Type Ib and Ic supernovae

Type Ib and Type Ic supernovae are categories of supernovae that are caused by the stellar core collapse of massive stars. These stars have shed or been stripped of their outer envelope of hydrogen, and, when compared to the spectrum of Type Ia supernovae, they lack the absorption line of silicon. Compared to Type Ib, Type Ic supernovae are hypothesized to have lost more of their initial envelope, including most of their helium. The two types are usually referred to as stripped core-collapse supernovae.

Supernova 2008D
The Type Ib supernova SN 2008D[1][2] in galaxy NGC 2770, shown in X-ray (left) and visible light (right), at the corresponding positions of the images. (NASA image.)[3]


When a supernova is observed, it can be categorized in the MinkowskiZwicky supernova classification scheme based upon the absorption lines that appear in its spectrum.[4] A supernova is first categorized as either a Type I or Type II, then subcategorized based on more specific traits. Supernovae belonging to the general category Type I lack hydrogen lines in their spectra; in contrast to Type II supernovae which do display lines of hydrogen. The Type I category is subdivided into Type Ia, Type Ib and Type Ic.[5]

Type Ib/Ic supernovae are distinguished from Type Ia by the lack of an absorption line of singly ionized silicon at a wavelength of 635.5 nanometres.[6] As Type Ib and Ic supernovae age, they also display lines from elements such as oxygen, calcium and magnesium. In contrast, Type Ia spectra become dominated by lines of iron.[7] Type Ic supernovae are distinguished from Type Ib in that the former also lack lines of helium at 587.6 nm.[7]


Evolved star fusion shells
The onion-like layers of an evolved, massive star (not to scale).

Prior to becoming a supernova, an evolved massive star is organized in the manner of an onion, with layers of different elements undergoing fusion. The outermost layer consists of hydrogen, followed by helium, carbon, oxygen, and so forth. Thus when the outer envelope of hydrogen is shed, this exposes the next layer that consists primarily of helium (mixed with other elements). This can occur when a very hot, massive star reaches a point in its evolution when significant mass loss is occurring from its stellar wind. Highly massive stars (with 25 or more times the mass of the Sun) can lose up to 10−5 solar masses (M) each year—the equivalent of 1 M every 100,000 years.[8]

Type Ib and Ic supernovae are hypothesized to have been produced by core collapse of massive stars that have lost their outer layer of hydrogen and helium, either via winds or mass transfer to a companion.[6] The progenitors of Types Ib and Ic have lost most of their outer envelopes due to strong stellar winds or else from interaction with a close companion of about 3–4 M.[9][10] Rapid mass loss can occur in the case of a Wolf–Rayet star, and these massive objects show a spectrum that is lacking in hydrogen. Type Ib progenitors have ejected most of the hydrogen in their outer atmospheres, while Type Ic progenitors have lost both the hydrogen and helium shells; in other words, Type Ic have lost more of their envelope (i.e., much of the helium layer) than the progenitors of Type Ib.[6] In other respects, however, the underlying mechanism behind Type Ib and Ic supernovae is similar to that of a Type II supernova, thus placing Types Ib and Ic between Type Ia and Type II.[6] Because of their similarity, Type Ib and Ic supernovae are sometimes collectively called Type Ibc supernovae.[11]

There is some evidence that a small fraction of the Type Ic supernovae may be the progenitors of gamma ray bursts (GRBs); in particular, type Ic supernovae that have broad spectral lines corresponding to high-velocity outflows are thought to be strongly associated with GRBs. However, it is also hypothesized that any hydrogen-stripped Type Ib or Ic supernova could be a GRB, dependent upon the geometry of the explosion.[12] In any case, astronomers believe that most Type Ib, and probably Type Ic as well, result from core collapse in stripped, massive stars, rather than from the thermonuclear runaway of white dwarfs.[6]

As they are formed from rare, very massive stars, the rate of Type Ib and Ic supernovae occurrence is much lower than the corresponding rate for Type II supernovae.[13] They normally occur in regions of new star formation, and are extremely rare in elliptical galaxies.[14] Because they share a similar operating mechanism, Type Ibc and the various Type II supernovae are collectively called core-collapse supernovae. In particular, Type Ibc may be referred to as stripped core-collapse supernovae.[6]

Light curves

The light curves (a plot of luminosity versus time) of Type Ib supernovae vary in form, but in some cases can be nearly identical to those of Type Ia supernovae. However, Type Ib light curves may peak at lower luminosity and may be redder. In the infrared portion of the spectrum, the light curve of a Type Ib supernova is similar to a Type II-L light curve.[15] Type Ib supernovae usually have slower decline rates for the spectral curves than Ic.[6]

Type Ia supernovae light curves are useful for measuring distances on a cosmological scale. That is, they serve as standard candles. However, due to the similarity of the spectra of Type Ib and Ic supernovae, the latter can form a source of contamination of supernova surveys and must be carefully removed from the observed samples before making distance estimates.[16]

See also


  1. ^ Malesani, D.; et al. (2008). "Early spectroscopic identification of SN 2008D". Astrophysical Journal. 692 (2): L84–L87. arXiv:0805.1188. Bibcode:2009ApJ...692L..84M. doi:10.1088/0004-637X/692/2/L84.
  2. ^ Soderberg, A. M.; et al. (2008). "An extremely luminous X-ray outburst at the birth of a supernova". Nature. 453 (7194): 469–474. arXiv:0802.1712. Bibcode:2008Natur.453..469S. doi:10.1038/nature06997. PMID 18497815.
  3. ^ Naeye, R.; Gutro, R. (21 May 2008). "NASA's Swift Satellite Catches First Supernova in the Act of Exploding". NASA/GSFC. Retrieved 2008-05-22.
  4. ^ da Silva, L. A. L. (1993). "The Classification of Supernovae". Astrophysics and Space Science. 202 (2): 215–236. Bibcode:1993Ap&SS.202..215D. doi:10.1007/BF00626878.
  5. ^ Montes, M. (12 February 2002). "Supernova Taxonomy". Naval Research Laboratory. Archived from the original on 18 October 2006. Retrieved 2006-11-09.
  6. ^ a b c d e f g Filippenko, A.V. (2004). "Supernovae and Their Massive Star Progenitors". The Fate of the Most Massive Stars. 332: 34. arXiv:astro-ph/0412029. Bibcode:2005ASPC..332...33F.
  7. ^ a b "Type Ib Supernova Spectra". COSMOS – The SAO Encyclopedia of Astronomy. Swinburne University of Technology. Retrieved 2010-05-05.
  8. ^ Dray, L. M.; Tout, C. A.; Karaks, A. I.; Lattanzio, J. C. (2003). "Chemical enrichment by Wolf-Rayet and asymptotic giant branch stars". Monthly Notices of the Royal Astronomical Society. 338 (4): 973–989. Bibcode:2003MNRAS.338..973D. doi:10.1046/j.1365-8711.2003.06142.x.
  9. ^ Pols, O. (26 October – 1 November 1995). "Close Binary Progenitors of Type Ib/Ic and IIb/II-L Supernovae". Proceedings of the Third Pacific Rim Conference on Recent Development on Binary Star Research. Chiang Mai, Thailand. pp. 153–158. Bibcode:1997ASPC..130..153P.
  10. ^ Woosley, S. E.; Eastman, R.G. (June 20–30, 1995). "Type Ib and Ic Supernovae: Models and Spectra". Proceedings of the NATO Advanced Study Institute. Begur, Girona, Spain: Kluwer Academic Publishers. p. 821. Bibcode:1997ASIC..486..821W. doi:10.1007/978-94-011-5710-0_51.
  11. ^ Williams, A. J. (1997). "Initial Statistics from the Perth Automated Supernova Search". Publications of the Astronomical Society of Australia. 14 (2): 208–213. Bibcode:1997PASA...14..208W. doi:10.1071/AS97208.
  12. ^ Ryder, S. D.; et al. (2004). "Modulations in the radio light curve of the Type IIb supernova 2001ig: evidence for a Wolf-Rayet binary progenitor?". Monthly Notices of the Royal Astronomical Society. 349 (3): 1093–1100. arXiv:astro-ph/0401135. Bibcode:2004MNRAS.349.1093R. doi:10.1111/j.1365-2966.2004.07589.x.
  13. ^ Sadler, E. M.; Campbell, D. (1997). "A first estimate of the radio supernova rate". Astronomical Society of Australia. Retrieved 2007-02-08.
  14. ^ Perets, H. B.; Gal-Yam, A.; Mazzali, P. A.; Arnett, D.; Kagan, D.; Filippenko, A. V.; Li, W.; Arcavi, I.; Cenko, S. B.; Fox, D. B.; Leonard, D. C.; Moon, D.-S.; Sand, D. J.; Soderberg, A. M.; Anderson, J. P.; James, P. A.; Foley, R. J.; Ganeshalingam, M.; Ofek, E. O.; Bildsten, L.; Nelemans, G.; Shen, K. J.; Weinberg, N. N.; Metzger, B. D.; Piro, A. L.; Quataert, E.; Kiewe, M.; Poznanski, D. (2010). "A faint type of supernova from a white dwarf with a helium-rich companion". Nature. 465 (7296): 322–325. arXiv:0906.2003. Bibcode:2010Natur.465..322P. doi:10.1038/nature09056. PMID 20485429.
  15. ^ Tsvetkov, D. Yu. (1987). "Light curves of type Ib supernova: SN 1984l in NGC 991". Soviet Astronomy Letters. 13: 376–378. Bibcode:1987SvAL...13..376T.
  16. ^ Homeier, N. L. (2005). "The Effect of Type Ibc Contamination in Cosmological Supernova Samples". The Astrophysical Journal. 620 (1): 12–20. arXiv:astro-ph/0410593. Bibcode:2005ApJ...620...12H. doi:10.1086/427060.

External links

Calcium-rich supernovae

Calcium-rich supernovae (or Calcium-rich transients, Ca-rich SNe) are a subclass of supernovae that, in contrast to more well-known traditional supernova classes, are fainter and produce unusually large amounts of calcium. Since their luminosity is located in a gap between that of novae and other supernovae, they are also referred to as "gap" transients. Only around 15 events have been classified as a calcium-rich supernova (as of August 2017) – a combination of their intrinsic rarity and low luminosity make new discoveries and their subsequent study difficult. This makes calcium-rich supernovae one of the most mysterious supernova subclasses currently known.

Gamma-ray burst progenitors

Gamma-ray burst progenitors are the types of celestial objects that can emit gamma-ray bursts (GRBs). GRBs show an extraordinary degree of diversity. They can last anywhere from a fraction of a second to many minutes. Bursts could have a single profile or oscillate wildly up and down in intensity, and their spectra are highly variable unlike other objects in space. The near complete lack of observational constraint led to a profusion of theories, including evaporating black holes, magnetic flares on white dwarfs, accretion of matter onto neutron stars, antimatter accretion, supernovae, hypernovae, and rapid extraction of rotational energy from supermassive black holes, among others.There are at least two different types of progenitors (sources) of GRBs: one responsible for the long-duration, soft-spectrum bursts and one (or possibly more) responsible for short-duration, hard-spectrum bursts. The progenitors of long GRBs are believed to be massive, low-metallicity stars exploding due to the collapse of their cores. The progenitors of short GRBs are thought to arise from mergers of compact binary systems like neutron stars, which was confirmed by the GW170817 observation of a neutron star merger and a kilonova.

Hydrogen-deficient star

A hydrogen-deficient star is a type of star that has little or no hydrogen in its atmosphere.

Hydrogen deficiency is unusual in a star, as hydrogen is typically the most common element in a stellar atmosphere. Despite being rare, there are a variety of star types that display a hydrogen deficiency.

Index of physics articles (T)

The index of physics articles is split into multiple pages due to its size.

To navigate by individual letter use the table of contents below.

List of stellar explosion types

Stellar explosion can refer to



type Ia supernova

Type Ib and Ic supernovae

Type II supernova

Superluminous supernova

Pair-instability supernova

Supernova impostor, stellar explosions that appear similar to supernova, but do not destroy their progenitor stars

failed supernova

Luminous red nova, an explosion thought to be caused by stellar collision

solar flares are a minor type of stellar explosion

Tidal disruption event, the pulling apart of a star by tidal forces

Messier 81

Messier 81 (also known as NGC 3031 or Bode's Galaxy) is a spiral galaxy about 12 million light-years away, with a diameter of 90,000 light years, about half the size of the Milky Way, in the constellation Ursa Major. Due to its proximity to Earth, large size, and active galactic nucleus (which harbors a 70 million M☉supermassive black hole), Messier 81 has been studied extensively by professional astronomers. The galaxy's large size and relatively high brightness also makes it a popular target for amateur astronomers.Messier 81 was first discovered by Johann Elert Bode on December 31, 1774. Consequently, the galaxy is sometimes referred to as "Bode's Galaxy". In 1779, Pierre Méchain and Charles Messier reidentified Bode's object, which was subsequently listed in the Messier Catalogue.

Messier 81 is located approximately 10° northwest of Alpha Ursae Majoris along with several other galaxies in the Messier 81 Group.Messier 81 and Messier 82 can both be viewed easily using binoculars and small telescopes. The two objects are generally not observable to the unaided eye, although highly experienced amateur astronomers may be able to see Messier 81 under exceptional observing conditions with a very dark sky. Telescopes with apertures of 8 inches (20 cm) or larger are needed to distinguish structures in the galaxy. Its far northern declination makes it generally visible for observers in the northern hemisphere. It is not visible to most observers in the southern hemisphere, except those in a narrow latitude range immediately south of the equator.

Most of the emission at infrared wavelengths originates from interstellar dust. This interstellar dust is found primarily within the galaxy's spiral arms, and it has been shown to be associated with star formation regions. The general explanation is that the hot, short-lived blue stars that are found within star formation regions are very effective at heating the dust and thus enhancing the infrared dust emission from these regions.

Only one supernova has been detected in Messier 81. The supernova, named SN 1993J, was discovered on 28 March 1993 by F. García in Spain. At the time, it was the second brightest supernova observed in the 20th century. The spectral characteristics of the supernova changed over time. Initially, it looked more like a type II supernova (a supernova formed by the explosion of a giant star) with strong hydrogen spectral line emission, but later the hydrogen lines faded and strong helium spectral lines appeared, making the supernova look more like a type Ib.Moreover, the variations in SN 1993J's luminosity over time were not like the variations observed in other type II supernova, but did resemble the variations observed in type Ib supernovae. Hence, the supernova has been classified as a type IIb, a transitory class between type II and type Ib. The scientific results from this supernova suggested that type Ib and Ic supernovae were formed through the explosions of giant stars through processes similar to those taking place in type II supernovae. The supernova was also used to estimate a distance of 8.5 ± 1.3 Mly (2.6 ± 0.4 Mpc) to Messier 81. As a local galaxy, the Central Bureau for Astronomical Telegrams (CBAT) tracks novae in M81 along with M31 and M33.

Messier 81 is the largest galaxy in the M81 Group, a group of 34 galaxies located in the constellation Ursa Major. At approximately 11.7 Mly (3.6 Mpc) from the Earth, it makes this group and the Local Group, containing the Milky Way, relative neighbors in the Virgo Supercluster.

Gravitational interactions of M81 with M82 and NGC 3077 have stripped hydrogen gas away from all three galaxies, forming gaseous filamentary structures in the group. Moreover, these interactions have allowed interstellar gas to fall into the centers of M82 and NGC 3077, leading to vigorous star formation or starburst activity there.

NGC 6118

NGC 6118 is a grand design spiral galaxy located 83 million light-years away in the constellation Serpens (the Snake). It measures roughly 110,000 light-years across; about the same as our own galaxy, the Milky Way. Its shape is classified as "SA(s)cd," meaning that it is unbarred and has several rather loosely wound spiral arms. The large numbers of bright bluish knots are active star-forming regions where some very luminous and young stars can be perceived.Because NGC 6118 has loosely wound spiral open arms, no clear defined spiral arms like the Milky Way galaxy and lacks a central bar, the galaxy thus does not have a galactic habitable zone like the Milky Way. For the Milky Way, the galactic habitable zone is commonly believed to be an annulus with an outer radius of about 10 kiloparsecs and an inner radius close to the Galactic Center, both of which lack hard boundaries.NGC 6118 is difficult to see with a small telescope. Amateur astronomers have nicknamed it the "Blinking Galaxy", as it has a tendency to flick in and out of view with different eye positions.

Outline of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

Astronomy – studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).

SN 1993J

SN 1993J is a supernova observed in the galaxy M81. It was discovered on 28 March 1993 by F. Garcia in Spain. At the time, it was the second-brightest type II supernova observed in the twentieth century behind SN 1987A.The spectral characteristics of the supernova changed over time. Initially, it looked more like a type II supernova (a supernova formed by the explosion of a giant star) with strong hydrogen spectral line emission, but later the hydrogen lines faded and strong helium spectral lines appeared, making the supernova look more like a type Ib. Moreover, the variations in SN 1993J's luminosity over time were not like the variations observed in other type II supernovae but did resemble the variations observed in type Ib supernovae. Hence, the supernova has been classified as a type IIb supernova, an intermediate class between type II and type Ib. The scientific results from this supernova suggested that type Ib and Ic supernovae were actually formed through the explosions of giant stars through processes similar to what takes place in type II supernovae. The supernova was also used to estimate a distance of 8.5 ± 1.3 Mly (2.6 ± 0.4 Mpc) to Messier 81.Light echoes from the explosion have subsequently been detected.

The progenitor of SN 1993J was identified in pre-explosion ground-based images. The progenitor was observed to be a K-type supergiant star, with an excess in the ultraviolet possibly due to surrounding hot stars or a hot binary companion. While the supernova is located in a region populated by young massive stars, late-time photometry with the Hubble Space Telescope and spectroscopy with the Keck 10m-telescope presented by Maund and collaborators revealed the presence of the long-suspected B-supergiant companion star.

SN 1999ec

SN 1999ec was a type Ib supernova that was discovered in the interacting galaxy NGC 2207 on October 2, 1999. It was found on images taken with the Katzman Automatic Imaging Telescope at the Lick Observatory. The progenitor is estimated to have had 38 times the mass of the Sun and was 5.34 million years old at the time of the outburst.


A supernova ( plural: supernovae or supernovas, abbreviations: SN and SNe) is a transient astronomical event that occurs during the last stellar evolutionary stages of the life of a massive star, whose dramatic and catastrophic destruction is marked by one final, titanic explosion. This causes the sudden appearance of a "new" bright star, before slowly fading from sight over several weeks or months or years.

Supernovae are more energetic than novae. In Latin, nova means "new", referring astronomically to what appears to be a temporary new bright star. Adding the prefix "super-" distinguishes supernovae from ordinary novae, which are far less luminous. The word supernova was coined by Walter Baade and Fritz Zwicky in 1931.Only three Milky Way, naked-eye supernova events have been observed during the last thousand years, though many have been observed in other galaxies. The most recent directly observed supernova in the Milky Way was Kepler's Supernova in 1604, but the remnants of recent supernovae have also been found. Observations of supernovae in other galaxies suggest they occur on average about three times every century in the Milky Way, and that any galactic supernova would almost certainly be observable with modern astronomical telescopes.

Supernovae may expel much, if not all, of the material away from a star at velocities up to 30,000 km/s or 10% of the speed of light. This drives an expanding and fast-moving shock wave into the surrounding interstellar medium, and in turn, sweeping up an expanding shell of gas and dust, which is observed as a supernova remnant. Supernova nucleosynthesis is the major source of elements heavier than nitrogen. Supernovae play a significant role in enriching the interstellar medium with the heavier atomic mass chemical elements. Furthermore, the expanding shock waves from supernovae can trigger the formation of new stars. Supernova remnants are expected to accelerate a large fraction of galactic primary cosmic rays, but direct evidence for cosmic ray production was found only in a few of them so far. They are also potentially strong galactic sources of gravitational waves.Theoretical studies indicate that most supernovae are triggered by one of two basic mechanisms: the sudden re-ignition of nuclear fusion in a degenerate star or the sudden gravitational collapse of a massive star's core. In the first instance, a degenerate white dwarf may accumulate sufficient material from a binary companion, either through accretion or via a merger, to raise its core temperature enough to trigger runaway nuclear fusion, completely disrupting the star. In the second case, the core of a massive star may undergo sudden gravitational collapse, releasing gravitational potential energy as a supernova. While some observed supernovae are more complex than these two simplified theories, the astrophysical collapse mechanics have been established and accepted by most astronomers for some time.

Owing to the wide range of astrophysical consequences of these events, astronomers now deem supernova research, across the fields of stellar and galactic evolution, as an especially important area for investigation.

Type II supernova

A Type II supernova (plural: supernovae or supernovas) results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, but no more than 40 to 50 times, the mass of the Sun (M☉) to undergo this type of explosion. Type II supernovae are distinguished from other types of supernovae by the presence of hydrogen in their spectra. They are usually observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies.

Stars generate energy by the nuclear fusion of elements. Unlike the Sun, massive stars possess the mass needed to fuse elements that have an atomic mass greater than hydrogen and helium, albeit at increasingly higher temperatures and pressures, causing increasingly shorter stellar life spans. The degeneracy pressure of electrons and the energy generated by these fusion reactions are sufficient to counter the force of gravity and prevent the star from collapsing, maintaining stellar equilibrium. The star fuses increasingly higher mass elements, starting with hydrogen and then helium, progressing up through the periodic table until a core of iron and nickel is produced. Fusion of iron or nickel produces no net energy output, so no further fusion can take place, leaving the nickel–iron core inert. Due to the lack of energy output creating outward thermal pressure, the core contracts due to gravity until the overlying weight of the star can be supported largely by electron degeneracy pressure.

When the compacted mass of the inert core exceeds the Chandrasekhar limit of about 1.4 M☉, electron degeneracy is no longer sufficient to counter the gravitational compression. A cataclysmic implosion of the core takes place within seconds. Without the support of the now-imploded inner core, the outer core collapses inwards under gravity and reaches a velocity of up to 23% of the speed of light and the sudden compression increases the temperature of the inner core to up to 100 billion kelvins. Neutrons and neutrinos are formed via reversed beta-decay, releasing about 1046 joules (100 foe) in a ten-second burst. Also, the collapse of the inner core is halted by neutron degeneracy, causing the implosion to rebound and bounce outward. The energy of this expanding shock wave is sufficient to disrupt the overlying stellar material and accelerate it to escape velocity, forming a supernova explosion. The shock wave and extremely high temperature and pressure rapidly dissipate but are present for long enough to allow for a brief period during which the

production of elements heavier than iron occurs. Depending on initial size of the star, the remnants of the core form a neutron star or a black hole. Because of the underlying mechanism, the resulting supernova is also described as a core-collapse supernova.

There exist several categories of Type II supernova explosions, which are categorized based on the resulting light curve—a graph of luminosity versus time—following the explosion. Type II-L supernovae show a steady (linear) decline of the light curve following the explosion, whereas Type II-P display a period of slower decline (a plateau) in their light curve followed by a normal decay. Type Ib and Ic supernovae are a type of core-collapse supernova for a massive star that has shed its outer envelope of hydrogen and (for Type Ic) helium. As a result, they appear to be lacking in these elements.

Physics of

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.