Truncated order-4 pentagonal tiling

In geometry, the truncated order-4 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,4}.

Truncated pentagonal tiling
Truncated order-4 pentagonal tiling

Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 4.10.10
Schläfli symbol t{5,4}
Wythoff symbol 2 4 | 5
2 5 5 |
Coxeter diagram CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png or CDel node 1.pngCDel split1-55.pngCDel nodes 11.png
Symmetry group [5,4], (*542)
[5,5], (*552)
Dual Order-5 tetrakis square tiling
Properties Vertex-transitive

Uniform colorings

A half symmetry [1+,4,5] = [5,5] coloring can be constructed with two colors of decagons. This coloring is called a truncated pentapentagonal tiling.

Uniform tiling 552-t012
Uniform tiling 552-t012

Symmetry

There is only one subgroup of [5,5], [5,5]+, removing all the mirrors. This symmetry can be doubled to 542 symmetry by adding a bisecting mirror.

Small index subgroups of [5,5]
Type Reflective domains Rotational symmetry
Index 1 2
Diagram 552 symmetry 000 552 symmetry aaa
Coxeter
(orbifold)
[5,5] = CDel node c1.pngCDel 5.pngCDel node c1.pngCDel 5.pngCDel node c1.png = CDel node c1.pngCDel split1-55.pngCDel branch c1.pngCDel label2.png
(*552)
[5,5]+ = CDel node h2.pngCDel 5.pngCDel node h2.pngCDel 5.pngCDel node h2.png = CDel node h2.pngCDel split1-55.pngCDel branch h2h2.pngCDel label2.png
(552)

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.

See also

External links

Order-4 dodecahedral honeycomb

In the geometry of hyperbolic 3-space, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations (or honeycombs). With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

*n42 symmetry mutation of truncated tilings: 4.2n.2n
Symmetry
*n42
[n,4]
Spherical Euclidean Compact hyperbolic Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Truncated
figures
Spherical square prism Uniform tiling 432-t12 Uniform tiling 44-t01 H2 tiling 245-3 H2 tiling 246-3 H2 tiling 247-3 H2 tiling 248-3 H2 tiling 24i-3
Config. 4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
n-kis
figures
Spherical square bipyramid Spherical tetrakis hexahedron 1-uniform 2 dual Order-5 tetrakis square tiling Order-6 tetrakis square tiling Hyperbolic domains 772 Order-8 tetrakis square tiling H2checkers 2ii
Config. V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞
Uniform pentagonal/square tilings
Symmetry: [5,4], (*542) [5,4]+, (542) [5+,4], (5*2) [5,4,1+], (*552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node 1.png CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 4.pngCDel node 1.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node h.png CDel node h.pngCDel 5.pngCDel node h.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node h.png
Uniform tiling 54-t0 Uniform tiling 54-t01 Uniform tiling 54-t1 Uniform tiling 54-t12 Uniform tiling 54-t2 Uniform tiling 54-t02 Uniform tiling 54-t012 Uniform tiling 54-snub Uniform tiling 542-h01 Uniform tiling 552-t0
{5,4} t{5,4} r{5,4} 2t{5,4}=t{4,5} 2r{5,4}={4,5} rr{5,4} tr{5,4} sr{5,4} s{5,4} h{4,5}
Uniform duals
CDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 4.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node fh.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 4.pngCDel node.png CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node fh.png
Uniform tiling 54-t2 Order-5 tetrakis square tiling Order-5-4 quasiregular rhombic tiling Order-4 pentakis pentagonal tiling Uniform tiling 54-t0 Deltoidal tetrapentagonal tiling Order-4 bisected pentagonal tiling Order-5-4 floret pentagonal tiling Uniform tiling 552-t2
V54 V4.10.10 V4.5.4.5 V5.8.8 V45 V4.4.5.4 V4.8.10 V3.3.4.3.5 V3.3.5.3.5 V55
Uniform pentapentagonal tilings
Symmetry: [5,5], (*552) [5,5]+, (552)
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node.png
= CDel node h0.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node 1.png
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h1.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node.png
CDel node 1.pngCDel 5.pngCDel node 1.pngCDel 5.pngCDel node 1.png
= CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 5.pngCDel node 1.png
CDel node h.pngCDel 5.pngCDel node h.pngCDel 5.pngCDel node h.png
= CDel node h0.pngCDel 4.pngCDel node h.pngCDel 5.pngCDel node h.png
Uniform tiling 552-t0 Uniform tiling 552-t01 Uniform tiling 552-t1 Uniform tiling 552-t12 Uniform tiling 552-t2 Uniform tiling 552-t02 Uniform tiling 552-t012 Uniform tiling 552-snub
{5,5} t{5,5}
r{5,5} 2t{5,5}=t{5,5} 2r{5,5}={5,5} rr{5,5} tr{5,5} sr{5,5}
Uniform duals
CDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node.png CDel node.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node f1.png CDel node f1.pngCDel 5.pngCDel node f1.pngCDel 5.pngCDel node f1.png CDel node fh.pngCDel 5.pngCDel node fh.pngCDel 5.pngCDel node fh.png
Uniform tiling 552-t2 Order5 pentakis pentagonal til Uniform tiling 54-t2 Order5 pentakis pentagonal til Uniform tiling 552-t0 Order-5-4 quasiregular rhombic tiling Order-5 tetrakis square tiling
V5.5.5.5.5 V5.10.10 V5.5.5.5 V5.10.10 V5.5.5.5.5 V4.5.4.5 V4.10.10 V3.3.5.3.5

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.