Vine–Matthews–Morley hypothesis

The Vine–Matthews–Morley hypothesis, also known as the Morley–Vine–Matthews hypothesis, was the first key scientific test of the seafloor spreading theory of continental drift and plate tectonics.

East Pacific Rise seafloor magnetic profile - observed vs calculated
The observed magnetic profile for the sea floor around a mid-oceanic ridge agrees closely with the profile predicted by the Vine–Matthews–Morley hypothesis.

History

Harry Hess proposed the sea-floor spreading hypothesis in 1960 (published in 1962 [1]); the term "spreading of the seafloor" was introduced by geophysicist Robert S. Dietz in 1961.[2] According to Hess, seafloor was created at mid-oceanic ridges by the convection of the earth's mantle, pushing and spreading the older crust away from the ridge.[3] Geophysicist Frederick John Vine and the Canadian geologist Lawrence W. Morley independently realized that if Hess's seafloor spreading theory was correct, then the rocks surrounding the mid-oceanic ridges should show symmetric patterns of magnetization reversals using newly collected magnetic surveys. Both of Morley's letters to Nature (February 1963) and Journal of Geophysical Research (April 1963) were rejected, hence Vine and his PhD adviser at Cambridge University, Drummond Hoyle Matthews, were first to publish the theory in 1963.[4] Some colleagues were skeptical of the hypothesis because of the numerous assumptions made—seafloor spreading, geomagnetic reversals, and remnant magnetism—all hypotheses that were still not widely accepted.[5] The Vine–Matthews–Morley hypothesis describes the magnetic reversals of oceanic crust. Further evidence for this hypothesis came from Cox et al. (1967) when he measured the remnant magnetization of lavas from land sites.[6] Walter C. Pitman offered further evidence with a remarkably symmetric profile from the Pacific-Antarctic Ridge.

Geomagnetism

The Vine-Matthews hypothesis correlates the symmetric magnetic patterns seen on the seafloor with geomagnetic field reversals. At mid-ocean ridges, new crust is created by the injection, extrusion, and solidification of magma. After the magma has cooled through the Curie point, ferromagnetism becomes possible and the magnetic minerals in the newly formed crust orient themselves with the current background geomagnetic field.[6] Lithospheric creation at the ridge is considered continuous and symmetrical as the new crust pushes the old crust laterally and equally on either side of the ridge. Therefore, as geomagnetic reversal occur, the crust on either side of the ridge will contain a record of remnant magnetizations of normal or reversed magnetizations in comparison to the current geomagnetic field. The ridge crest is analogous to “twin-headed tape recorder”, recording the Earth's magnetic history.[7]

The intensity of the remnant magnetization is greater than the induced magnetization. The shape of the magnetic anomaly is controlled by the combination of the orientation of its total magnetization, the summation of the induced magnetization and remnant magnetization. Consequently, the shape of the magnetic anomaly is controlled predominately by the primary remnant vector. Blocks of crust at high latitudes have magnetic vectors that dip steeply downward in a normal magnetic field. However, close to the magnetic south pole, the magnetic vectors dip steeply downward in a reversed magnetic field and inclined steeply upwards in a normal magnetic field. There are positive magnetic anomalies over normally magnetized blocks and negative anomalies over reversed blocks.[6] Local anomalies with a short period also exist, but are considered to be correlated with bathymetry.[8] In low latitudes, the vectors are shallowly dipping and dipolar. This confuses the positive and negative anomalies. At the magnetic equator, the magnetic field is horizontal; negative anomalies are related to normally magnetized blocks and positive anomalies with reversed. The amplitude of the anomaly, magnetic field strength, and the magnitude of the remanence all decrease from the poles to the equator.[6]

The orientation of the ridge affects the anomaly shape and amplitude. The component of the vector that effects the anomaly is at a maximum when the ridge is east-west and the magnetic profile is north-south. The anomalies are most apparent at high magnetic latitudes, north-south trending ridges at all latitudes, and east-west trending ridges at the magnetic equator.[8]

References

  1. ^ Hess, H. H. (November 1, 1962). "History of Ocean Basins". In A. E. J. Engel; Harold L. James; B. F. Leonard (eds.). Petrologic Studies: A volume in honor of A. F. Buddington. Boulder, CO: Geological Society of America. pp. 599–620.CS1 maint: uses editors parameter (link)
  2. ^ Dietz, Robert S. (1961). "Continent and Ocean Basin Evolution by Spreading of the Sea Floor". Nature. 190 (4779): 854–857. Bibcode:1961Natur.190..854D. doi:10.1038/190854a0.
  3. ^ Iseda, Tetsuji. "Philosophical Interpretations of the Plate Tectonics Revolution". Retrieved 27 February 2011.
  4. ^ "Frederick Vine and Drummond Matthews, Pioneers of Plate Tectonics". The Geological Society. Retrieved 19 Mar 2014.
  5. ^ Frankel, Henry (1982). "The development, reception, and acceptance of the Vine-Matthews-Morley hypothesis". Historical Studies in the Physical Sciences Baltimore, Md. 13 (1): 1–39. doi:10.2307/27757504. JSTOR 27757504.
  6. ^ a b c d Kearey, Philip; Klepeis, Keith A.; Vine, Frederick J. (2009). Global tectonics (3rd ed.). Chichester: Wiley-Blackwell. ISBN 9781444303223.
  7. ^ Vine, F.J. (1966). "Spreading of the ocean floor: new evidence". Science. 154 (3755): 1405–1415. Bibcode:1966Sci...154.1405V. doi:10.1126/science.154.3755.1405. PMID 17821553.
  8. ^ a b Vine, F. J; Matthews, D. H. (1963). "Magnetic Anomalies Over Oceanic Ridges". Nature. 199 (4897): 947–949. Bibcode:1963Natur.199..947V. doi:10.1038/199947a0.
Back-arc basin

Back-arc basins are geologic basins, submarine features associated with island arcs and subduction zones. They are found at some convergent plate boundaries, presently concentrated in the western Pacific Ocean. Most of them result from tensional forces caused by oceanic trench rollback (the oceanic trench is wandering in the seafloor direction) and the collapse of the edge of the continent. The arc crust is under extension or rifting as a result of the sinking of the subducting slab. Back-arc basins were initially a surprising result for plate tectonics theorists, who expected convergent boundaries to be zones of compression, rather than major extension. However, they are now recognized as consistent with this model in explaining how the interior of Earth loses heat.

Bahama Banks

The Bahama Banks are the submerged carbonate platforms that make up much of the Bahama Archipelago. The term is usually applied in referring to either the Great Bahama Bank around Andros Island, or the Little Bahama Bank of Grand Bahama Island and Great Abaco, which are the largest of the platforms, and the Cay Sal Bank north of Cuba. The islands of these banks are politically part of the Bahamas. Other banks are the three banks of the Turks and Caicos Islands, namely the Caicos Bank of the Caicos Islands, the bank of the Turks Islands, and wholly submerged Mouchoir Bank. Further southeast are the equally wholly submerged Silver Bank and Navidad Bank north of the Dominican Republic.

Carbonate platform

A carbonate platform is a sedimentary body which possesses topographic relief, and is composed of autochthonic calcareous deposits. Platform growth is mediated by sessile organisms whose skeletons build up the reef or by organisms (usually microbes) which induce carbonate precipitation through their metabolism. Therefore, carbonate platforms can not grow up everywhere: they are not present in places where limiting factors to the life of reef-building organisms exist. Such limiting factors are, among others: light, water temperature, transparency and pH-Value. For example, carbonate sedimentation along the Atlantic South American coasts takes place everywhere but at the mouth of the Amazon River, because of the intense turbidity of the water there. Spectacular examples of present-day carbonate platforms are the Bahama Banks under which the platform is roughly 8 km thick, the Yucatan Peninsula which is up to 2 km thick, the Florida platform, the platform on which the Great Barrier Reef is growing, and the Maldive atolls. All these carbonate platforms and their associated reefs are confined to tropical latitudes. Today's reefs are built mainly by scleractinian corals, but in the distant past other organisms, like archaeocyatha (during the Cambrian) or extinct cnidaria (tabulata and rugosa) were important reef builders.

Continental drift

Continental drift is the theory that the Earth's continents have moved over geologic time relative to each other, thus appearing to have "drifted" across the ocean bed. The speculation that continents might have 'drifted' was first put forward by Abraham Ortelius in 1596. The concept was independently and more fully developed by Alfred Wegener in 1912, but his theory was rejected by many for lack of any motive mechanism. Arthur Holmes later proposed mantle convection for that mechanism. The idea of continental drift has since been subsumed by the theory of plate tectonics, which explains that the continents move by riding on plates of the Earth's lithosphere.

Frederick Vine

Frederick John Vine FRS (born 17 June 1939) is an English marine geologist and geophysicist. He made key contributions to the theory of plate tectonics, helping to show that the seafloor spreads from mid-ocean ridges with a symmetrical pattern of magnetic reversals in the basalt rocks on either side.

List of multiple discoveries

Historians and sociologists have remarked the occurrence, in science, of "multiple independent discovery". Robert K. Merton defined such "multiples" as instances in which similar discoveries are made by scientists working independently of each other. "Sometimes," writes Merton, "the discoveries are simultaneous or almost so; sometimes a scientist will make a new discovery which, unknown to him, somebody else has made years before."Commonly cited examples of multiple independent discovery are the 17th-century independent formulation of calculus by Isaac Newton, Gottfried Wilhelm Leibniz and others, described by A. Rupert Hall; the 18th-century discovery of oxygen by Carl Wilhelm Scheele, Joseph Priestley, Antoine Lavoisier and others; and the theory of the evolution of species, independently advanced in the 19th century by Charles Darwin and Alfred Russel Wallace.

Multiple independent discovery, however, is not limited to such famous historic instances. Merton believed that it is multiple discoveries, rather than unique ones, that represent the common pattern in science.Merton contrasted a "multiple" with a "singleton"—a discovery that has been made uniquely by a single scientist or group of scientists working together.A distinction is drawn between a discovery and an invention, as discussed for example by Bolesław Prus. However, discoveries and inventions are inextricably related, in that discoveries lead to inventions, and inventions facilitate discoveries; and since the same phenomenon of multiplicity occurs in relation to both discoveries and inventions, this article lists both multiple discoveries and multiple inventions.

List of submarine volcanoes

A list of active and extinct submarine volcanoes and seamounts located under the world's oceans. There are estimated to be 40,000 to 55,000 seamounts in the global oceans. Almost all are not well-mapped and many may not have been identified at all. Most are unnamed and unexplored. This list is therefore confined to seamounts that are notable enough to have been named and/or explored.

Neil D. Opdyke

Neil D. Opdyke (February 7, 1933 – April 7, 2019) was an American geologist.

He was the Distinguished Professor Emeritus in the Department of Geological Sciences at the University of Florida in Gainesville, Florida, United States. He was previously with Lamont-Doherty Geological Observatory of Columbia University, including a stint as Director. He was well known for his groundbreaking research in the 1950s on paleoclimate and continental drift, with Keith Runcorn, and later in Africa and Australia with Mike McElhinny and others. Back the U.S. in the mid-1960s he worked on the documentation of magnetic reversals in deep-sea sediments, which led to proof of the Vine–Matthews–Morley hypothesis the governing paradigm for marine magnetic anomalies.

In 1969, Dr. Opdyke & Ken Henry used marine core data for a convincing test of the GAD

hypothesis that is central to the use of paleomagnetism in continental

reconstruction. Opdyke’s work with Nick Shackleton in 1973 marked the

beginning of the integration of oxygen isotope stratigraphy and

magnetostratigraphy that has led to current methods of tuning

timescales. Neil pioneered magnetic stratigraphy in terrestrial

(non-marine) sediments and produced some of the most impressive records, notably from Pakistan and southwestern United States. These studies led to a vastly improved time frame for vertebrate evolution and allowed the documentation of mammal migration.

Oceanic plateau

An oceanic or submarine plateau is a large, relatively flat elevation that is higher than the surrounding relief with one or more relatively steep sides.There are 184 oceanic plateaus covering an area of 18,486,600 km2 (7,137,700 sq mi), or about 5.11% of the oceans. The South Pacific region around Australia and New Zealand contains the greatest number of oceanic plateaus (see map).

Oceanic plateaus produced by large igneous provinces are often associated with hotspots, mantle plumes, and volcanic islands — such as Iceland, Hawaii, Cape Verde, and Kerguelen. The three largest plateaus, the Caribbean, Ontong Java, and Mid-Pacific Mountains, are located on thermal swells. Other oceanic plateaus, however, are made of rifted continental crust, for example Falkland Plateau, Lord Howe Rise, and parts of Kerguelen, Seychelles, and Arctic ridges.

Plateaus formed by large igneous provinces were formed by the equivalent of continental flood basalts such as the Deccan Traps in India and the Snake River Plain in the United States.

In contrast to continental flood basalts, most igneous oceanic plateaus erupt through young and thin (6–7 km (3.7–4.3 mi)) mafic or ultra-mafic crust and are therefore uncontaminated by felsic crust and representative for their mantle sources.

These plateaus often rise 2–3 km (1.2–1.9 mi) above the surrounding ocean floor and are more buoyant than oceanic crust. They therefore tend to withstand subduction, more-so when thick and when reaching subduction zones shortly after their formations. As a consequence, they tend to "dock" to continental margins and be preserved as accreted terranes. Such terranes are often better preserved than the exposed parts of continental flood basalts and are therefore a better record of large-scale volcanic eruptions throughout Earth's history. This "docking" also means that oceanic plateaus are important contributors to the growth of continental crust. Their formations often had a dramatic impact on global climate, such as the most recent plateaus formed, the three, large, Cretaceous oceanic plateaus in the Pacific and Indian Ocean: Ontong Java, Kerguelen, and Caribbean.

Outline of geophysics

The following outline is provided as an overview of and topical guide to geophysics:

Geophysics – the physics of the Earth and its environment in space; also the study of the Earth using quantitative physical methods. The term geophysics sometimes refers only to the geological applications: Earth's shape; its gravitational and magnetic fields; its internal structure and composition; its dynamics and their surface expression in plate tectonics, the generation of magmas, volcanism and rock formation. However, modern geophysics organizations have a broader definition that includes the hydrological cycle including snow and ice; fluid dynamics of the oceans and the atmosphere; electricity and magnetism in the ionosphere and magnetosphere and solar-terrestrial relations; and analogous problems associated with the Moon and other planets.

Outline of plate tectonics

This is a list of articles related to plate tectonics and tectonic plates.

Physical oceanography

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Physical oceanography is one of several sub-domains into which oceanography is divided. Others include biological, chemical and geological oceanography.

Physical oceanography may be subdivided into descriptive and dynamical physical oceanography.Descriptive physical oceanography seeks to research the ocean through observations and complex numerical models, which describe the fluid motions as precisely as possible.

Dynamical physical oceanography focuses primarily upon the processes that govern the motion of fluids with emphasis upon theoretical research and numerical models. These are part of the large field of Geophysical Fluid Dynamics (GFD) that is shared together with meteorology. GFD is a sub field of Fluid dynamics describing flows occurring on spatial and temporal scales that are greatly influenced by the Coriolis force.

Plate tectonics

Plate tectonics (from the Late Latin tectonicus, from the Greek: τεκτονικός "pertaining to building") is a scientific theory describing the large-scale motion of seven large plates and the movements of a larger number of smaller plates of the Earth's lithosphere, since tectonic processes began on Earth between 3.3 and 3.5 billion years ago. The model builds on the concept of continental drift, an idea developed during the first decades of the 20th century. The geoscientific community accepted plate-tectonic theory after seafloor spreading was validated in the late 1950s and early 1960s.

The lithosphere, which is the rigid outermost shell of a planet (the crust and upper mantle), is broken into tectonic plates. The Earth's lithosphere is composed of seven or eight major plates (depending on how they are defined) and many minor plates. Where the plates meet, their relative motion determines the type of boundary: convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries (or faults). The relative movement of the plates typically ranges from zero to 100 mm annually.Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction, or one plate moving under another, carries the lower one down into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the lithosphere remains the same. This prediction of plate tectonics is also referred to as the conveyor belt principle. Earlier theories, since disproven, proposed gradual shrinking (contraction) or gradual expansion of the globe.Tectonic plates are able to move because the Earth's lithosphere has greater mechanical strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection; that is, the slow creeping motion of Earth's solid mantle. Plate movement is thought to be driven by a combination of the motion of the seafloor away from spreading ridges due to variations in topography (the ridge is a topographic high) and density changes in the crust (density increases as newly formed crust cools and moves away from the ridge). At subduction zones the relatively cold, dense crust is "pulled" or sinks down into the mantle over the downward convecting limb of a mantle cell. Another explanation lies in the different forces generated by tidal forces of the Sun and Moon. The relative importance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.

Timeline of geology

Timeline of geology

Timeline of scientific discoveries

The timeline below shows the date of publication of possible major scientific breakthroughs, theories and discoveries, along with the discoverer. In many cases, the discoveries spanned several years.

Timeline of scientific thought

This is a list of important landmarks in the history of systematic philosophical inquiry and scientific analysis of phenomena. The list seeks to highlight important stages in the development of thoughts and analysis towards conceptualizing and understanding phenomena. This list seeks to include all major landmarks in systematic analysis of phenomena across disciplines that seeks to implement formal methods and systematic formal analysis of phenomena. Thus it seeks to list major landmarks across all scientific philosophy and methodological sciences including physical sciences, scientific philosophy, formal disciplines or pure sciences, behavioural sciences, social sciences, biological sciences, life sciences and other related disciplines.

Timeline of the development of tectonophysics (after 1952)

The evolution of tectonophysics is closely linked to the history of the continental drift and plate tectonics hypotheses. The continental drift/ Airy-Heiskanen isostasy hypothesis had many flaws and scarce data. The fixist/ Pratt-Hayford isostasy, the contracting Earth and the expanding Earth concepts had many flaws as well.

The idea of continents with a permanent location, the geosyncline theory, the Pratt-Hayford isostasy, the extrapolation of the age of the Earth by Lord Kelvin as a black body cooling down, the contracting Earth, the Earth as a solid and crystalline body, is one school of thought. A lithosphere creeping over the asthenosphere is a logical consequence of an Earth with internal heat by radioactivity decay, the Airy-Heiskanen isostasy, thrust faults and Niskanen's mantle viscosity determinations.

Undersea mountain range

Undersea mountain ranges are mountain ranges that are mostly or entirely underwater, and specifically under the surface of an ocean. If originated from current tectonic forces, they are often referred to as a mid-ocean ridge. In contrast, if formed by past above-water volcanism, they are known as a seamount chain. The largest and best known undersea mountain range is a mid-ocean ridge, the Mid-Atlantic Ridge. It has been observed that, "similar to those on land, the undersea mountain ranges are the loci of frequent volcanic and earthquake activity".

Wave base

The wave base, in physical oceanography, is the maximum depth at which a water wave's passage causes significant water motion. For water depths deeper than the wave base, bottom sediments and the seafloor are no longer stirred by the wave motion above.

Waves
Circulation
Tides
Landforms
Plate
tectonics
Ocean zones
Sea level
Acoustics
Satellites
Related

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.