Video scaler

A video scaler is a system which converts video signals from one display resolution to another; typically, scalers are used to convert a signal from a lower resolution (such as 480p standard definition) to a higher resolution (such as 1080i high definition), a process known as "upconversion" or "upscaling" (by contrast, converting from high to low resolution is known as "downconversion" or "downscaling").

Video scalers are typically found inside consumer electronics devices such as televisions, video game consoles, and DVD or Blu-ray disc players, but can also be found in other AV equipment (such as video editing and television broadcasting equipment). Video scalers can also be a completely separate devices, often providing simple video switching capabilities. These units are commonly found as part of home theatre or projected presentation systems. They are often combined with other video processing devices or algorithms to create a video processor that improves the apparent definition of video signals.

Video scalers are primarily a digital device; however, they can be combined with an analog-to-digital converter (ADC, or digitizer) and a digital-to-analog converter (DAC) to support analog inputs and outputs.

ImagePixels
A blow-up of a small section of a 1024x768 (VESA XGA) resolution image; the individual pixels are more visible in its scaled form than its normal resolution.

Process

ResolutionComparison
This is a comparison of several common video resolutions. The more pixels in an image the greater the possibility for finer detail and fidelity.

The "native resolution" of a display is how many physical pixels make up each row and column of the visible area on the display's output surface.[1] There are many different video signals in use which are not the same resolution (neither are all of the displays), thus some form of resolution adaptation is required to properly frame a video signal to a display device. For example, within the United States, there are NTSC, ATSC, and VESA video standards each with several different resolution video formats. Multiple common resolutions are also used for high-definition television; 720p, 1080i, and 1080p.

While scaling a video signal does allow it to match the size of a particular display, the process can result in an increased number of visual artifacts in the signal, such as ringing and posterization.

Scaling by television channels

Television channels which air a mixture of 16:9 (or high definition) programming and 4:3 (or standard definition) programming may employ scaling and/or cropping in order to make the programming fill the entire screen, as opposed to pillarboxing the feed instead, in order to maintain consistency in format.[2][3] Likewise, as opposed to "center-cropping", channels may downscale programming produced in 16:9 for broadcast on their 4:3 feeds through letterboxing—either as a full 16:9 letterbox, or a partial 14:9 letterbox—a technique used primarily by European broadcasters during the transition to digital terrestrial television.[4] The Active Format Description standard is a system of variables defining various scaling, letterboxing, and pillarboxing states; broadcasting equipment and televisions can be configured to automatically switch to the appropriate state based on the AFD flag encoded in the content and the aspect ratio of the display.[5]

When the U.S. cable network TNT introduced an HD feed in 2004, it controversially employed a stretching system known as FlexView (which was also offered to other broadcasters). FlexView used a nonlinear method to stretch more near the edges of the screen than in the center of it. The practice was imposed by the senior vice president of broadcast engineering at TNT, Clyde D. Smith, who argued that pillarboxing could cause burn-in on plasma televisions, some older HDTVs could not stretch 4:3 content automatically, the quality of stretching on some displays was poor, and also desired a more consistent viewing experience with no "jarring" transitions to 4:3 programming.[2] Despite TNT's intentions, the system was frequently criticized by viewers of high definition channels, with some nicknaming the effect "Stretch-O-Vision".[2][6]

In 2014, FXX faced similar criticism for its use of cropping and scaling on reruns of The Simpsons (which only started producing episodes in HD beginning in its 20th season), as its cropping method caused various visual gags to be lost. In February 2015, FXX announced that in response to these complaints, it would present these episodes in their original 4:3 aspect ratio on its video-on-demand service.[3][7]

See also

References

  1. ^ "Video Upscaling for better viewing experience". hometoys.com. 2011-05-25. Retrieved 2013-03-07.
  2. ^ a b c "TNT Stretches for HD". TV Week. Retrieved 2008-08-10.
  3. ^ a b "FXX will finally stream The Simpsons in original 4:3 format". The Verge. Retrieved 13 February 2015.
  4. ^ "Beyond HD". BBC Academy. Retrieved 3 June 2015.
  5. ^ "Managing AFD: Keep image format under your control". TV Technology. Retrieved 5 June 2016.
  6. ^ "Just say no to stretch-o-vision". EngadgetHD. Retrieved 2008-08-10.
  7. ^ "FXX ruins the punchline by inexplicably cropping old standard definition 'Simpsons' episodes". The Verge. Retrieved 13 February 2015.
Broadcast reference monitor

A video monitor also called a broadcast monitor, broadcast video monitor, broadcast reference monitor or just reference monitor, is a display device similar to a television set, used to monitor the output of a video-generating device, such as playout from a video server, IRD, video camera, VCR, or DVD player. It may or may not have professional audio monitoring capability. Unlike a television set, a video monitor has no tuner (television) and, as such, is unable independently to tune into an over-the-air broadcast like a television receiver. One common use of video monitors is in television stations, television studios, production trucks and in outside broadcast vehicles, where broadcast engineers use them for confidence checking of analog signal and digital signals throughout the system.

Video monitors are used extensively in the security industry with closed-circuit television cameras (CCTV) and recording devices.

Common display types for video monitors

Cathode ray tube

Liquid crystal display

Plasma displayCommon monitoring formats for security

Composite video

S-Video

DVD player

A DVD player is a device that plays DVD discs produced under both the DVD-Video and DVD-Audio technical standards, two different and incompatible standards. Some DVD players will also play audio CDs. DVD players are connected to a television to watch the FBI content, which could be a movie, a recorded TV show, or other content.

The first DVD player was created by Sony Corporation in Japan in collaboration with Pacific Digital Company from the United States in 1997. Some manufacturers originally announced that DVD players would be available as early as the middle of 1996. These predictions were too optimistic. Delivery was initially held up for "political" reasons of copy protection demanded by movie studios, but was later delayed by lack of movie titles. The first players appeared in Japan on November 1, 1996, followed by the United States on March 26, 1997 with distribution limited to only seven major cities for the first six months.

Players slowly trickled into other regions around the world. Prices for the first players in 1997 started at $600 and could top out at prices over $1000. By the end of 2000, players were available for under $100 at discount retailers. In 2003 players became available for under $50. Six years after the initial launch, close to one thousand models of DVD players were available from over a hundred consumer electronics manufacturers.

Fujitsu released the first DVD-ROM-equipped computer on November 6th in GB. Toshiba released a DVD-ROM-equipped computer and a DVD-ROM drive in Japan in early 1997 (moved back from December which was moved back from November). DVD-ROM drives from Toshiba, Pioneer, Panasonic, Hitachi, and Sony began appearing in sample quantities as early as January 1997, but none were available before May. The first PC upgrade kits (a combination of DVD-ROM drive and hardware decoder card) became available from Creative Labs, Hi-Val, and Diamond Multimedia in April and May 1997. In 2014, every major PC manufacturer has models that include DVD-ROM drives.

The first DVD-Audio players were released in Japan by Pioneer in late 1999, but they did not play copy-protected discs. Matsushita (under the Panasonic and Technics labels) first released full-fledged players in July 2000 for $700 to $1,200. DVD-Audio players are now also made by Aiwa, Denon, JVC, Kenwood, Madrigal, Marantz, Nakamichi, Onkyo, Toshiba, Yamaha, and others. Sony released the first SACD players in May 1999 for $5,000. Pioneer's first DVD-Audio players released in late 1999 also played SACD. SACD players are now also made by Accuphase, Aiwa, Denon, Kenwood, Marantz, Philips, Sharp, and others.

DVD recorder

A DVD recorder is an optical disc recorder that uses optical disc recording technologies to digitally record analog or digital signals onto blank writable DVD media. Such devices are available as either installable drives for computers or as standalone components for use in television studios or home theater systems.

As of March 1, 2007 all new tuner-equipped television devices manufactured or imported in the United States must include an ATSC tuner. The US Federal Communications Commission (FCC) has interpreted this rule broadly, including apparatus such as computers with TV tuner cards with video capture ability, videocassette recorders and standalone DVD recorders. NTSC DVD recorders are undergoing a transformation, either adding a digital ATSC tuner or removing over-the-air broadcast television tuner capability entirely. However, these DVD recorders can still record analog audio and analog video.

Given the decline in popularity of DVDs, Magnavox, as of 2018, was the last manufacturer of stand-alone recorders (including a tuner).

Display resolution

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays (including liquid-crystal displays) and projection displays using fixed picture-element (pixel) arrays.

It is usually quoted as width × height, with the units in pixels: for example, "1024 × 768" means the width is 1024 pixels and the height is 768 pixels. This example would normally be spoken as "ten twenty-four by seven sixty-eight" or "ten twenty-four by seven six eight".

One use of the term "display resolution" applies to fixed-pixel-array displays such as plasma display panels (PDP), liquid-crystal displays (LCD), Digital Light Processing (DLP) projectors, OLED displays, and similar technologies, and is simply the physical number of columns and rows of pixels creating the display (e.g. 1920 × 1080). A consequence of having a fixed-grid display is that, for multi-format video inputs, all displays need a "scaling engine" (a digital video processor that includes a memory array) to match the incoming picture format to the display.

For device displays such as phones, tablets, monitors and televisions, the use of the word resolution as defined above is a misnomer, though common. The term "display resolution" is usually used to mean pixel dimensions, the number of pixels in each dimension (e.g. 1920 × 1080), which does not tell anything about the pixel density of the display on which the image is actually formed: resolution properly refers to the pixel density, the number of pixels per unit distance or area, not total number of pixels. In digital measurement, the display resolution would be given in pixels per inch (PPI). In analog measurement, if the screen is 10 inches high, then the horizontal resolution is measured across a square 10 inches wide. For television standards, this is typically stated as "lines horizontal resolution, per picture height"; for example, analog NTSC TVs can typically display about 340 lines of "per picture height" horizontal resolution from over-the-air sources, which is equivalent to about 440 total lines of actual picture information from left edge to right edge.

Improved-definition television

Improved-definition television (IDTV) or enhanced-quality television transmitters and receivers exceed the performance requirements of the NTSC standard, while remaining within the general parameters of NTSC emissions standards.

IDTV improvements may be made at the television transmitter or receiver. Improvements include enhancements in encoding, digital filtering, scan interpolation, interlaced line scanning, and ghost cancellation.

IDTV improvements must allow the TV signal to be transmitted and received in the standard 4:3 aspect ratio.

Liquid-crystal display

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals. Liquid crystals do not emit light directly, instead using a backlight or reflector to produce images in color or monochrome. LCDs are available to display arbitrary images (as in a general-purpose computer display) or fixed images with low information content, which can be displayed or hidden, such as preset words, digits, and seven-segment displays, as in a digital clock. They use the same basic technology, except that arbitrary images are made up of a large number of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in portable consumer devices such as digital cameras, watches, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to increase the lifespan of LCDs are quantum dot displays, which offer similar performance as an OLED display, but the Quantum dot sheet that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence. The LCD screen is more energy-efficient and can be disposed of more safely than a CRT can. Its low electrical power consumption enables it to be used in battery-powered electronic equipment more efficiently than CRTs can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

S3 Graphics

S3 Graphics, Ltd (commonly referred to as S3) is an American computer graphics company. The company is perhaps best known for its ViRGE and its much improved successor Savage 3D and Chrome series. Struggling against competition from 3dfx Interactive, ATI and Nvidia during the height of the 3D accelerator wars, the graphics portion of the company was spun off into a new joint effort with VIA Technologies. The new company focused on the mobile graphics market, and became a major player in this space. The company was purchased by HTC in 2011. Although primarily a mobile technology company, they still produce graphics accelerators for home computers under the "S3 Chrome" brand name.

S3 Savage

Savage was a product-line of PC graphics chipsets designed by S3.

Sample-rate conversion

Sample-rate conversion is the process of changing the sampling rate of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include image scaling and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons.

For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates. Sample-rate conversion prevents changes in speed and pitch that would otherwise occur when transferring recorded material between such systems.

Within specific domains or for specific conversions, the following alternative terms for sample-rate conversion are also used: sampling-frequency conversion, resampling, upsampling, downsampling, interpolation, decimation, upscaling, downscaling. The term multi-rate digital signal processing is sometimes used to refer to systems that incorporate sample-rate conversion.

Scale up

Scale up, Scale-up, or scaleup may refer to:

Scalability, the ability to function with different amounts of required work, or to be readily adjusted to do so

Scale-up (chemical engineering) in chemical engineering, the migration of a process from the lab-scale to the pilot plant-scale or commercial scale

Scaleup company

Scaler

Scaler may refer to:

Periodontal scaler, an anti-plaque tool

Video scaler, a system which converts video signals from one resolution to another

Scaler (video game), a 2004 platformer video game

Scan conversion

The process of representing continuous graphics objects as a collection of discrete pixels is called scan conversion.

Scan conversion or scan converting rate is a video processing technique for changing the vertical / horizontal scan frequency of video signal for different purposes and applications. The device which performs this conversion is called a scan converter.The application of scan conversion is wide and covers video projectors, cinema equipment, TV and video capture cards, standard and HDTV televisions, LCD monitors, radar displays and many different aspects of picture processing.

Ultra-high-definition television

Ultra-high-definition television (also known as Ultra HD television, Ultra HD, UHDTV, UHD and Super Hi-Vision) today includes 4K UHD and 8K UHD, which are two digital video formats with an aspect ratio of 16:9. These were first proposed by NHK Science & Technology Research Laboratories and later defined and approved by the International Telecommunication Union (ITU).The Consumer Electronics Association announced on October 17, 2012, that "Ultra High Definition", or "Ultra HD", would be used for displays that have an aspect ratio of 16:9 or wider and at least one digital input capable of carrying and presenting native video at a minimum resolution of 3840×2160 pixels. In 2015, the Ultra HD Forum was created to bring together the end-to-end video production ecosystem to ensure interoperability and produce industry guidelines so that adoption of ultra-high-definition television could accelerate. From just 30 in Q3 2015, the forum published a list up to 55 commercial services available around the world offering 4K resolution.The "UHD Alliance", an industry consortium of content creators, distributors, and hardware manufacturers, announced during a Consumer Electronics Show (CES) 2016 press conference its "Ultra HD Premium" specification, which defines resolution, bit depth, color gamut, high-dynamic-range imaging (HDRI) and rendering (HDRR) required for Ultra HD (UHDTV) content and displays to carry their Ultra HD Premium logo.

Upscale

Upscale may refer to:

Luxury good

Video scaler

Video processing

In electronics engineering, video processing is a particular case of signal processing, in particular image processing, which often employs video filters and where the input and output signals are video files or video streams. Video processing techniques are used in television sets, VCRs, DVDs, video codecs, video players, video scalers and other devices. For example—commonly only design and video processing is different in TV sets of different manufactures.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.