Transuranium element

The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements.

Overview

Periodic Table Radioactivity
Periodic table with elements colored according to the half-life of their most stable isotope.
  Elements which contain at least one stable isotope.
  Slightly radioactive elements: the most stable isotope is very long-lived, with a half-life of over two million years.
  Significantly radioactive elements: the most stable isotope has half-life between 800 and 34,000 years.
  Radioactive elements: the most stable isotope has half-life between one day and 130 years.
  Highly radioactive elements: the most stable isotope has half-life between several minutes and one day.
  Extremely radioactive elements: the most stable isotope has half-life less than several minutes.

Of the elements with atomic numbers 1 to 92, most can be found in nature, having stable (such as hydrogen), or very long half-life (such as uranium) isotopes, or are created as common products of the decay of uranium and thorium (such as radon). The exceptions are elements 43, 61, 85, and 87; all four occur in nature, but only in very minor branches of the uranium and thorium decay chains, and thus all save element 87 were first discovered by synthesis in the laboratory rather than in nature (and even element 87 was discovered from purified samples of its parent, not directly from nature).

All of the elements with higher atomic numbers have been first discovered in the laboratory, with neptunium and plutonium later also discovered in nature. They are all radioactive, with a half-life much shorter than the age of the Earth, so any primordial atoms of these elements, if they ever were present at the Earth's formation, have long since decayed. Trace amounts of neptunium and plutonium form in some uranium-rich rock, and small amounts are produced during atmospheric tests of nuclear weapons. These two elements are generated from neutron capture in uranium ore with subsequent beta decays (e.g. 238U + n239U239Np239Pu).

Transuranic elements can be artificially generated synthetic elements, via nuclear reactors or particle accelerators. The half lives of these elements show a general trend of decreasing as atomic numbers increase. There are exceptions, however, including several isotopes of curium and dubnium. Further anomalous elements in this series have been predicted by Glenn T. Seaborg, and are categorised as the "island of stability".[1]

Heavy transuranic elements are difficult and expensive to produce, and their prices increase rapidly with atomic number. As of 2008, the cost of weapons-grade plutonium was around $4,000/gram,[2] and californium exceeded $60,000,000/gram.[3] Einsteinium is the heaviest transuranic element that has ever been produced in macroscopic quantities.[4]

Transuranic elements that have not been discovered, or have been discovered but are not yet officially named, use IUPAC's systematic element names. The naming of transuranic elements may be a source of controversy.

Discovery and naming of transuranium elements

So far, essentially all the transuranium elements have been discovered at four laboratories: Lawrence Berkeley National Laboratory in the United States (elements 93–101, 106, and joint credit for 103–105), the Joint Institute for Nuclear Research in Russia (elements 102 and 114–118, and joint credit for 103–105), the GSI Helmholtz Centre for Heavy Ion Research in Germany (elements 107–112), and RIKEN in Japan (element 113).

List of the transuranic elements

Superheavy elements

Super heavy elements (polyatomic)
Position of the transactinide elements in the periodic table.

Superheavy elements, (also known as superheavy atoms, commonly abbreviated SHE) usually refer to the transactinide elements beginning with rutherfordium (atomic number 104). They have only been made artificially, and currently serve no practical purpose because their short half-lives cause them to decay after a very short time, ranging from a few minutes to just a few milliseconds (except for dubnium, which has a half life of over a day), which also makes them extremely hard to study.[5][6]

Superheavy atoms have all been created since the latter half of the 20th century, and are continually being created during the 21st century as technology advances. They are created through the bombardment of elements in a particle accelerator. For example, the nuclear fusion of californium-249 and carbon-12 creates rutherfordium-261. These elements are created in quantities on the atomic scale and no method of mass creation has been found.[5]

Applications

Transuranium elements may be utilized to synthesize other super-heavy elements.[7] Elements of the island of stability have potential important military applications, including the development of compact nuclear weapons.[8] The potential every-day applications are vast; the element americium is utilized in devices like smoke detectors and spectrometers.[9][10]

See also

References

  1. ^ Considine, Glenn, ed. (2002). Van Nostrand's Scientific Encyclopedia (9th ed.). New York: Wiley Interscience. p. 738. ISBN 978-0-471-33230-5.
  2. ^ Morel, Andrew (2008). Elert, Glenn (ed.). "Price of Plutonium". The Physics Factbook. Archived from the original on 20 October 2018.
  3. ^ Martin, Rodger C.; Kos, Steve E. (2001). Applications and Availability of Californium-252 Neutron Sources for Waste Characterization (Report). Archived (PDF) from the original on 17 December 2018.
  4. ^ Silva, Robert J. (2006). "Fermium, Mendelevium, Nobelium and Lawrencium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (Third ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 978-1-4020-3555-5.
  5. ^ a b Heenen, Paul-Henri; Nazarewicz, Witold (2002). "Quest for superheavy nuclei" (PDF). Europhysics News. 33 (1): 5–9. Bibcode:2002ENews..33....5H. doi:10.1051/epn:2002102. Archived (PDF) from the original on 20 July 2018.
  6. ^ Greenwood, Norman N. (1997). "Recent developments concerning the discovery of elements 100–111" (PDF). Pure and Applied Chemistry. 69 (1): 179–184. doi:10.1351/pac199769010179. Archived (PDF) from the original on 21 July 2018.
  7. ^ Lougheed, R. W.; et al. (1985). "Search for superheavy elements using 48Ca + 254Esg reaction". Physical Review C. 32 (5): 1760–1763. Bibcode:1985PhRvC..32.1760L. doi:10.1103/PhysRevC.32.1760.
  8. ^ Gsponer, André; Hurni, Jean-Pierre (1997). The Physical Principles of Thermonuclear Explosives, Intertial Confinement Fusion, and the Quest for Fourth Generation Nuclear Weapons (PDF). International Network of Engineers and Scientists Against Proliferation. pp. 110–115. ISBN 978-3-933071-02-6. Archived (PDF) from the original on 6 June 2018.
  9. ^ "Smoke Detectors and Americium", Nuclear Issues Briefing Paper, 35, May 2002, archived from the original on 11 September 2002, retrieved 2015-08-26
  10. ^ Nuclear Data Viewer 2.4, NNDC

Further reading

1950 in science

The year 1950 in science and technology included some significant events.

Alkaline earth metal

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.Structurally, they have in common an outer s- electron shell which is full;

that is, this orbital contains its full complement of two electrons, which these elements readily lose to form cations with charge +2, and an oxidation state of +2.All the discovered alkaline earth metals occur in nature, although radium occurs only through the decay chain of uranium and thorium and not as a primordial element. Experiments have been conducted to attempt the synthesis of element 120, the next potential member of the group, but they have all met with failure.

Americium

Americium is a synthetic radioactive chemical element with the symbol Am and atomic number 95. It is a transuranic member of the actinide series, in the periodic table located under the lanthanide element europium, and thus by analogy was named after the Americas.Americium was first produced in 1944 by the group of Glenn T. Seaborg from Berkeley, California, at the Metallurgical Laboratory of the University of Chicago, a part of the Manhattan Project. Although it is the third element in the transuranic series, it was discovered fourth, after the heavier curium. The discovery was kept secret and only released to the public in November 1945. Most americium is produced by uranium or plutonium being bombarded with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains about 100 grams of americium. It is widely used in commercial ionization chamber smoke detectors, as well as in neutron sources and industrial gauges. Several unusual applications, such as nuclear batteries or fuel for space ships with nuclear propulsion, have been proposed for the isotope 242mAm, but they are as yet hindered by the scarcity and high price of this nuclear isomer.

Americium is a relatively soft radioactive metal with silvery appearance. Its common isotopes are 241Am and 243Am. In chemical compounds, americium usually assumes the oxidation state +3, especially in solutions. Several other oxidation states are known, which range from +2 to +7 and can be identified by their characteristic optical absorption spectra. The crystal lattice of solid americium and its compounds contain small intrinsic radiogenic defects, due to metamictization induced by self-irradiation with alpha particles, which accumulates with time; this can cause a drift of some material properties over time, more noticeable in older samples.

Berkelium

Berkelium is a transuranic radioactive chemical element with the symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory) where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

The major isotope of berkelium, 249Bk, is synthesized in minute quantities in dedicated high-flux nuclear reactors, mainly at the Oak Ridge National Laboratory in Tennessee, USA, and at the Research Institute of Atomic Reactors in Dimitrovgrad, Russia. The production of the second-most important isotope 247Bk involves the irradiation of the rare isotope 244Cm with high-energy alpha particles.

Just over one gram of berkelium has been produced in the United States since 1967. There is no practical application of berkelium outside scientific research which is mostly directed at the synthesis of heavier transuranic elements and transactinides. A 22 milligram batch of berkelium-249 was prepared during a 250-day irradiation period and then purified for a further 90 days at Oak Ridge in 2009. This sample was used to synthesize the new element tennessine for the first time in 2009 at the Joint Institute for Nuclear Research, Russia, after it was bombarded with calcium-48 ions for 150 days. This was the culmination of the Russia–US collaboration on the synthesis of the heaviest elements on the periodic table.

Berkelium is a soft, silvery-white, radioactive metal. The berkelium-249 isotope emits low-energy electrons and thus is relatively safe to handle. It decays with a half-life of 330 days to californium-249, which is a strong emitter of ionizing alpha particles. This gradual transformation is an important consideration when studying the properties of elemental berkelium and its chemical compounds, since the formation of californium brings not only chemical contamination, but also free-radical effects and self-heating from the emitted alpha particles.

Californium

Californium is a radioactive chemical element with the symbol Cf and atomic number 98. The element was first synthesized in 1950 at the Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding curium with alpha particles (helium-4 ions). It is an actinide element, the sixth transuranium element to be synthesized, and has the second-highest atomic mass of all the elements that have been produced in amounts large enough to see with the unaided eye (after einsteinium). The element was named after the university and the state of California.

Two crystalline forms exist for californium under normal pressure: one above and one below 900 °C (1,650 °F). A third form exists at high pressure. Californium slowly tarnishes in air at room temperature. Compounds of californium are dominated by the +3 oxidation state. The most stable of californium's twenty known isotopes is californium-251, which has a half-life of 898 years. This short half-life means the element is not found in significant quantities in the Earth's crust. Californium-252, with a half-life of about 2.645 years, is the most common isotope used and is produced at the Oak Ridge National Laboratory in the United States and the Research Institute of Atomic Reactors in Russia.

Californium is one of the few transuranium elements that have practical applications. Most of these applications exploit the property of certain isotopes of californium to emit neutrons. For example, californium can be used to help start up nuclear reactors, and it is employed as a source of neutrons when studying materials using neutron diffraction and neutron spectroscopy. Californium can also be used in nuclear synthesis of higher mass elements; oganesson (element 118) was synthesized by bombarding californium-249 atoms with calcium-48 ions. Users of californium must take into account radiological concerns and the element's ability to disrupt the formation of red blood cells by bioaccumulating in skeletal tissue.

Chemical element

A chemical element is a species of atom having the same number of protons in their atomic nuclei (that is, the same atomic number, or Z). For example, the atomic number of oxygen is 8, so the element oxygen consists of all atoms which have exactly 8 protons.

118 elements have been identified, of which the first 94 occur naturally on Earth with the remaining 24 being synthetic elements. There are 80 elements that have at least one stable isotope and 38 that have exclusively radionuclides, which decay over time into other elements. Iron is the most abundant element (by mass) making up Earth, while oxygen is the most common element in the Earth's crust.Chemical elements constitute all of the ordinary matter of the universe. However astronomical observations suggest that ordinary observable matter makes up only about 15% of the matter in the universe: the remainder is dark matter; the composition of this is unknown, but it is not composed of chemical elements.

The two lightest elements, hydrogen and helium, were mostly formed in the Big Bang and are the most common elements in the universe. The next three elements (lithium, beryllium and boron) were formed mostly by cosmic ray spallation, and are thus rarer than heavier elements. Formation of elements with from 6 to 26 protons occurred and continues to occur in main sequence stars via stellar nucleosynthesis. The high abundance of oxygen, silicon, and iron on Earth reflects their common production in such stars. Elements with greater than 26 protons are formed by supernova nucleosynthesis in supernovae, which, when they explode, blast these elements as supernova remnants far into space, where they may become incorporated into planets when they are formed.The term "element" is used for atoms with a given number of protons (regardless of whether or not they are ionized or chemically bonded, e.g. hydrogen in water) as well as for a pure chemical substance consisting of a single element (e.g. hydrogen gas). For the second meaning, the terms "elementary substance" and "simple substance" have been suggested, but they have not gained much acceptance in English chemical literature, whereas in some other languages their equivalent is widely used (e.g. French corps simple, Russian простое вещество). A single element can form multiple substances differing in their structure; they are called allotropes of the element.

When different elements are chemically combined, with the atoms held together by chemical bonds, they form chemical compounds. Only a minority of elements are found uncombined as relatively pure minerals. Among the more common of such native elements are copper, silver, gold, carbon (as coal, graphite, or diamonds), and sulfur. All but a few of the most inert elements, such as noble gases and noble metals, are usually found on Earth in chemically combined form, as chemical compounds. While about 32 of the chemical elements occur on Earth in native uncombined forms, most of these occur as mixtures. For example, atmospheric air is primarily a mixture of nitrogen, oxygen, and argon, and native solid elements occur in alloys, such as that of iron and nickel.

The history of the discovery and use of the elements began with primitive human societies that found native elements like carbon, sulfur, copper and gold. Later civilizations extracted elemental copper, tin, lead and iron from their ores by smelting, using charcoal. Alchemists and chemists subsequently identified many more; all of the naturally occurring elements were known by 1950.

The properties of the chemical elements are summarized in the periodic table, which organizes the elements by increasing atomic number into rows ("periods") in which the columns ("groups") share recurring ("periodic") physical and chemical properties. Save for unstable radioactive elements with short half-lives, all of the elements are available industrially, most of them in low degrees of impurities.

Curium

Curium is a transuranic radioactive chemical element with the symbol Cm and atomic number 96. This element of the actinide series was named after Marie and Pierre Curie – both were known for their research on radioactivity. Curium was first intentionally produced and identified in July 1944 by the group of Glenn T. Seaborg at the University of California, Berkeley. The discovery was kept secret and only released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains about 20 grams of curium.

Curium is a hard, dense, silvery metal with a relatively high melting point and boiling point for an actinide. Whereas it is paramagnetic at ambient conditions, it becomes antiferromagnetic upon cooling, and other magnetic transitions are also observed for many curium compounds. In compounds, curium usually exhibits valence +3 and sometimes +4, and the +3 valence is predominant in solutions. Curium readily oxidizes, and its oxides are a dominant form of this element. It forms strongly fluorescent complexes with various organic compounds, but there is no evidence of its incorporation into bacteria and archaea. When introduced into the human body, curium accumulates in the bones, lungs and liver, where it promotes cancer.

All known isotopes of curium are radioactive and have a small critical mass for a sustained nuclear chain reaction. They predominantly emit α-particles, and the heat released in this process can serve as a heat source in radioisotope thermoelectric generators, but this application is hindered by the scarcity and high cost of curium isotopes. Curium is used in production of heavier actinides and of the 238Pu radionuclide for power sources in artificial pacemakers. It served as the α-source in the alpha particle X-ray spectrometers installed on several space probes, including the Sojourner, Spirit, Opportunity and Curiosity Mars rovers and the Philae lander on comet 67P/Churyumov–Gerasimenko, to analyze the composition and structure of the surface.

Edwin McMillan

Edwin Mattison McMillan (September 18, 1907 – September 7, 1991) was an American physicist and Nobel laureate credited with being the first-ever to produce a transuranium element, neptunium. For this, he shared the Nobel Prize in Chemistry with Glenn Seaborg in 1951.

A graduate of California Institute of Technology, he earned his doctorate from Princeton University in 1933, and joined the Berkeley Radiation Laboratory, where he discovered oxygen-15 and beryllium-10. During World War II, he worked on microwave radar at the MIT Radiation Laboratory, and on sonar at the Navy Radio and Sound Laboratory. In 1942 he joined the Manhattan Project, the wartime effort to create atomic bombs, and helped establish the project's Los Alamos Laboratory where the bombs were designed. He led teams working on the gun-type nuclear weapon design, and also participated in the development of the implosion-type nuclear weapon.

McMillan co-invented the synchrotron with Vladimir Veksler. He returned to the Radiation Laboratory after the war, and built them. In 1954 he was appointed associate director of the Radiation Laboratory, being promoted to deputy director in 1958. On the death of Lawrence that year, he became director, and he stayed in that position until his retirement in 1973.

Generation IV reactor

Generation IV reactors (Gen IV) are a set of nuclear reactor designs currently being researched for commercial applications by the Generation IV International Forum, with technology readiness levels varying between the level requiring a demonstration, to economical competitive implementation.

They are motivated by a variety of goals including improved safety, sustainability, efficiency, and cost.

The most developed Gen IV reactor design, the sodium fast reactor, has received the greatest share of funding over the years with a number of demonstration facilities operated.

The principal Gen IV aspect of the design relates to the development of a sustainable closed fuel cycle for the reactor.

The molten-salt reactor, a less developed technology, is considered as potentially having the greatest inherent safety of the six models.

The very-high-temperature reactor designs operate at much higher temperatures. This allows for high temperature electrolysis for the efficient production of hydrogen and the synthesis of carbon-neutral fuels.The majority of the 6 designs are generally not expected to be available for commercial construction until 2020–30.

Currently the majority of reactors in operation around the world are considered second generation reactor systems, as the vast majority of the first generation systems were retired some time ago, and there are only few Generation III reactors in operation as of 2014.

Generation V reactors refer to reactors that are purely theoretical and are therefore not yet considered feasible in the short term, resulting in limited R&D funding.

List of discoveries

This article presents a list of discoveries and includes famous observations. Discovery observations form acts of detecting and learning something. Discovery observations are acts in which something is found and given a productive insight.

Oganesson

Oganesson is a synthetic chemical element with the symbol Og and atomic number 118. It was first synthesized in 2002 at the Joint Institute for Nuclear Research (JINR) in Dubna, near Moscow in Russia, by a joint team of Russian and American scientists. In December 2015, it was recognized as one of four new elements by the Joint Working Party of the international scientific bodies IUPAC and IUPAP. It was formally named on 28 November 2016. The name is in line with the tradition of honoring a scientist, in this case the nuclear physicist Yuri Oganessian, who has played a leading role in the discovery of the heaviest elements in the periodic table. It is one of only two elements named after a person who was alive at the time of naming, the other being seaborgium; it is also the only element whose namesake is alive today.Oganesson has the highest atomic number and highest atomic mass of all known elements. The radioactive oganesson atom is very unstable, and since 2005, only five (possibly six) atoms of the nuclide 294Og have been detected. Although this allowed very little experimental characterization of its properties and possible compounds, theoretical calculations have resulted in many predictions, including some surprising ones. For example, although oganesson is a member of group 18 – the first synthetic element to be so – it may be significantly reactive, unlike all the other elements of that group (the noble gases). It was formerly thought to be a gas under normal conditions but is now predicted to be a solid due to relativistic effects. On the periodic table of the elements it is a p-block element and the last one of period 7.

Periodic table

The periodic table, also known as the periodic table of elements, is a tabular display of the chemical elements, which are arranged by atomic number, electron configuration, and recurring chemical properties. The structure of the table shows periodic trends. The seven rows of the table, called periods, generally have metals on the left and non-metals on the right. The columns, called groups, contain elements with similar chemical behaviours. Six groups have accepted names as well as assigned numbers: for example, group 17 elements are the halogens; and group 18 are the noble gases. Also displayed are four simple rectangular areas or blocks associated with the filling of different atomic orbitals.

The organization of the periodic table can be used to derive relationships between the various element properties, and also to predict chemical properties and behaviours of undiscovered or newly synthesized elements. Russian chemist Dmitri Mendeleev published the first recognizable periodic table in 1869, developed mainly to illustrate periodic trends of the then-known elements. He also predicted some properties of unidentified elements that were expected to fill gaps within the table. Most of his forecasts proved to be correct. Mendeleev's idea has been slowly expanded and refined with the discovery or synthesis of further new elements and the development of new theoretical models to explain chemical behaviour. The modern periodic table now provides a useful framework for analyzing chemical reactions, and continues to be widely used in chemistry, nuclear physics and other sciences.

The elements from atomic numbers 1 (hydrogen) through 118 (oganesson) have been discovered or synthesized, completing seven full rows of the periodic table. The first 94 elements all occur naturally, though some are found only in trace amounts and a few were discovered in nature only after having first been synthesized. Elements 95 to 118 have only been synthesized in laboratories or nuclear reactors. The synthesis of elements having higher atomic numbers is currently being pursued: these elements would begin an eighth row, and theoretical work has been done to suggest possible candidates for this extension. Numerous synthetic radionuclides of naturally occurring elements have also been produced in laboratories.

Superdeformation

In nuclear physics a superdeformed nucleus is a nucleus that is very far from spherical, forming an ellipsoid with axes in ratios of approximately 2:1:1. Normal deformation is approximately 1.3:1:1. Only some nuclei can exist in superdeformed states.

The first superdeformed states to be observed were the fission isomers, low-spin states of elements in the actinide and lanthanide series. The strong force decays much faster than the Coulomb force, which becomes stronger when nucleons are greater than 2.5 femtometers apart. For this reason, these elements undergo spontaneous fission. In the late 1980s, high-spin superdeformed rotational bands were observed in other regions of the periodic table. Specific elements include ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, and mercury.

The existence of superdeformed states occurs because of a combination of macroscopic and microscopic factors, which together lower their energies, and make them stable minima of energy as a function of deformation. Macroscopically, the nucleus can be described by the liquid drop model. The liquid drop's energy as a function of deformation is at a minimum for zero deformation, due to the surface tension term. However, the curve may become soft with respect to high deformations because of the Coulomb repulsion (especially for the fission isomers, which have high Z) and also, in the case of high-spin states, because of the increased moment of inertia. Modulating this macroscopic behavior, the microscopic shell correction creates certain superdeformed magic numbers that are analogous to the spherical magic numbers. For nuclei near these magic numbers, the shell correction creates a second minimum in the energy as a function of deformation.

Even more deformed states (3:1) are called hyperdeformed.

Timeline of chemical element discoveries

The discovery of the 118 chemical elements known to exist as of 2019 is presented in chronological order. The elements are listed generally in the order in which each was first defined as the pure element, as the exact date of discovery of most elements cannot be accurately determined. There are plans to synthesise more elements, and it is not known how many elements are possible.

Each element's name, atomic number, year of first report, name of the discoverer, and notes related to the discovery are listed.

Transactinide element

In chemistry, transactinide elements (also transactinides, superheavy elements, or super-heavy elements) are the chemical elements with atomic numbers from 104 to 120. Their atomic numbers are immediately greater than those of the actinides, the heaviest of which is lawrencium (atomic number 103).

Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed the transactinide series ranging from element 104 to 121 and the superactinide series approximately spanning elements 122 to 153. The transactinide seaborgium was named in his honor.By definition, transactinide elements are also transuranic elements, i.e. have an atomic number greater than uranium (92).

The transactinide elements all have electrons in the 6d subshell in their ground state. Except for rutherfordium and dubnium, even the longest-lasting isotopes of transactinide elements have extremely short half-lives of minutes or less. The element naming controversy involved the first five or six transactinide elements. These elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.)

Transactinides are radioactive and have only been obtained synthetically in laboratories. None of these elements have ever been collected in a macroscopic sample. Transactinide elements are all named after physicists and chemists or important locations involved in the synthesis of the elements.

IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.

Unbibium

Unbibium, also known as element 122 or eka-thorium, is the hypothetical chemical element in the periodic table with the placeholder symbol of Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides and the fourth element of the 8th period. Similarly to unbiunium, it is expected to fall within the range of the island of stability, potentially conferring additional stability on some isotopes, especially 306Ubb which is expected to have a magic number of neutrons (184).

Despite several attempts, unbibium has not yet been synthesized, nor have any naturally occurring isotopes been found to exist. There are currently no plans to attempt to synthesize unbibium. In 2008, it was claimed to have been discovered in natural thorium samples, but that claim has now been dismissed by recent repetitions of the experiment using more accurate techniques.

Chemically, unbibium is expected to show some resemblance to its lighter congeners cerium and thorium. However, relativistic effects may cause some of its properties to differ; for example, it is expected to have a ground state electron configuration of [Og] 7d18s28p1, despite its predicted position in the g-block superactinide series.

Unbihexium

Unbihexium, also known as element 126 or eka-plutonium, is the hypothetical chemical element with atomic number 126 and placeholder symbol Ubh. Unbihexium and Ubh are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbihexium is expected to be a g-block superactinide and the eighth element in the 8th period. Unbihexium has attracted attention among nuclear physicists, especially in early predictions targeting properties of superheavy elements, for 126 may be a magic number of protons near the center of an island of stability, leading to longer half-lives, especially for 310Ubh or 354Ubh which may also have magic numbers of neutrons.Early interest in possible increased stability led to the first attempted synthesis of unbihexium in 1971 and searches for it in nature in subsequent years. Despite several reported observations, more recent studies suggest that these experiments were insufficiently sensitive; hence, no unbihexium has been found naturally or artificially. Predictions of the stability of unbihexium vary greatly among different models; some suggest the island of stability may instead lie at a lower atomic number, closer to copernicium and flerovium.

Unbihexium is predicted to be a chemically active superactinide, exhibiting a variety of oxidation states from +1 to +8, and possibly being a heavier congener of plutonium. It is predicted to be the second element with an electron in a g orbital, a consequence of relativistic effects seen only in heavy and superheavy elements. An overlap in energy levels of the 5g, 6f, 7d, and 8p orbitals is also expected, which complicates predictions of chemical properties for this element.

Unbiquadium

Unbiquadium, also known as element 124 or eka-uranium, is the hypothetical chemical element with atomic number 124 and placeholder symbol Ubq. Unbiquadium and Ubq are the temporary IUPAC name and symbol, respectively, until the element is discovered, confirmed, and a permanent name is decided upon. In the periodic table, unbiquadium is expected to be a g-block superactinide and the sixth element in the 8th period. Unbiquadium has attracted attention, as it may lie within the island of stability, leading to longer half-lives, especially for 308Ubq which is predicted to have a magic number of neutrons (184).

Despite several searches, unbiquadium has not been synthesized, nor have any naturally occurring isotopes been found to exist. It is believed that the synthesis of unbiquadium will be far more challenging than that of lighter undiscovered elements, and nuclear instability may pose further difficulties in identifying unbiquadium, unless the island of stability has a stronger stabilizing effect than predicted in this region.

As a member of the superactinide series, unbiquadium is expected to bear some resemblance to its possible lighter congener uranium. The valence electrons of unbiquadium are expected to participate in chemical reactions fairly easily, though relativistic effects may significantly influence some of its properties; for example, the electron configuration has been calculated to differ considerably from the one predicted by the Aufbau principle.

Ununennium

Ununennium, also known as eka-francium or element 119, is the hypothetical chemical element with symbol Uue and atomic number 119. Ununennium and Uue are the temporary systematic IUPAC name and symbol respectively, until its discovery is confirmed and a permanent name is decided upon. In the periodic table of the elements, it is expected to be an s-block element, an alkali metal, and the first element in the eighth period. It is the lightest element that has not yet been synthesized.

Experiments aimed at the synthesis of ununennium began in June 2018 at RIKEN in Japan; another attempt by the team at the Joint Institute for Nuclear Research at Dubna, Russia is scheduled to begin in 2019. Prior to this, two unsuccessful attempts had been made to synthesize ununennium, one by an American team and one by a German team. Theoretical and experimental evidence has shown that the synthesis of ununennium would likely be far more difficult than that of the previous elements, and it may even be one of the last two elements (with unbinilium) that can be synthesized with current technology.

Ununennium's position as the seventh alkali metal suggests that it would have similar properties to its lighter congeners: lithium, sodium, potassium, rubidium, caesium, and francium; however, relativistic effects may cause some of its properties to differ from those expected from a straight application of periodic trends. For example, ununennium is expected to be less reactive than caesium and francium and to be closer in behavior to potassium or rubidium, and while it should show the characteristic +1 oxidation state of the alkali metals, it is also predicted to show the +3 oxidation state, which is unknown in any other alkali metal.

Periodic table forms
Sets of elements
Elements
History
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.