kak[13] suggest that the use of the water clock in ancient India is mentioned in the Atharvaveda from the 2nd millennium BC. Ghati or Kapala (clepsydra or water clock) is referred to in Jyotisha Vedanga, where the amount of water that measures a nadika (24 minutes) is mentioned. A more developed form of the clepsydra is described in chapter xiii, 23 of the Suryasiddhanta.[14] At Nalanda, a Buddhist university, four hours a day and four hours at night were measured by a water clock, which consisted of a copper bowl holding two large floats in a larger bowl filled with water. The bowl was filled with water from a small hole at its bottom; it sank when completely filled and was marked by the beating of a drum at daytime. The amount of water added varied with the seasons and this clock was operated by the students of the university.[15] The description of a water clock in astrologer Varahimira's Pancasiddhantika (505) adds further detail to the account given in the Suryasiddhanta. The description given by mathematician Brahmagupta in his work Brahmasphutasiddhanta matches with that given in the Suryasiddhanta. Astronomer Lallacharya describes this instrument in detail.[16] In practice, the dimensions were determined by experiment.


Clay tablet
Water clock tablet
Water clock calculations by Nabû-apla-iddina.
SizeH:8.2 cm (3.2 in)
W:11.8 cm (4.6 in)
D:2.5 cm (0.98 in)
Writingcuneiform, Akkadian
Present locationRoom 55, British Museum

In Babylon, water clocks were of the outflow type and were cylindrical in shape. Use of the water clock as an aid to astronomical calculations dates back to the Old Babylonian period (c. 2000c. 1600 BC).[17] While there are no surviving water clocks from the Mesopotamian region, most evidence of their existence comes from writings on clay tablets. Two collections of tablets, for example, are the Enuma-Anu-Enlil (1600–1200 BC) and the MUL.APIN (7th century BC).[18] In these tablets, water clocks are used in reference to payment of the night and day watches (guards).

These clocks were unique, as they did not have an indicator such as hands (as are typically used today) or grooved notches (as were used in Egypt). Instead, these clocks measured time "by the weight of water flowing from" it.[19] The volume was measured in capacity units called qa. The weight, mana (the Greek unit for about one pound), is the weight of water in a water clock.

In Babylonian times, time was measured with temporal hours. So, as seasons changed, so did the length of a day. "To define the length of a 'night watch' at the summer solstice, one had to pour two mana of water into a cylindrical clepsydra; its emptying indicated the end of the watch. One-sixth of a mana had to be added each succeeding half-month. At equinox, three mana had to be emptied in order to correspond to one watch, and four mana were emptied for each watch of the winter solstitial night."[19]


Fragment of a basalt water-clock with evaporation time markers on interior as dots on djed and was hieroglyphs. Late period, 30th Dynasty. From Egypt. The Petrie Museum of Egyptian Archaeology, London
Fragment of a basalt water-clock, with evaporation time markers on interior as dots on djed and was hieroglyphs. Late period, 30th Dynasty. From Egypt. The Petrie Museum of Egyptian Archaeology, London

The oldest water clock of which there is physical evidence dates to c. 1417-1379 BC, during the reign of Amenhotep III where it was used in the Temple of Amen-Re at Karnak.[20] The oldest documentation of the water clock is the tomb inscription of the 16th century BC Egyptian court official Amenemhet, which identifies him as its inventor.[21][22] These simple water clocks, which were of the outflow type, were stone vessels with sloping sides that allowed water to drip at a nearly constant rate from a small hole near the bottom. There were twelve separate columns with consistently spaced markings on the inside to measure the passage of "hours" as the water level reached them. The columns were for each of the twelve months to allow for the variations of the seasonal hours. These clocks were used by priests to determine the time at night so that the temple rites and sacrifices could be performed at the correct hour.[23] These clocks may have been used in daylight as well.


Ancient water clock used in qanat of gonabad 2500 years ago
Ancient Persian clock
Water clock zibad
Ancient Persian clock in Qanats of Gonabad Zibad

According to Callisthenes, the Persians were using water clocks in 328 BC to ensure a just and exact distribution of water from qanats to their shareholders for agricultural irrigation. The use of water clocks in Iran, especially in Zibad, dates back to 500 BC. Later they were also used to determine the exact holy days of pre-Islamic religions, such as the Nowruz, Chelah, or Yaldā - the shortest, longest, and equal-length days and nights of the years. The water clocks used in Iran were one of the most practical ancient tools for timing the yearly calendar.[24][25] The water clock, or Fenjaan, was the most accurate and commonly used timekeeping device for calculating the amount or the time that a farmer must take water from a qanat or well for irrigation, until it was replaced by more accurate current clocks.[26][27] Persian water clocks were a practical and useful tool for the qanat's shareholders to calculate the length of time they could divert water to their farm. The qanat(Kariz) was the only water source for agriculture and irrigation so a just and fair water distribution was very important. Therefore, a very fair and clever old person was elected to be the manager of the water clock(MirAab), and at least two full-time managers were needed to control and observe the number of fenjaans and announce the exact time during the days and nights.[28]

The Fenjaan consisted of a large pot full of water and a bowl with a small hole in the center. When the bowl became full of water, it would sink into the pot, and the manager would empty the bowl and again put it on the top of the water in the pot. He would record the number of times the bowl sank by putting small stones into a jar.[28] The place where the clock was situated, and its managers, were collectively known as khaneh Fenjaan. Usually this would be the top floor of a public-house, with west- and east-facing windows to show the time of Sunset and Sunrise. There was also another time-keeping tool named a staryab or astrolabe, but it was mostly used for superstitious beliefs and was not practical for use as a farmers' calendar. The Zeebad Gonabad water clock was in use until 1965 when it was substituted by modern clocks.[24]

Greco-Roman world

An early 19th-century illustration[29] of Ctesibius's (285–222 BC) clepsydra from the 3rd century BC. The hour indicator ascends as water flows in. Also, a series of gears rotate a cylinder to correspond to the temporal hours.

The word "clepsydra" comes from the Greek meaning "water thief".[30] The Greeks considerably advanced the water clock by tackling the problem of the diminishing flow. They introduced several types of the inflow clepsydra, one of which included the earliest feedback control system.[31] Ctesibius invented an indicator system typical for later clocks such as the dial and pointer.[32] The Roman engineer Vitruvius described early alarm clocks, working with gongs or trumpets.[32] A commonly used water clock was the simple outflow clepsydra. This small earthenware vessel had a hole in its side near the base. In both Greek and Roman times, this type of clepsydra was used in courts for allocating periods of time to speakers. In important cases, such as when a person's life was at stake, it was filled completely, but for more minor cases, only partially. If proceedings were interrupted for any reason, such as to examine documents, the hole in the clepsydra was stopped with wax until the speaker was able to resume his pleading.[33]

Clepsydra springhouse of the Athenian acropolis

Just northeast of the entrance to the Acropolis of Athens there was a famous natural spring named Clepsydra. It is mentioned by Aristophanes in Lysistrata (lines 910-913) and other ancient literary sources. A fountain house was built on the site c. 470-460 BC; it was of simple rectangular construction with a draw-basin and paved court.

Clepsydrae for keeping time

In the 4th century BC, the clepsydra is known to have been used as a stop-watch for imposing a time limit on clients' visits in Athenian brothels.[34] Slightly later, in the early 3rd century BC, the Hellenistic physician Herophilos employed a portable clepsydra on his house visits in Alexandria for measuring his patients' pulse-beats. By comparing the rate by age group with empirically obtained data sets, he was able to determine the intensity of the disorder.[34]

Between 270 BC and AD 500, Hellenistic (Ctesibius, Hero of Alexandria, Archimedes) and Roman horologists and astronomers were developing more elaborate mechanized water clocks. The added complexity was aimed at regulating the flow and at providing fancier displays of the passage of time. For example, some water clocks rang bells and gongs, while others opened doors and windows to show figurines of people, or moved pointers, and dials. Some even displayed astrological models of the universe. The 3rd century BC engineer Philo of Byzantium referred in his works to water clocks already fitted with an escapement mechanism, the earliest known of its kind.[35]

The biggest achievement of the invention of clepsydrae during this time, however, was by Ctesibius with his incorporation of gears and a dial indicator to automatically show the time as the lengths of the days changed throughout the year, because of the temporal timekeeping used during his day. Also, a Greek astronomer, Andronicus of Cyrrhus, supervised the construction of his Horologion, known today as the Tower of the Winds, in the Athens marketplace (or agora) in the first half of the 1st century BC. This octagonal clocktower showed scholars and shoppers both sundials and mechanical hour indicators. It featured a 24-hour mechanized clepsydra and indicators for the eight winds from which the tower got its name, and it displayed the seasons of the year and astrological dates and periods.

Medieval Islamic world

In the medieval Islamic world (632-1280), the use of water clocks has its roots from Archimedes during the rise of Alexandria in Egypt and continues on through Byzantium. The water clocks by Persian engineer Al-Jazari, however, are credited for going "well beyond anything" that had preceded them. In al-Jazari's 1206 treatise, he describes one of his water clocks, the elephant clock. The clock recorded the passage of temporal hours, which meant that the rate of flow had to be changed daily to match the uneven length of days throughout the year. To accomplish this, the clock had two tanks, the top tank was connected to the time indicating mechanisms and the bottom was connected to the flow control regulator. Basically, at daybreak the tap was opened and water flowed from the top tank to the bottom tank via a float regulator that maintained a constant pressure in the receiving tank.[37]

Clock of al Jazari before 1206
Water-powered automatic castle clock of Al-Jazari, 12th century.

The most sophisticated water-powered astronomical clock was Al-Jazari's castle clock, considered by some to be an early example of a programmable analog computer, in 1206.[38] It was a complex device that was about 11 feet (3.4 m) high, and had multiple functions alongside timekeeping. It included a display of the zodiac and the solar and lunar orbits, and a pointer in the shape of the crescent moon which traveled across the top of a gateway, moved by a hidden cart and causing automatic doors to open, each revealing a mannequin, every hour.[39][40] It was possible to re-program the length of day and night in order to account for the changing lengths of day and night throughout the year, and it also featured five musician automata who automatically play music when moved by levers operated by a hidden camshaft attached to a water wheel.[38] Other components of the castle clock included a main reservoir with a float, a float chamber and flow regulator, plate and valve trough, two pulleys, crescent disc displaying the zodiac, and two falcon automata dropping balls into vases.[41]

The first water clocks to employ complex segmental and epicyclic gearing was invented earlier by the Arab engineer Ibn Khalaf al-Muradi in Islamic Iberia c. 1000. His water clocks were driven by water wheels, as was also the case for several Chinese water clocks in the 11th century.[42] Comparable water clocks were built in Damascus and Fez. The latter (Dar al-Magana) remains until today and its mechanism has been reconstructed. The first European clock to employ these complex gears was the astronomical clock created by Giovanni de Dondi in c. 1365. Like the Chinese, Arab engineers at the time also developed an escapement mechanism which they employed in some of their water clocks. The escapement mechanism was in the form of a constant-head system, while heavy floats were used as weights.[42]


Korean Waterclock
An incomplete scaled-down model of Jang Yeong-sil's self-striking water clock

In 1434 during the Choson (or Joseon) Dynasty, Chang Yongsil (or Jang Young Sil) (장영실 in Korean), Palace Guard and later Chief Court Engineer, constructed the Jagyeongnu (self-striking water clock or striking clepsydra) for King Sejong. What made the Jagyeongnu self-striking (or automatic) was the use of jack-work mechanisms, by which three wooden figures (jacks) struck objects to signal the time. This innovation no longer required the reliance of human workers, known as "rooster men", to constantly replenish it. By 1554, the water clock spread from Korea to Japan. Water clocks were used and improved upon throughout Asia well into the 15th century.

Modern designs

Modern water clock
Bernard Gitton's Time-Flow clock, showing a time of 4:06

Only a few modern water clocks exist today. In 1979, French scientist Bernard Gitton began creating his Time-Flow Clocks, which are a modern-day approach to the historical version. His unique glass tube designs can be found in over 30 locations throughout the world, including one at NEMO Science Museum in Amsterdam, Europa-Center's The Clock of Flowing Time in Berlin, Centre Commercial Milenis in Guadeloupe, the Giant Water Clock at The Children's Museum of Indianapolis in Indianapolis, Indiana, the Abbotsford International Airport (formerly at Sevenoaks Shopping Centre) in Abbotsford, British Columbia, and the Shopping Iguatemi in São Paulo and Porto Alegre, Brazil.

Gitton's design relies on gravity powering multiple siphons in the same principle as the Pythagorean cup; for example, after the water level in the minute or hour display tubes is reached, an overflow tube starts to act as a siphon and thus empties the display tube. Actual time keeping is done by a calibrated pendulum powered by a water stream piped from the clock's reservoir. The pendulum has a carefully constructed container attached to it; this measures the water that is then poured into the display system. This means that strictly speaking these are not water clocks. The water is used to power the pendulum and to show the time in the display system. There are other modern designs of water clocks, including the Royal Gorge water clock in Colorado, the Woodgrove Mall in Nanaimo, British Columbia, and the Hornsby Water Clock in Sydney, Australia.

Temperature, water viscosity, and clock accuracy

When viscosity can be neglected, the outflow rate of the water is governed by Torricelli's law, or more generally, by Bernoulli's principle. Viscosity will dominate the outflow rate if the water flows out through a nozzle that is sufficiently long and thin, as given by the Hagen–Poiseuille equation.[43] Approximately, the flow rate is for such design inversely proportional to the viscosity, which depends on the temperature. Liquids generally become less viscous as the temperature increases. In the case of water, the viscosity varies by a factor of about seven between zero and 100 degrees Celsius. Thus, a water clock with such a nozzle would run about seven times faster at 100 °C than at 0 °C. Water is about 25 percent more viscous at 20 °C than at 30 °C, and a variation in temperature of one degree Celsius, in this "room temperature" range, produces a change of viscosity of about two percent.[44] Therefore, a water clock with such a nozzle that keeps good time at some given temperature would gain or lose about half an hour per day if it were one degree Celsius warmer or cooler. To make it keep time within one minute per day would require its temperature to be controlled within ​130°C (about ​117° Fahrenheit). There is no evidence that this was done in antiquity, so ancient water clocks with sufficiently thin and long nozzles (unlike the modern pendulum-controlled one described above) cannot have been reliably accurate by modern standards. Note, however, that while modern timepieces may not be reset for long periods, water clocks were likely reset every day, when refilled, based on a sundial, so the cumulative error would not have been great.

See also


  1. ^ Turner 1984, p. 1
  2. ^ Cowan 1958, p. 58
  3. ^ a b c Needham 2000, p. 479
  4. ^ Needham 1995, pp. 321–322
  5. ^ Needham 2000, pp. 469–471
  6. ^ Needham, Joseph (1986). Science and Civilization in China: Volume 4, Physics and Physical Technology, Part 2, Mechanical Engineering. Taipei: Caves Books Ltd. Pages 510–511.
  7. ^ Needham 2000, pps. 30, 532
  8. ^ Needham 2000, pps. 471, 490, 532
  9. ^ Needham 2000, p. 462
  10. ^ Ellywa (1 August 2007). "Clepsydra in the Drum Tower, Beijing, China" – via Wikimedia Commons.
  11. ^ Rao, N. Kameswara (December 2005). "Aspects of prehistoric astronomy in India" (PDF). Bulletin of the Astronomical Society of India. 33 (4): 499–511. Bibcode:2005BASI...33..499R. Retrieved 2007-05-11. It appears that two artifacts from Mohenjadaro and Harappa might correspond to these two instruments. Joshi and Parpola (1987) lists a few pots tapered at the bottom and having a hole on the side from the excavations at Mohenjadaro (Figure 3). A pot with a small hole to drain the water is very similar to clepsydras described by Ohashi to measure the time (similar to the utensil used over the lingum in Shiva temple for abhishekam).
  12. ^ Achar, N. Narahari (December 1998). "On the meaning of AV XIX. 53.3: Measurement of Time?". Electronic Journal of Vedic Studies. Retrieved 2007-05-11.
  13. ^ Kak, Subhash (2003-02-17). "Babylonian and Indian Astronomy: Early Connections". History of Science, Philosophy & Culture in Indian Civilization, vol., part (A Golden Chain, G.C. Pande, ed.), pp., . 1 (4): 847–869. arXiv:physics/0301078. Bibcode:2003physics...1078K.
  14. ^ "A copper vessel (in the shape of the lower half of the water jar) which has a small hole in its bottom and being placed upon clean water in a basin sinks exactly 60 times in a day and at night." - chapter xiii, 23 of the Suryasiddhanta.
  15. ^ Scharfe, Hartmut (2002). Education in Ancient India. Leiden: Brill Academic Publishers. p. 171. ISBN 90-04-12556-6.
  16. ^ "A copper vessel weighing 10 palas, 6 angulas in height and twice as much in breadth at the mouth--this vessel of the capacity of 60 palas of water and hemispherical in form is called a ghati." This copper vessel, which was bored with a needle and made of 3 1/8 masas of gold and 4 angulas long, gets filled in one nadika."
  17. ^ Pingree, David (1998). "Legacies in Astronomy and Celestial Omens". In Stephanie Dalley (ed.). The Legacy of Mesopotamia. Oxford: Oxford University Press. pp. 125–126. ISBN 0-19-814946-8.
  18. ^ Evans, James (1998). The History and Practice of Ancient Astronomy. Oxford: Oxford University Press. p. 15. ISBN 0-19-509539-1.
  19. ^ a b Neugebauer 1947, pp. 39–40
  20. ^ Cotterell, Brian; Kamminga, Johan (1990). Mechanics of pre-industrial technology: An introduction to the mechanics of ancient and traditional material culture. Cambridge University Press. ISBN 0-521-42871-8. OCLC 18520966., pp. 59–61
  21. ^ Cotterell & Kamminga 1990, pp. 59–61
  22. ^ Berlev, Oleg (1997). "Bureaucrats". In Donadoni, Sergio (ed.). The Egyptians. Trans. Bianchi, Robert et al. Chicago: The University of Chicago Press. p. 118. ISBN 0-226-15555-2.
  23. ^ Cotterell & Kamminga 1990
  24. ^ a b "Conference of Qanat in Iran - water clock in Persia 1383". www.aftabir.com (in Persian).
  25. ^ http://www.farheekhtegan.ir/newspaper/pagepdf/16545
  26. ^ "ساعت آبی پنگان در ایران بیش از ۲۴۰۰ سال کاربرد دارد. - پژوهشهای ایرانی". parssea.org.
  27. ^ vista.ir. "قنات میراث فرهنگی و علمی ایرانیان".
  28. ^ a b "water clock in persia". amordadnews.com. Archived from the original on 2014-04-29.
  29. ^ This engraving is taken from "Rees's Clocks, Watches, and Chronometers 1819-20. The design of the illustration was modified from Claude Perrault's illustrations in his 1684 translation of Vitruvius's Les Dix Livres d'Architecture (1st century BC), of which he describes Ctesibius's clepsydra in great length.
  30. ^ Levy, Janey (2004). Keeping Time Through the Ages: The History of Tools Used to Measure Time. Rosen Classroom. p. 11. ISBN 9780823989171. The Greeks named the water clock 'clepsydra' (KLEP-suh-druh), which means 'water thief'.
  31. ^ Goodenow, Orr & Ross (2007), p. 7
  32. ^ a b John G. Landels: "Water-Clocks and Time Measurement in Classical Antiquity", "Endeavour", Vol. 3, No. 1 (1979), pp. 32-37 (35)
  33. ^ Hill 1981, p. 6
  34. ^ a b Landels, John G. (1979). "Water-Clocks and Time Measurement in Classical Antiquity". Endeavour. 3 (1): 33. doi:10.1016/0160-9327(79)90007-3.
  35. ^ Lewis 2000, pp. 356f.
  36. ^ ibn al-Razzaz al-Jazari (1974). The Book of Knowledge of Ingenious Mechanical Devices. Translated and annotated by Donald Routledge Hill. Dordrecht: D. Reidel. ISBN 969-8016-25-2.
  37. ^ al-Hassan & Hill 1986, pp. 57–59
  38. ^ a b "Ancient Discoveries, Episode 11: Ancient Robots". History Channel. Archived from the original on March 1, 2014. Retrieved 2008-09-06.
  39. ^ Howard R. Turner (1997), Science in Medieval Islam: An Illustrated Introduction, p. 184. University of Texas Press, ISBN 0-292-78149-0.
  40. ^ Routledge Hill, Donald, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, pp. 64–69. (cf. Donald Routledge Hill, Mechanical Engineering)
  41. ^ "two falcon automata dropping balls into vases - Google Search". www.google.com.my.
  42. ^ a b Hassan, Ahmad Y, Transfer Of Islamic Technology To The West, Part II: Transmission Of Islamic Engineering, History of Science and Technology in Islam
  43. ^ Goodenow, Orr & Ross (2007), p. 6
  44. ^ CRC Handbook of Chemistry and Physics, page F-36


Overview of water clocks and other time instruments
  • Barnett, Jo Ellen. Time's Pendulum: From Sundials to Atomic Clocks, the Fascinating History of Timekeeping and How Our Discoveries Changed the World. Plenum Press, NY, 1998. ISBN 0-15-600649-9
  • Bruton, Eric. The History of Clocks and Watches. 1979. ISBN 0-8478-0261-2
  • Cowan, Harrison J. (1958). "Time and Its Measurement: From the stone age to the nuclear age". Ohio: The World Publishing Company.
  • Dohrn-van Rossum, Gerhard (1996). History of the Hour: Clocks and Modern Temporal Orders. Trans. Thomas Dunlap. The University of Chicago Press. ISBN 0-226-15510-2. OCLC 33440282.
  • K. Higgins, D. Miner, C.N. Smith, D.B. Sullivan (2004), A Walk Through Time (version 1.2.1). [Online] Available: http://physics.nist.gov/time [2005, December 8]. National Institute of Standards and Technology, Gaithersburg, MD.
  • Jespersen, James and Fitz-Randolph, Jane. "From Sundials to Atomic Clocks: Understanding Time and Frequency." Second Revised Edition, 1999. ISBN 0-486-40913-9
  • King, David A. "Towards a History from Antiquity to the Renaissance of Sundials and Other Instruments for Reckoning Time by the Sun and Stars." Annals of Science, Taylor & Francis. V. 61, Num. 3. July 2004. pp. 375–388. doi:10.1080/00033790310001642795.
  • Landes, D. Revolution in Time. Harvard University Press (1983).
  • McNown, J.S. "When Time Flowed: The Story of the Clepsydra." La Houille Blanche, 5, 1976, 347-353. ISSN 0018-6368
  • Milham, Willis I. Time & Timekeepers including The History, Construction, Care, and Accuracy of Clocks and Watches. The Macmillan Company, NY 1945.
  • Rees, Abraham. "Rees's Clocks, Watches, and Chronometers 1819-20." Charles E. Tuttle Company, Inc. 1970.
  • Richards, E.G. "Mapping Time: The Calendar and Its History." Oxford University Press, 1998.
  • Toulmin, Stephen & Goodhead, J. The Discovery of Time. University of Chicago Press, 1999. ISBN 0-226-80842-4
  • Turner, Anthony J. (1984). The Time Museum. I: Time Measuring Instruments; Part 3: Water-clocks, Sand-glasses, Fire-clocks. Rockford, IL: The Museum. ISBN 0-912947-01-2. OCLC 159866762.
Arabic & Islamic water clocks
  • Hill, Donald Routledge (ed. & trans.) (1976). Archimedes "On the Construction of Water-Clocks," Turner & Devereux, Paris.
  • Hill, D.R. (1981). "Arabic Water - Clocks". Syria: University of Aleppo.
  • al-Hassan, Ahmad Y.; Hill, Donald R. (1986). Islamic Technology: An Illustrated History. Cambridge University Press. ISBN 0-521-26333-6. OCLC 13332728.
  • Hill, Donald Routledge. "Studies in Medieval Islamic Technology: From Philo to Al-Jazari - from Alexandria to Diyar Bakr." (Collected Studies Series, 555)
  • King, D. Mikat. "Astronomical Timekeeping." The Encyclopaedia of Islam. 7, Brill, (1990) Reprinted as Chapter V in King, D. "Astronomy in the Service of Islam Variorum." (1993)
Babylonian water clocks
  • Englund, R.K. "Administrative Timekeeping in Ancient Mesopotamia." Journal of the Economic and Social History of the Orient, V. XXXI, 31 (1988) 121-185.
  • Fermor, John, & Steele, John M. "The design of Babylonian waterclocks: Astronomical and experimental evidence." Centaurus. International Journal of the History of Mathematics, Science, and Technology. Vol. 42 Issue 3, pp. 210–222. July 2000. Blackwell Publishing.
  • Høyrup, J., "A Note on Waterclocks and the Authority of Texts." Archiv für Orientforschung, 44/45 (1997/98), 192-194 (*).
  • Michel-Nozières, C. "Second Millennium Babylonian Water Clocks: a physical study." Centaurus, Vol. 42, Issue 3, pp. 180–209. July 2000.
  • Neugebauer, Otto (1947). "Studies in Ancient Astronomy. VIII. The Water Clock in Babylonian Astronomy". Isis. 37 (1/2): 37–43. doi:10.1086/347965.. JSTOR link. Reprinted in Neugebauer (1983), pp. 239–245 (*).
  • Price, Derek deSolla. Science Since Babylon. Yale University Press, New Haven 1976.
  • Teresi, Dick. "Lost Discoveries: The Ancient Roots of Modern Science - from the Babylonians to the Maya." Simon & Schuster, NY 2002.
  • van der Waerden, Bartel Leendert, "Babylonian Astronomy: III. The Earliest Astronomical Computations." Journal of Near Eastern Studies, 10 (1951), 20-34 JSTOR link.
Chinese water clocks
  • Lorch, Richard P. "Al-Khazini's Balance-clock and the Chinese Steelyard Clepsydra." Archives Internationales d'Histoire des Sciences, June 1981, 31: 183-189.
  • Needham, J., Ling, W., and de Solla Price, D.J. "Heavenly Clockwork: The Great Astronomical Clocks of Medieval China." 2nd Edition. 1986. ISBN 0-521-32276-6.
  • Needham, Joseph (1995). Science & Civilisation in China. III: Mathematics and the Sciences of the Heavens and the Earth. Cambridge University Press. ISBN 0-521-05801-5. OCLC 153247126.
  • Needham, Joseph (2000). Science & Civilisation in China. IV:2: Mechanical Engineering. Cambridge University Press. ISBN 0-521-05803-1. OCLC 153247141.
  • Quan, He Jun. "Research on scale and precision of the water clock in ancient China." History of Oriental Astronomy, pp. 57–61. (Proceedings of the International Astronomical Union Colloquium No. 91 held in New Delhi, November 13–16, 1985). Edited by G. Swarup, A. K. Bag and K. S. Shukla. Cambridge University Press, Cambridge, 1987. ISBN 0-521-34659-2.
  • Walsh, Jennifer Robin. "Ancient Chinese Astronomical Technologies." American Physical Society, Northwest Section. May, 2004. Meeting, 21–22 May 2004. Pullman, WA.
Egyptian water clocks
  • Clagett, Marshall. Ancient Egyptian Science, Volume II: Calendars, Clocks, and Astronomy. 1995. pp. 457–462. ISBN 0-87169-214-7
  • Cotterell, B., Dickson, F.P., and Kamminga, J. "Ancient Egyptian Water-clocks: A Reappraisal." Journal of Archaeological Science. Vol. 13, pp. 31–50. 1986.
  • Cotterell, Brian and Kamminga, Johan. "Mechanics of pre-industrial technology." Cambridge University Press, Cambridge. 1990.
  • Fermor, John, "Timing the Sun in Egypt and Mesopotamia." Vistas in Astronomy, 41 (1997), pp. 157–167. Elsevier Science. doi:10.1016/S0083-6656(96)00069-4.
  • Neugebauer, Otto & Parker, Richard A. "Egyptian Astronomical Texts: Iii. Decans, Planets, Constellations, and Zodiacs."
  • Pogo, Alexander. "Egyptian water clocks", Isis, vol. 25, pp. 403–425, 1936. Reprinted in Philosophers and Machines, O. Mayr, editor, Science History Publications, 1976. ISSN 0021-1753
  • Sloley, R.W., "Ancient Clepsydrae", Ancient Egypt, 1924, pp. 43–50.
  • Sloley, R.W., "Primitive methods of measuring time", JEA 17, 1931, pp. 174–176.
European water clocks
  • Bedini, S.A. "The Compartmented Cylindrical Clepsydra." Technology and Culture 3(2):115-141. 1962. ISSN 0040-165X
  • Drover, C.B. "A Medieval Monastic Water Clock", Antiquarian Horology, Vol. I, No. 5 (1954), pp. 54–58.
  • Hill, Donald Routledge. "A History of Engineering in Classical and Medieval Times." La Salle, Ill., Open Court Pub. 1996. ISBN 0-415-15291-7
  • Hill, D.R. "The Toledo Water-Clocks of c.1075." History of Technology, vol.16, 1994, pp. 62–71
  • Scattergood, John. "Writing the clock: the reconstruction of time in the late Middle Ages." European Review, Issue 4 (Oct, 2003), 11: pp. 453–474 Cambridge University Press (School of English, Trinity College, Dublin 2, Ireland. jscatter@tcd.ie)
Greek and Alexandrian water clocks
  • Hill, D.R. (ed. & trans.) (1976). Archimedes "On the Construction of Water-Clocks," Turner & Devereux, Paris.
  • Lepschy, Antonio M. "Feedback Control in Ancient Water and Mechanical Clocks." IEEE Transactions on Education, Vol. 35, No. 1, February 1992.
  • Lewis, Michael (2000). "Theoretical Hydraulics, Automata, and Water Clocks". In Wikander, Örjan (ed.). Handbook of Ancient Water Technology. Technology and Change in History. 2. Leiden. pp. 343–369 (356f.). ISBN 90-04-11123-9.
  • Noble, J.V. & de Solla Price, D. J. "The Water clock in the Tower of the Winds." American Journal of Archaeology, 72, 1968, pp. 345–355.
  • Woodcroft, Bennet (translator). "The Pneumatics of Hero of Alexandria." London, Taylor Walton and Maberly, 1851.
  • Vitruvius, P., The Ten Books on Architecture. (M.H. Morgan, translator) New York: Dover Publications, Inc., 1960.
Indian water clocks
  • Achar, N. "On the Vedic origin of the ancient mathematical astronomy of India." Journal of Studies on Ancient India, vol 1, 95-108, 1998.
  • Fleet, J. F., "The ancient Indian water clock." Journal of the Royal Asiatic Society, 213-230, 1915.
  • Kumar, Narendra "Science in Ancient India" (2004). ISBN 81-261-2056-8.
  • Pingree, D. "The Mesopotamian origin of early Indian mathematical astronomy." Journal for the History of Astronomy, vol. 4, 1-12, 1973.
  • Pingree, D. "The recovery of early Greek astronomy from India." Journal for the History of Astronomy, vol 7, 109-123, 1976.
Japanese water clocks
  • Kiyoyasu, Maruyma. "Hoken shakai to gijutsu - wadokei ni shuyaku sareta hoken gijutsu." Kagakushi kenkyu, September 1954, 31:16-22.
Korean water clocks
  • Hahn, Young-Ho and Nam, Moon-Hyon. "Reconstruction of the Armillary Spheres of Mid-Chosun: The Armillary Clocks of Yi Minchol." Hanguk Kwahaksa Hakhoeji (Journal of the Korean History of Science Society)19.1 (1997): 3-19. (in Korean)
  • Hahn, Young-Ho, et al. "Astronomical Clocks of Chosun Dynasty: King Sejong's Heumgyonggaknu. Kisulgwa Yoksa (Journal of the Korean Society for the History of Technology and Industry) 1.1 (2000): 99-140. (in Korean).
  • Hong, Sungook "Book Review: Korean Water-Clocks: "Chagyongnu", the Striking Clepsydra, and the History of Control and Instrumentation Engineering." Technology and Culture - Volume 39, Number 3, July 1998, pp. 553-555
  • Nam, Moon-Hyon. "Chagyongnu: The Automatic Striking Water clock." Korea Journal, 30.7 (1990): 9-21.
  • Nam, Moon-Hyon. Korean Water Clocks: Jagyongnu, The Striking Clepsydra and The History of Control and Instrumentation Engineering. Seoul: Konkuk University Press, 1995. (in Korean)
  • Nam, Moon-Hyon. On the BORUGAKGI of Kim Don—Principles and Structures of JAYEONGNU. Hanguksa Yeongu (Studies on Korean History),101 (1998): 75-114 (in Korean)
  • Nam, Moon-Hyon. Jang Yeong-Shil and Jagyeongnu - Reconstruction of Time Measuring History of Choseon Period. Seoul National University Press, 2002. (in Korean)
  • Nam, Moon-Hyon and Jeon San-Woon. "Timekeeping Systems of Early Choson Dynasty." Proceedings of First International Conference on Oriental Astronomy, From Guo Shoujing to King Sejong, Seoul, October 6–11, 1993, Seoul, Yonsei University Press, 1997. 305-324.
  • Needham, Joseph, Major, John S., & Gwei-Djen, Lu. "Hall of Heavenly Records: Korean Astronomical Instruments and Clocks, 1380-1780." Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1986. ISBN 0-521-30368-0
  • Hyeonjong Shillock (Veritable Records of King Hyeonjong), 1669
  • Jungjong Shillok (Veritable Records of King Jungjong), 1536.
  • Sejong Shillock (Veritable Records of King Sejong), Chapter. 65, AD 1434 and Chapter. 80, AD 1438.
Mesopotamian water clocks
  • Brown, David R., Fermor, John, & Walker, Christopher B.F., "The Water Clock in Mesopotamia." Archiv für Orientforschung, 46/47 (1999/2000)
  • Chadwick, R. "The Origins of Astronomy and Astrology in Mesopotamia." Archaeoastronomy. BULL. CTR ARCH. V. 7:1-4, P. 89, 1984. KNUDSEN Bibliographic Code: 1984BuCAr...7...89C
  • Fermor, John, "Timing the Sun in Egypt and Mesopotamia." Vistas in Astronomy, 41 (1997), 157-167. Elsevier Science. doi:10.1016/S0083-6656(96)00069-4.
  • Walker, Christopher and Britton, John. "Astronomy and Astrology in Mesopotamia." BMP, 1996 (especially pp. 42–67)
Russian ancient water clocks
Present-day water clocks
  • Gitton, Bernard. "Time, like an everflowing stream." Trans. Mlle. Annie Chadeyron. Ed. Anthony Randall. Horological Journal 131.12 (June 1989): 18-20.
  • Taylor, Robert. "Taiwan's Biggest Cuckoo Clock?: Recreating an Astronomical Timepiece". Sinorama Magazine. 3-15-2006
  • Xuan, Gao. "Principle Research and Reconstruction Experiment of the Astronomical Clock Tower in Ancient China." Proceedings of the 11th World Congress in Mechanism and machine Science. August 18–21, 2003. Tianjin, China.
Other topics on water clocks and related material
  • Goodenow, Jennifer; Orr, Richard; Ross, David (2007), Mathematical Models of Water Clocks (PDF), Rochester Institute of Technology
  • Landels, John G. "Water-Clocks and Time Measurement in Classical Antiquity." Endeavour 3(1):32-37. 1979. ISSN 0160-9327
  • Mills, A.A. "Newton’s Water Clocks and the Fluid Mechanics of Clepsydrae." Notes and Records of the Royal Society of London. 37(1):35-61. 1982. ISSN 0035-9149
  • Neugebauer, Otto (1969) [1957]. The Exact Sciences in Antiquity (2 ed.). Dover Publications. ISBN 978-0-486-22332-2.
  • Sarma, S.R., "Setting up the Water Clock for Telling the Time of Marriage." in Studies in the History of the Exact Sciences in Honour of David Pingree, éd. Ch. Burnett, J.P. Hogendijk, K. Plofker, M. Yano, Leiden-Boston, 2004, pp. 302–330.
  • Snell, Daniel. "Life in the Ancient Near East, 3100-332 B.C.E." ISBN 0-300-07666-5.
Non-English resources
  • Bilfinger, Gustav, Die babylonische Doppelstunde: Eine chronologische Untersuchung (Wildt, Stuttgart, 1888).
  • Borchardt, Ludwig. 1920. "Die Altägyptische Zeitmessung." (Old Egyptian time measurement). Berlin/Leipzig.
  • Daressy, G., "Deux clepsydres antiques", BIE, serie 5, 9, 1915, pages 5–16
  • Ginzel, Friedrich Karl, "Die Wassermessungen der Babylonier und das Sexagesimalsystem", Klio: Beiträge zur alten Geschichte, 16 (1920), 234-241.
  • Planchon, "L'Heure Par Les Clepsydres." La Nature. pp. 55–59.
  • Thureau-Dangin, François, "La clepsydre chez les Babyloniens [Notes assyriologiques LXIX]", Revue d’assyriologie et d’archéologie orientale, 29 (1932), 133-136.
  • Thureau-Dangin, François, "Clepsydre babylonienne et clepsydre égyptienne", Revue d’assyriologie et d’archéologie orientale, 30 (1933), 51-52.
  • Thureau-Dangin, François, "Le clepsydre babylonienne", Revue d’assyriologie et d’archéologie orientale, 34 (1937), 144.

External links

Ancient Greek technology

Ancient Greek technology developed during the 5th century BC, continuing up to and including the Roman period, and beyond. Inventions that are credited to the ancient Greeks include the gear, screw, rotary mills, bronze casting techniques, water clock, water organ, torsion catapult, the use of steam to operate some experimental machines and toys, and a chart to find prime numbers. Many of these inventions occurred late in the Greek period, often inspired by the need to improve weapons and tactics in war. However, peaceful uses are shown by their early development of the watermill, a device which pointed to further exploitation on a large scale under the Romans. They developed surveying and mathematics to an advanced state, and many of their technical advances were published by philosophers, like Archimedes and Heron.

Clepsydra Geyser

Clepsydra Geyser is a geyser in the Lower Geyser Basin of Yellowstone National Park in the United States.

Clepsydra plays nearly continuously to heights of 45 feet (14 m). It was named by T. B. Comstock during the 1878 Captain Jones expedition, with its nomenclature derived from the Greek word for water clock. Prior to the 1959 Hebgen Lake earthquake, it erupted regularly every three minutes.

Images of Clepsydra Geyser


A clock is an instrument used to measure, keep, and indicate time. The clock is one of the oldest human inventions, meeting the need to measure intervals of time shorter than the natural units: the day, the lunar month, and the year. Devices operating on several physical processes have been used over the millennia.

Some predecessors to the modern clock may be considered as "clocks" that are based on movement in nature: A sundial shows the time by displaying the position of a shadow on a flat surface. There is a range of duration timers, a well-known example being the hourglass. Water clocks, along with the sundials, are possibly the oldest time-measuring instruments. A major advance occurred with the invention of the verge escapement, which made possible the first mechanical clocks around 1300 in Europe, which kept time with oscillating timekeepers like balance wheels.Traditionally in horology, the term clock was used for a striking clock, while a clock that did not strike the hours audibly was called a timepiece. In general usage today, a "clock" refers to any device for measuring and displaying the time. Watches and other timepieces that can be carried on one's person are often distinguished from clocks.

Spring-driven clocks appeared during the 15th century. During the 15th and 16th centuries, clockmaking flourished. The next development in accuracy occurred after 1656 with the invention of the pendulum clock. A major stimulus to improving the accuracy and reliability of clocks was the importance of precise time-keeping for navigation. The electric clock was patented in 1840. The development of electronics in the 20th century led to clocks with no clockwork parts at all.

The timekeeping element in every modern clock is a harmonic oscillator, a physical object (resonator) that vibrates or oscillates at a particular frequency.

This object can be a pendulum, a tuning fork, a quartz crystal, or the vibration of electrons in atoms as they emit microwaves.

Clocks have different ways of displaying the time. Analog clocks indicate time with a traditional clock face, with moving hands. Digital clocks display a numeric representation of time. Two numbering systems are in use; 24-hour time notation and 12-hour notation. Most digital clocks use electronic mechanisms and LCD, LED, or VFD displays. For the blind and use over telephones, speaking clocks state the time audibly in words. There are also clocks for the blind that have displays that can be read by touch. The study of timekeeping is known as horology.

Clock tower

Clock towers are a specific type of building which houses a turret clock and has one or more clock faces on the upper exterior walls. Many clock towers are freestanding structures but they can also adjoin or be located on top of another building.

Clock towers are a common sight in many parts of the world with some being iconic buildings. One example is the Elizabeth Tower in London (usually called "Big Ben", although strictly this name belongs only to the bell inside the tower).

Dar al-Magana

Dar al-Magana (Arabic for "clockhouse") is a house in Fes, Morocco, built by the Marinid Sultan Abu Inan Faris which holds a weight-powered water clock. The muwaqqit Abou al-Hassan Ibn Ali Ahmed Tlemsani was responsible for building the clock, which was finished on 6 May 1357. The Dar al-Magana is opposite the Bou Inania Madrasa and connected to this school.

The clock consists of 12 windows and platforms carrying brass bowls. The motion of the clock was presumably maintained by a kind of small cart which ran from left to right behind the twelve doors. At one end, the cart was attached to a rope with a hanging weight; at the other end to a rope with a weight that floated on the surface of a water reservoir that was drained at a regular pace. Each hour one of the doors opened; at the same time a metal ball was dropped into one of the twelve brass bowls. The rafters sticking out of the building above the doors (identical to the rafters of the Bou Inania Madrasa) supported a small roof to shield the doors and bowls.The bowls have been removed since 2004 and the clock mechanism is being reconstructed by ADER, a foundation for the reconstruction of monuments in Fes.

Elephant clock

The elephant clock was a medieval invention by Al-Jazari (1136–1206), a Muslim engineer and inventor of various clocks including the Elephant clock which consisted of a weight powered water clock in the form of an Asian elephant. This horological technology was derived from earlier Indian clocks and Chinese clocks.

In China clock escapement mechanism was invented by the polymath and Buddhist monk Yi Xing as well as the hydraulic powered waterwheel and water clock in the mechanically-driven and rotated equatorial armillary sphere of the polymaths Zhang Heng and Ma Jun. The Elephant clock had some design differences compared to earlier Indian and Chinese clocks and the various elements of the clock are in the housing (howdah) on top of the elephant.

Al-Jazari upon finishing the development and construction of his Elephant clock wrote: "The elephant represents the Indian and African cultures, the two dragons represents Chinese culture, the phoenix represents Persian culture, the water work represents Greek culture, and the turban represents Islamic culture" signifying the multicultural mentality of the intellectual Al-Jazari.

In addition to its mechanical innovations, the clock itself is seen as an early example of multiculturalism represented in technology.

Hall of Union

The Hall of Union (Chinese: 交泰殿; pinyin: Jiāo Tài Diàn) is a building in the Forbidden City, in Beijing, China. It stands between the Palace of Heavenly Purity and the Palace of Earthly Tranquility. These three halls together constitute the centre of the Inner Court of the palace complex.

The hall is square in shape with a pyramidal roof. Stored here are the 25 Imperial Seals of the Qing dynasty, as well as other ceremonial items, including the clocks that set the official time in the palace (first a water clock, later a mechanical clock, both still displayed in the hall.

History of timekeeping devices

For thousands of years, devices have been used to measure and keep track of time. The current sexagesimal system of time measurement dates to approximately 2000 BC from the Sumerians.

The Egyptians divided the day into two 12-hour periods, and used large obelisks to track the movement of the sun. They also developed water clocks, which were probably first used in the Precinct of Amun-Re, and later outside Egypt as well; they were employed frequently by the Ancient Greeks, who called them clepsydrae. The Zhou dynasty is believed to have used the outflow water clock around the same time, devices which were introduced from Mesopotamia as early as 2000 BC.

Other ancient timekeeping devices include the candle clock, used in ancient China, ancient Japan, England and Mesopotamia; the timestick, widely used in India and Tibet, as well as some parts of Europe; and the hourglass, which functioned similarly to a water clock. The sundial, another early clock, relies on shadows to provide a good estimate of the hour on a sunny day. It is not so useful in cloudy weather or at night and requires recalibration as the seasons change (if the gnomon was not aligned with the Earth's axis).

The earliest known clock with a water-powered escapement mechanism, which transferred rotational energy into intermittent motions, dates back to 3rd century BC in ancient Greece; Chinese engineers later invented clocks incorporating mercury-powered escapement mechanisms in the 10th century, followed by Iranian engineers inventing water clocks driven by gears and weights in the 11th century.The first mechanical clocks, employing the verge escapement mechanism with a foliot or balance wheel timekeeper, were invented in Europe at around the start of the 14th century, and became the standard timekeeping device until the pendulum clock was invented in 1656. The invention of the mainspring in the early 15th century allowed portable clocks to be built, evolving into the first pocketwatches by the 17th century, but these were not very accurate until the balance spring was added to the balance wheel in the mid 17th century.

The pendulum clock remained the most accurate timekeeper until the 1930s, when quartz oscillators were invented, followed by atomic clocks after World War 2. Although initially limited to laboratories, the development of microelectronics in the 1960s made quartz clocks both compact and cheap to produce, and by the 1980s they became the world's dominant timekeeping technology in both clocks and wristwatches.

Atomic clocks are far more accurate than any previous timekeeping device, and are used to calibrate other clocks and to calculate the International Atomic Time; a standardized civil system, Coordinated Universal Time, is based on atomic time.

Hornsby Water Clock

The Hornsby Water Clock, titled Man, Time and the Environment is a piece of kinetic sculpture, a decorative fountain and a functional clock in the Florence Street pedestrian mall in Hornsby, New South Wales, Australia. Unveiled in 1993, the sculpture was designed and engineered by Victor Cusack and constructed of bronze, stainless steel and glass by Victor and his foundry floor manager Rex Feakes. Construction, including alterations to the mall, cost over A$1 million and took two and half years; thereafter, chicken bones and other carelessly discarded items caused many breakdowns before the water filtration system was upgraded.


A hydrochronometer is a kind of a water clock.

In 1867 Fr. Giovan Battista Embriaco, O.P., inventor and professor of the College of St. Thomas in Rome, created a hydrochronometer and sent it to the Paris Universal Exposition of 1867, where it received many prizes. It had the shape of a wooden pinnacle made of cast iron fused as tree trunks, while its four dials were visible from every direction.

In 1873, the Water clock was back in Rome and was placed in Villa Borghese gardens into a fountain realized by the architect Gioacchino Ersoch. It's still placed there and works 24/7.

In June 2007, after two years of restoration at ELIS School, it was restarted by the Town Mayor of Rome.

Another hydrochromometer can be found at Palazzo Berardi, rione Pigna, Rome.

Jang Yeong-sil

Jang Yeong-sil (c. 1390 – after 1442) was a Korean engineer, scientist and inventor during the Joseon dynasty (1392–1897). Although Jang was born as a peasant, King Sejong's (r. 1418–1450) new policy of breaking class barriers placed on the national civil service allowed Jang to work at the royal palace. Jang's inventions, such as the Cheugugi (the rain gauge) and the water gauge, highlight the technological advancements of the Joseon dynasty.

Jayrun Water Clock

The Jayrun Water Clock, a water clock built by the Muslim engineer Muhammad al-Sa'ati, was positioned at the gate of Damascus, Syria, at the exit of the Umayyad Mosque in the 12th century during the reign of Nur ad-Din Zangi.


Jyotisha (Sanskrit: ज्योतिष, IAST: Jyotiṣa) is the science of tracking and predicting the movements of astronomical bodies in order to keep time. It refers to one of the six ancient Vedangas, or ancillary science connected with the Vedas – the scriptures of Hinduism. This field of study was concerned with fixing the days and hours of Vedic rituals.The term Jyotisha also refers to Hindu astrology, a field that likely developed in the centuries after the arrival of Greek astrology with Alexander the Great, their zodiac signs being nearly identical.

Killing Time (video game)

Killing Time is a horror-themed first-person shooter video game developed by Studio 3DO. Originally an exclusive for their 3DO Interactive Multiplayer console, it was later remade for the Windows 95 PC platform in 1996 by Logicware and for the Macintosh after the 3DO system was discontinued. On July 23, 2015, ZOOM Platform announced the release of an updated version of Killing Time exclusively for their store. The update work was done by Jordan Freeman Group and published by ZOOM Platform and Prism Entertainment.The player controls an ex-Egyptology student, trapped on a fictional 1930's version of Matinicus Isle, Maine, within the estate of wealthy heiress Tess Conway. In 1932, during the night of the Summer Solstice. Tess, while attempting to use a mystical Ancient Egyptian Water-Clock which purportedly grants eternal life, vanished, along with many of her society friends. The player's objective is to find, and destroy, the Water-Clock, and discover the secrets of the estate, all while beating back the many horrors that now occupy the island from beyond the grave.

Throughout the game the plot is slowly revealed to the player through numerous cut scenes performed by live actors. An unusual aspect of the game is that live action full motion video characters also sometimes overlap with the real time gameplay, without breaking to cut scenes.

Mina (unit)

The mina (also mĕnē, Aramaic; Hebrew: מנה) is an ancient Near Eastern unit of weight, which was divided into 50 shekels. The mina, like the shekel, was also a unit of currency. In ancient Greece, it originally equalled 70 drachmae and later was increased to 100 drachmae. The Greek word mna (μνᾶ) was borrowed from Semitic; compare Hebrew māneh, Aramaic mĕnē, Syriac manyā, Ugaritic mn, and Akkadian manū.

However, before it was used as currency, a mina was a unit of measurement, equal to 1.25 pounds (0.57 kg).

From earliest Sumerian times, a mina was a unit of weight. At first, talents and shekels had not yet been introduced. By the time of Ur-Nammu, the mina had a value of 1/60 talents as well as 60 shekels. The value of the mina is calculated at 1.25 pounds (0.57 kg).

Evidence from Ugarit indicates that a mina was equivalent to fifty shekels. The prophet Ezekiel refers to a mina ('maneh' in the King James Version) as sixty shekels, in the Book of Ezekiel 45:12. Jesus of Nazareth tells the "parable of the minas" in Luke 19:11-27.

From the Akkadian period, 2 mina was equal to 1 sila of water (cf. clepsydra, water clock).

Tower of the Winds

The Tower of the Winds or the Horologion of Andronikos Kyrrhestes is an octagonal Pentelic marble clocktower in the Roman Agora in Athens that functioned as a horologion or "timepiece". It is considered the world's first meteorological station. Unofficially, the monument is also called Aerides (Greek: Αέρηδες), which means Winds. The structure features a combination of sundials, a water clock, and a wind vane. It was supposedly built by Andronicus of Cyrrhus around 50 BC, but according to other sources, might have been constructed in the 2nd century BC before the rest of the forum. In summer of 2014, the Athens Ephorate of Antiquities began cleaning and conserving the structure; restoration work was completed in August 2016.

Turret clock

A turret clock or a public clock is a clock that is larger than a domestic clock and has a mechanism designed to drive a visual time indicator such as dials and or bells as a public amenity. Turret clocks specifically had mechanisms mounted high in a building often a purpose built tower such as churches, town halls, and other public buildings. Clocks were not referred to as turret clocks by clockmakers until recent times, often old clocks were recognised as turret clocks by their location.

A true turret clock has mechanical and latterly electrical power and therefore sits late in the history of timekeeping. The following timeline of clocks is not comprehensive but does indicate the placement of turret clocks.

Water clock (Indianapolis)

The Water Clock, also known as The Giant Water Clock, is in the permanent collection of The Children's Museum of Indianapolis located in Indianapolis, Indiana, United States. The modern water clock is located in the Sunburst Atrium of The Children's Museum, and is adjacent to the Grand Staircase leading up to the second floor. It was created by French scientist and artist Bernard Gitton in 1988, the same year that the museum acquired it.The 26.5-foot (8.1 m) artistic timepiece is the largest water clock in North America.


Zibad (Persian: زيبَد‎, also Romanized as Zībad) is a village in Zibad Rural District, Kakhk District, Gonabad County, Razavi Khorasan Province, Iran. At the 2006 census, its population was 4243, in 1701 families.Zibad, meaning beautiful, was a famous ancient city in Shahnameh. According to Shahnameh Ferdowsi (around 1000 AD), it was the place of a famous war called Davazdah Rokh(12 hero) between Iran and Turan. Zibad also has an ancient qanat that may be more than 1600 years old.

Zibad is famous for :

its saffron and opium production.

its ancient castle which was shelter of the last emperor of Persia, Yazdegerd III, the place of three ancient wars, and its Mithraism monument.

its Qanat and darb e soufe a famous mountain wall rock, similar to Taq-e Bostan

its water clock which had been in use continuously from 400BCE until 1950.

Its Watermill producing flour and crushed wheat. The ancient water mill was at work until 1984 and destroyed for construction of a dam.

According to Callisthenes, the Persians were using water clocks in 328BCE to ensure a just and exact distribution of water from qanats to their shareholders for agricultural irrigation. The use of water clocks in Iran, especially in Zibad, dates back to 500BCE. Later they were also used to determine the exact holy days of pre-Islamic religions, such as the Nowruz, Chelah, or Yaldā - the shortest, longest, and equal-length days and nights of the years. The water clocks used in Iran were one of the most practical ancient tools for timing the yearly calendar.[1]


Key concepts
Measurement and
  • Religion
  • Mythology
Philosophy of time
Human experience
and use of time
Time in
Related topics
International standards
Obsolete standards
Time in physics
Archaeology and geology
Astronomical chronology
Other units of time
Related topics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.