Transmitter

In electronics and telecommunications a transmitter or radio transmitter is an electronic device which produces radio waves with an antenna. The transmitter itself generates a radio frequency alternating current, which is applied to the antenna. When excited by this alternating current, the antenna radiates radio waves.

Transmitters are necessary component parts of all electronic devices that communicate by radio, such as radio and television broadcasting stations, cell phones, walkie-talkies, wireless computer networks, Bluetooth enabled devices, garage door openers, two-way radios in aircraft, ships, spacecraft, radar sets and navigational beacons. The term transmitter is usually limited to equipment that generates radio waves for communication purposes; or radiolocation, such as radar and navigational transmitters. Generators of radio waves for heating or industrial purposes, such as microwave ovens or diathermy equipment, are not usually called transmitters, even though they often have similar circuits.

The term is popularly used more specifically to refer to a broadcast transmitter, a transmitter used in broadcasting, as in FM radio transmitter or television transmitter. This usage typically includes both the transmitter proper, the antenna, and often the building it is housed in.

WDET-FM transmitter
Commercial FM broadcasting transmitter at radio station WDET-FM, Wayne State University, Detroit, USA. It broadcasts at 101.9 MHz with a radiated power of 48 kW.

Description

Signal processing system
A radio transmitter is usually part of a radio communication system which uses electromagnetic waves (radio waves) to transport information (in this case sound) over a distance.

A transmitter can be a separate piece of electronic equipment, or an electrical circuit within another electronic device. A transmitter and a receiver combined in one unit is called a transceiver. The term transmitter is often abbreviated "XMTR" or "TX" in technical documents. The purpose of most transmitters is radio communication of information over a distance. The information is provided to the transmitter in the form of an electronic signal, such as an audio (sound) signal from a microphone, a video (TV) signal from a video camera, or in wireless networking devices, a digital signal from a computer. The transmitter combines the information signal to be carried with the radio frequency signal which generates the radio waves, which is called the carrier signal. This process is called modulation. The information can be added to the carrier in several different ways, in different types of transmitters. In an amplitude modulation (AM) transmitter, the information is added to the radio signal by varying its amplitude. In a frequency modulation (FM) transmitter, it is added by varying the radio signal's frequency slightly. Many other types of modulation are also used.

The radio signal from the transmitter is applied to the antenna, which radiates the energy as radio waves. The antenna may be enclosed inside the case or attached to the outside of the transmitter, as in portable devices such as cell phones, walkie-talkies, and garage door openers. In more powerful transmitters, the antenna may be located on top of a building or on a separate tower, and connected to the transmitter by a feed line, that is a transmission line.

KWNR Continental 816R-5B SN 247
35 kW, Continental 816R-5B FM transmitter, belonging to American FM radio station KWNR broadcasting on 95.5 MHz in Las Vegas
Icom IC-746PRO
Modern amateur radio transceiver, the ICOM IC-746PRO. It can transmit on the amateur bands from 1.8 MHz to 144 MHz with an output power of 100 W
CB Base Station
A CB radio transceiver, a two way radio transmitting on 27 MHz with a power of 4 W, that can be operated without a license
HA0478-006 (6011470974)
A cellphone has several transmitters: a duplex cell transceiver, a Wi-Fi modem, and a Bluetooth modem.
Cordless phone icon
Both the handset and the base of a cordless phone contain low power 2.4 GHz radio transmitters to communicate with each other.
Garage-door-opener-remote-control
A garage door opener control contains a low-power 2.4 GHz transmitter that sends coded commands to the garage door mechanism to open or close.
Linksys-Wireless-G-Router
In a wireless computer network, wireless routers like this contain a 2.4 GHz transmitter that sends and receives network packets for computers on the local area network.

Operation

Dipole xmting antenna animation 4 408x318x150ms
Animation of a half-wave dipole antenna transmitting radio waves, showing the electric field lines. The antenna in the center is two vertical metal rods, with an alternating current applied at its center from a radio transmitter (not shown). The voltage charges the two sides of the antenna alternately positive (+) and negative (−). Loops of electric field (black lines) leave the antenna and travel away at the speed of light; these are the radio waves. This animation shows the action slowed down enormously

Electromagnetic waves are radiated by electric charges when they are accelerated.[1][2] Radio waves, electromagnetic waves of radio frequency, are generated by time-varying electric currents, consisting of electrons flowing through a metal conductor called an antenna which are changing their velocity or direction and thus accelerating.[2] An alternating current flowing back and forth in an antenna will create an oscillating magnetic field around the conductor. The alternating voltage will also charge the ends of the conductor alternately positive and negative, creating an oscillating electric field around the conductor. If the frequency of the oscillations is high enough, in the radio frequency range above about 20 kHz, the oscillating coupled electric and magnetic fields will radiate away from the antenna into space as an electromagnetic wave, a radio wave.

A radio transmitter is an electronic circuit which transforms electric power from a power source into a radio frequency alternating current to apply to the antenna, and the antenna radiates the energy from this current as radio waves. The transmitter also impresses information such as an audio or video signal onto the radio frequency current to be carried by the radio waves. When they strike the antenna of a radio receiver, the waves excite similar (but less powerful) radio frequency currents in it. The radio receiver extracts the information from the received waves.

Components

A practical radio transmitter usually consists of these parts:

Many other types of modulation are also used. In large transmitters the oscillator and modulator together are often referred to as the exciter.
  • A radio frequency (RF) amplifier to increase the power of the signal, to increase the range of the radio waves.
  • An impedance matching (antenna tuner) circuit to match the impedance of the transmitter to the impedance of the antenna (or the transmission line to the antenna), to transfer power efficiently to the antenna. If these impedances are not equal, it causes a condition called standing waves, in which the power is reflected back from the antenna toward the transmitter, wasting power and sometimes overheating the transmitter.

In higher frequency transmitters, in the UHF and microwave range, free running oscillators are unstable at the output frequency. Older designs used an oscillator at a lower frequency, which was multiplied by frequency multipliers to get a signal at the desired frequency. Modern designs more commonly use an oscillator at the operating frequency which is stabilized by phase locking to a very stable lower frequency reference, usually a crystal oscillator.

Legal restrictions

In most parts of the world, use of transmitters is strictly controlled by law because of the potential for dangerous interference with other radio transmissions (for example to emergency communications). Transmitters must be licensed by governments, under a variety of license classes depending on use such as broadcast, marine radio, Airband, Amateur and are restricted to certain frequencies and power levels. A body called the International Telecommunications Union (ITU) allocates the frequency bands in the radio spectrum to various classes of users. In some classes, each transmitter is given a unique call sign consisting of a string of letters and numbers which must be used as an identifier in transmissions. The operator of the transmitter usually must hold a government license, such as a general radiotelephone operator license, which is obtained by passing a test demonstrating adequate technical and legal knowledge of safe radio operation.

Exceptions to the above regulations allow the unlicensed use of low-power short-range transmitters in consumer products such as cell phones, cordless telephones, wireless microphones, walkie-talkies, Wi-Fi and Bluetooth devices, garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Although they can be operated without a license, these devices still generally must be type-approved before sale.

History

Heinrich Hertz discovering radio waves
Hertz discovering radio waves with his first primitive radio transmitter (background).

The first primitive radio transmitters (called spark gap transmitters) were built by German physicist Heinrich Hertz in 1887 during his pioneering investigations of radio waves. These generated radio waves by a high voltage spark between two conductors. Beginning in 1895, Guglielmo Marconi developed the first practical radio communication systems using these transmitters, and radio began to be used commercially around 1900. Spark transmitters could not transmit audio (sound) and instead transmitted information by radiotelegraphy, the operator tapped on a telegraph key which turned the transmitter on and off to produce pulses of radio waves spelling out text messages in Morse code. These spark-gap transmitters were used during the first three decades of radio (1887-1917), called the wireless telegraphy or "spark" era. Because they generated damped waves, spark transmitters were electrically "noisy". Their energy was spread over a broad band of frequencies, creating radio noise which interfered with other transmitters. Damped wave emissions were banned by international law in 1934.

Two short-lived competing transmitter technologies came into use after the turn of the century, which were the first continuous wave transmitters: the arc converter (Poulsen arc) in 1904 and the Alexanderson alternator around 1910, which were used into the 1920s.

All these early technologies were replaced by vacuum tube transmitters in the 1920s, which used the feedback oscillator invented by Edwin Armstrong and Alexander Meissner around 1912, based on the Audion (triode) vacuum tube invented by Lee De Forest in 1906. Vacuum tube transmitters were inexpensive and produced continuous waves, and could be easily modulated to transmit audio (sound) using amplitude modulation (AM). This made AM radio broadcasting possible, which began in about 1920. Practical frequency modulation (FM) transmission was invented by Edwin Armstrong in 1933, who showed that it was less vulnerable to noise and static than AM. The first FM radio station was licensed in 1937. Experimental television transmission had been conducted by radio stations since the late 1920s, but practical television broadcasting didn't begin until the late 1930s. The development of radar during World War II motivated the evolution of high frequency transmitters in the UHF and microwave ranges, using new active devices such as the magnetron, klystron, and traveling wave tube.

The invention of the transistor allowed the development in the 1960s of small portable transmitters such as wireless microphones, garage door openers and walkie-talkies. The development of the integrated circuit (IC) in the 1970s made possible the current proliferation of wireless devices, such as cell phones and Wifi networks, in which integrated digital transmitters and receivers (wireless modems) in portable devices operate automatically, in the background, to exchange data with wireless networks.

The need to conserve bandwidth in the increasingly congested radio spectrum is driving the development of new types of transmitters such as spread spectrum, trunked radio systems and cognitive radio. A related trend has been an ongoing transition from analog to digital radio transmission methods. Digital modulation can have greater spectral efficiency than analog modulation; that is it can often transmit more information (data rate) in a given bandwidth than analog, using data compression algorithms. Other advantages of digital transmission are increased noise immunity, and greater flexibility and processing power of digital signal processing integrated circuits.

Marconi 1897 spark gap transmitter

Guglielmo Marconi's spark gap transmitter, with which he performed the first experiments in practical radio communication in 1895-1897

Powerful spark gap transmitter

High power spark gap transmitter in Australia around 1910.

Poulsen arc 1MW transmitter

1 MW US Navy Poulsen arc transmitter which generated continuous waves using an electric arc in a magnetic field, a technology used from 1903 until the 1920s.

Alexanderson Alternator

An Alexanderson alternator, a huge rotating machine used as a radio transmitter for a short period from about 1910 until vacuum tube transmitters took over in the 1920s

First vacuum tube AM radio transmitter

One of the first vacuum tube AM radio transmitters, built by Lee De Forest in 1914. The early Audion (triode) tube is visible at right.

Blythe House Science Museum stores tour 99

One of the BBC's first broadcast transmitters, early 1920s, London. The 4 triode tubes, connected in parallel to form an oscillator, each produced around 4 kilowatts with 12 thousand volts on their anodes.

Armstrong prototype FM transmitter 1935

Armstrong's first experimental FM broadcast transmitter W2XDG, in the Empire State Building, New York City, used for secret tests 1934-1935. It transmitted on 41 MHz at a power of 2 kW.

Magnetron radar assembly 1947

Transmitter assembly of a 20 kW, 9.375 GHz air traffic control radar, 1947. The magnetron tube mounted between two magnets (right) produces microwaves which pass from the aperture (left) into a waveguide which conducts them to the dish antenna.

See also

References

  1. ^ Serway, Raymond; Faughn, Jerry; Vuille, Chris (2008). College Physics, 8th Ed. Cengage Learning. p. 714. ISBN 0495386936.
  2. ^ a b Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN 1316785165.

External links

AM broadcasting

AM broadcasting is a radio broadcasting technology, which employs amplitude modulation (AM) transmissions. It was the first method developed for making audio radio transmissions, and is still used worldwide, primarily for medium wave (also known as "AM band") transmissions, but also on the longwave and shortwave radio bands.

The earliest experimental AM transmissions began in the early 1900s. However, widespread AM broadcasting was not established until the 1920s, following the development of vacuum tube receivers and transmitters. AM radio remained the dominant method of broadcasting for the next 30 years, a period called the "Golden Age of Radio", until television broadcasting became widespread in the 1950s and received most of the programming previously carried by radio. Subsequently, AM radio's audiences have also greatly shrunk due to competition from FM (frequency modulation) radio, Digital Audio Broadcasting (DAB), satellite radio, HD (digital) radio and Internet streaming.

AM transmissions are much more susceptible than FM or digital signals are to interference, and often have lower audio fidelity. Thus, AM broadcasters tend to specialise in spoken-word formats, such as talk radio, all news and sports, leaving the broadcasting of music mainly to FM and digital stations.

Broadcast relay station

A broadcast relay station, also known as a satellite station, relay transmitter, broadcast translator (U.S.), re-broadcaster (Canada), repeater (two-way radio) or complementary station (Mexico), is a broadcast transmitter which repeats (or transponds) the signal of a radio or television station to an area not covered by the originating station. It expands the broadcast range of a television or radio station beyond the primary signal's original coverage or improves service in the original coverage area. The stations may be (but are not usually) used to create a single-frequency network. They may also be used by an FM or AM radio station to establish a presence on the other band.

Relay stations are most commonly established and operated by the same organisations responsible for the originating stations they repeat. However, depending on technical and regulatory restrictions, relays may also be set up by unrelated organisations - such as community groups in areas that would otherwise not be served.

Cellular network

A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called "cells", each served by at least one fixed-location transceiver, but more normally, three cell sites or base transceiver stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighbouring cells, to avoid interference and provide guaranteed service quality within each cell.When joined together, these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, tablets and laptops equipped with mobile broadband modems, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission.

Cellular networks offer a number of desirable features:

More capacity than a single large transmitter, since the same frequency can be used for multiple links as long as they are in different cells

Mobile devices use less power than with a single transmitter or satellite since the cell towers are closer

Larger coverage area than a single terrestrial transmitter, since additional cell towers can be added indefinitely and are not limited by the horizonMajor telecommunications providers have deployed voice and data cellular networks over most of the inhabited land area of Earth. This allows mobile phones and mobile computing devices to be connected to the public switched telephone network and public Internet. Private cellular networks can be used for research or for large organizations and fleets, such as dispatch for local public safety agencies or a taxicab company.

Deutsche Welle

Deutsche Welle (German pronunciation: [ˈdɔʏtʃə ˈvɛlə]; "German wave" in German) or DW is Germany's public international broadcaster. The service is available in 30 languages. DW's satellite television service consists of channels in English, German, Spanish, and Arabic. While funded by the German government, the work of DW is regulated by the Deutsche Welle Act, meaning that content is intended to be independent of government influence. DW is a member of the European Broadcasting Union (EBU).

DW offers regularly updated articles on its news website and runs its own center for international media development, DW Akademie. The broadcaster's stated goals are to produce reliable news coverage, provide access to the German language, and promote understanding between peoples.DW has been broadcasting since 1953. It is headquartered in Bonn, where its radio programmes are produced. Television broadcasts are produced almost entirely in Berlin. Both locations create content for DW's news website.

As of 2018, around 1,500 employees and 1,500 freelancers from 60 countries work for Deutsche Welle in its offices in Bonn and Berlin. According to DW, its output reaches 157 million people worldwide every week. The Director-General of DW is Peter Limbourg.

Effective radiated power

Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity (signal strength in watts per square meter) as the actual source at a distant receiver located in the direction of the antenna's strongest beam (main lobe). ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

An alternate parameter that measures the same thing is effective (or equivalent) isotropic radiated power (EIRP). Effective isotropic radiated power is the total power that would have to be radiated by a hypothetical isotropic antenna to give the same signal strength as the actual source in the direction of the antenna's strongest beam. The difference between EIRP and ERP is that ERP compares the actual antenna to a half-wave dipole antenna, while EIRP compares it to a theoretical isotropic antenna. Since a half-wave dipole antenna has a gain of 1.64, or 2.15 decibels compared to an isotropic radiator, if ERP and EIRP are expressed in watts their relation is

If they are expressed in decibels

Endocrine system

The endocrine system is a chemical messenger system comprising feedback loops of hormones released by internal glands of an organism directly into the circulatory system, regulating distant target organs. In humans, the major endocrine glands are the thyroid gland and the adrenal glands. In vertebrates, the hypothalamus is the neural control center for all endocrine systems. The study of the endocrine system and its disorders is known as endocrinology. Endocrinology is a branch of internal medicine.A number of glands that signal each other in sequence are usually referred to as an axis, for example, the hypothalamic-pituitary-adrenal axis. In addition to the specialized endocrine organs mentioned above, many other organs that are part of other body systems, including bone, kidney, liver, heart and gonads, have secondary endocrine functions. For example, the kidney secretes endocrine hormones such as erythropoietin and renin. Hormones can consist of either amino acid complexes, steroids, eicosanoids, leukotrienes, or prostaglandins.The endocrine system can be contrasted to both exocrine glands, which secrete hormones to the outside of the body using ducts and paracrine signalling between cells over a relatively short distance. Endocrince glands have no ducts, are vascular and commonly have intracellular vacuoles or granules that store their hormones. In contrast, exocrine glands, such as salivary glands, sweat glands, and glands within the gastrointestinal tract, tend to be much less vascular and have ducts or a hollow lumen.

The word endocrine derives via New Latin from the Greek words ἔνδον, endon, "inside, within," and "crine" from the κρίνω, krīnō, "to separate, distinguish".

High Frequency Active Auroral Research Program

The High Frequency Active Auroral Research Program (HAARP) was initiated as an ionospheric research program jointly funded by the U.S. Air Force, the U.S. Navy, the University of Alaska Fairbanks, and the Defense Advanced Research Projects Agency (DARPA). It was designed and built by BAE Advanced Technologies (BAEAT). Its original purpose was to analyze the ionosphere and investigate the potential for developing ionospheric enhancement technology for radio communications and surveillance. As a university-owned facility, HAARP is a high-power, high-frequency transmitter used for study of the ionosphere.

The most prominent instrument at HAARP is the Ionospheric Research Instrument (IRI), a high-power radio frequency transmitter facility operating in the high frequency (HF) band. The IRI is used to temporarily excite a limited area of the ionosphere. Other instruments, such as a VHF and a UHF radar, a fluxgate magnetometer, a digisonde (an ionospheric sounding device), and an induction magnetometer, are used to study the physical processes that occur in the excited region.

Work on the HAARP facility began in 1993. The current working IRI was completed in 2007; its prime contractor was BAE Systems Advanced Technologies. As of 2008, HAARP had incurred around $250 million in tax-funded construction and operating costs. In May 2014, it was announced that the HAARP program would be permanently shut down later in the year. After discussions between the parties, ownership of the facility and its equipment was transferred to the University of Alaska Fairbanks in August 2015.HAARP is a target of conspiracy theorists, who claim that it is capable of "weaponizing" weather. Commentators and scientists say that advocates of this theory are uninformed, as claims made fall well outside the abilities of the facility, if not the scope of natural science.

LORAN

LORAN, short for long range navigation, was a hyperbolic radio navigation system developed in the United States during World War II. It was similar to the UK's Gee system but operated at lower frequencies in order to provide an improved range up to 1,500 miles (2,400 km) with an accuracy of tens of miles. It was first used for ship convoys crossing the Atlantic Ocean, and then by long-range patrol aircraft, but found its main use on the ships and aircraft operating in the Pacific theatre.

LORAN, in its original form, was an expensive system to implement, requiring a cathode ray tube (CRT) display. This limited use to the military and large commercial users. Automated receivers became available in the 1950s, but the same improved electronics also opened the possibility of new systems with higher accuracy. The US Navy began development of Loran-B, which offered accuracy on the order of a few tens of feet, but ran into significant technical problems. The US Air Force worked on a different concept, Cyclan, which the Navy took over as Loran-C. Loran-C offered longer range than LORAN and accuracy of hundreds of feet. The US Coast Guard took over operations of both systems in 1958.

In spite of the dramatically improved performance of Loran-C, LORAN, now known as Loran-A (or "Standard LORAN"), would become much more popular during this period. This was due largely to the large numbers of surplus Loran-A units released from the Navy as ships and aircraft replaced their sets with Loran-C. The widespread introduction of inexpensive microelectronics during the 1980s caused Loran-C receivers to drop in price dramatically, and Loran-A use began to rapidly decline. Loran-A was dismantled starting in the 1970s; it remained active in North America until 1980 and the rest of the world until 1985. A Japanese chain remained on the air until 9 May 1997, and a Chinese chain was still listed as active as of 2000.

Loran-A used the same frequencies as the amateur radio 160-meter band, and radio operators were under strict rules to operate at reduced power levels; depending on their location and distance to the shore, US operators were limited to maximums of 200 to 500 watts during the day and 50 to 200 watts at night.

List of tallest structures

The tallest structure in the world is the Burj Khalifa skyscraper at 829.8 m (2,722 ft). Listed are guyed masts (such as telecommunication masts), self-supporting towers (such as the CN Tower), skyscrapers (such as the Willis Tower), oil platforms, electricity transmission towers, and bridge support towers. This list is organized by absolute height. See List of tallest buildings and structures, List of tallest freestanding structures and List of tallest buildings and List of tallest towers for additional information about these types of structures.

List of tallest structures in France

An incomplete list of the tallest structures in France. The list contains all types of structures, may be incomplete and should be expanded.

Longwave

In radio, longwave, long wave or long-wave, and commonly abbreviated LW, refers to parts of the radio spectrum with wavelengths longer than what was originally called the medium-wave broadcasting band. The term is historic, dating from the early 20th century, when the radio spectrum was considered to consist of longwave (LW), medium-wave (MW), and short-wave (SW) radio bands. Most modern radio systems and devices use wavelengths which would then have been considered 'ultra-short'.

In contemporary usage, the term longwave is not defined precisely, and its intended meaning varies. It may be used for radio wavelengths longer than 1,000 m i.e. frequencies up to 300 kilohertz (kHz), including the International Telecommunications Union's (ITU's) low frequency (LF, 30–300 kHz) and very low frequency (VLF, 3–30 kHz) bands. Sometimes the upper limit is taken to be higher than 300 kHz, but not above the start of the medium wave broadcast band at 525 kHz.In Europe, Africa, and large parts of Asia (International Telecommunication Union Region 1), where a range of frequencies between 148.5 and 283.5 kHz is used for AM broadcasting in addition to the medium-wave band, the term longwave usually refers specifically to this broadcasting band, which falls wholly within the low frequency band of the radio spectrum (30–300 kHz). The "Longwave Club of America" (United States) is interested in "frequencies below the AM broadcast band" (i.e., all frequencies below 525 kHz).

Neuromodulation

Neuromodulation is the physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. This is in contrast to synaptic transmission in which an axonal terminal secretes neurotransmitters to target fast-acting receptors of only one particular partner neuron. Neuromodulators are neurotransmitters that diffuse through neural tissue to affect slow-acting receptors of many neurons. Major neuromodulators in the central nervous system include dopamine, serotonin, acetylcholine, histamine, and norepinephrine. Neuromodulators are known to have modulatory effects on target areas such as decorrelation of spiking, increase of firing rate, sharpening of spatial tuning curves, maintenance of increased spiking during working memory.A neuromodulator can be conceptualized as a neurotransmitter that is not reabsorbed by the pre-synaptic neuron or broken down into a metabolite. Such neuromodulators end up spending a significant amount of time in the cerebrospinal fluid (CSF), influencing (or "modulating") the activity of several other neurons in the brain. For this reason, some neurotransmitters are also considered to be neuromodulators, such as serotonin and acetylcholine.Neuromodulation is often contrasted with classical fast synaptic transmission. In both cases the transmitter acts on local postsynaptic receptors, but in neuromodulation, the receptors are typically G-protein coupled receptors while in classical chemical neurotransmission, they are ligand-gated ion channels. Neurotransmission that involves metabotropic receptors (like G-protein linked receptors) often also involves voltage-gated ion channels, and is relatively slow. Conversely, neurotransmission that involves exclusively ligand-gated ion channels is much faster.

A related distinction is also sometimes drawn between modulator and driver synaptic inputs to a neuron, but here the emphasis is on modulating ongoing neuronal spiking versus causing that spiking.

Radio

Radio is the technology of signaling or communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Applications of radio waves which do not involve transmitting the waves significant distances, such as RF heating used in industrial processes and microwave ovens, and medical uses such as diathermy and MRI machines, are not usually called radio. The noun radio is also used to mean a broadcast radio receiver.

Radio waves were first identified and studied by German physicist Heinrich Hertz in 1886. The first practical radio transmitters and receivers were developed around 1895-6 by Italian Guglielmo Marconi, and radio began to be used commercially around 1900. To prevent interference between users, the emission of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which allocates frequency bands in the radio spectrum for different uses.

Remote control

In electronics, a remote control is an electronic device used to operate the device from a distance, usually wirelessly. For example, in consumer electronics, a remote control can be used to operate devices such as a television set, DVD player or other home appliance, from a short distance. A remote control is primarily a convenience feature for the user, and can allow operation of devices that are out of convenient reach for direct operation of controls. In some cases, remote controls allow a person to operate a device that they otherwise would not be able to reach, as when a garage door opener is triggered from outside or when a Digital Light Processing projector that is mounted on a high ceiling is controlled by a person from the floor level.

Early television remote controls (1956–1977) used ultrasonic tones. Present-day remote controls are commonly consumer infrared devices which send digitally-coded pulses of infrared radiation to control functions such as power, volume, channels, playback, track change, heat, fan speed, or other features varying from device to device. Remote controls for these devices are usually small wireless handheld objects with an array of buttons for adjusting various settings such as television channel, track number, and volume. For many devices, the remote control contains all the function controls while the controlled device itself has only a handful of essential primary controls. The remote control code, and thus the required remote control device, is usually specific to a product line, but there are universal remotes, which emulate the remote control made for most major brand devices.

Remote control has continually evolved and advanced in the 2000s to include Bluetooth connectivity, motion sensor-enabled capabilities and voice control.

Telephone

A telephone (derived from the Greek: τῆλε, tēle, "far" and φωνή, phōnē, "voice", together meaning "distant voice"), or phone, is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals that are transmitted via cables and other communication channels to another telephone which reproduces the sound to the receiving user.

In 1876, Alexander Graham Bell was the first to be granted a United States patent for a device that produced clearly intelligible replication of the human voice. This instrument was further developed by many others. The telephone was the first device in history that enabled people to talk directly with each other across large distances. Telephones rapidly became indispensable to businesses, government and households.

The essential elements of a telephone are a microphone (transmitter) to speak into and an earphone (receiver) which reproduces the voice in a distant location. In addition, most telephones contain a ringer to announce an incoming telephone call, and a dial or keypad to enter a telephone number when initiating a call to another telephone. The receiver and transmitter are usually built into a handset which is held up to the ear and mouth during conversation. The dial may be located either on the handset or on a base unit to which the handset is connected. The transmitter converts the sound waves to electrical signals which are sent through a telephone network to the receiving telephone, which converts the signals into audible sound in the receiver or sometimes a loudspeaker. Telephones are duplex devices, meaning they permit transmission in both directions simultaneously.

The first telephones were directly connected to each other from one customer's office or residence to another customer's location. Being impractical beyond just a few customers, these systems were quickly replaced by manually operated centrally located switchboards. These exchanges were soon connected together, eventually forming an automated, worldwide public switched telephone network. For greater mobility, various radio systems were developed for transmission between mobile stations on ships and automobiles in the mid-20th century. Hand-held mobile phones were introduced for personal service starting in 1973. In later decades their analog cellular system evolved into digital networks with greater capability and lower cost.

Convergence has given most modern cell phones capabilities far beyond simple voice conversation. They may be able to record spoken messages, send and receive text messages, take and display photographs or video, play music or games, surf the Internet, do road navigation or immerse the user in virtual reality. Since 1999, the trend for mobile phones is smartphones that integrate all mobile communication and computing needs.

Transceiver

A transceiver is a device comprising both a transmitter and a receiver that are combined and share common circuitry or a single housing.

Universal asynchronous receiver-transmitter

A universal asynchronous receiver-transmitter (UART ) is a computer hardware device for asynchronous serial communication in which the data format and transmission speeds are configurable. The electric signaling levels and methods are handled by a driver circuit external to the UART. A UART is usually an individual (or part of an) integrated circuit (IC) used for serial communications over a computer or peripheral device serial port. One or more UART peripherals are commonly integrated in microcontroller chips. A related device, the universal synchronous and asynchronous receiver-transmitter (USART) also supports synchronous operation.

Vatican Radio

Vatican Radio (Italian: Radio Vaticana; Latin: Statio Radiophonica Vaticana) is the official broadcasting service of the Vatican.

Set up in 1931 by Guglielmo Marconi, today its programs are offered in 47 languages, and are sent out on short wave (also DRM), medium wave, FM, satellite and the Internet. Since its inception, Vatican Radio has been maintained by the Jesuit Order. Vatican Radio preserved its independence during the rise of Fascist Italy and Nazi Germany. Following the outbreak of World War II, a week after Pope Pius XII ordered the programming, Vatican Radio broadcast the news that Poles and Jews were being rounded up and forced into ghettos.

Today, programming is produced by over two hundred journalists located in 61 different countries. Vatican Radio produces more than 42,000 hours of simultaneous broadcasting covering international news, religious celebrations, in-depth programs, and music. The current general director is Father Federico Lombardi, S.J.

On 27 June 2015, Pope Francis, in a motu proprio ("on his own initiative") apostolic letter, established the Secretariat for Communications in the Roman Curia, which absorbed Vatican Radio effective 1 January 2017, ending the organization's 85 years of independent operation.

Wireless

Wireless communication is the transfer of information or power between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio waves. With radio waves distances can be short, such as a few meters for Bluetooth or as far as millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mouse, keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound.

The term wireless has been used twice in communications history, with slightly different meaning. It was initially used from about 1890 for the first radio transmitting and receiving technology, as in wireless telegraphy, until the new word radio replaced it around 1920. The term was revived in the 1980s and 1990s mainly to distinguish digital devices that communicate without wires, such as the examples listed in the previous paragraph, from those that require wires or cables. This became its primary usage in the 2000s, due to the advent of technologies such as mobile broadband, Wi-Fi and Bluetooth.

Wireless operations permit services, such as long-range communications, that are impossible or impractical to implement with the use of wires. The term is commonly used in the telecommunications industry to refer to telecommunications systems (e.g. radio transmitters and receivers, remote controls, etc.) which use some form of energy (e.g. radio waves, acoustic energy,) to transfer information without the use of wires. Information is transferred in this manner over both short and long distances.

History
Pioneers
Transmission
media
Network topology
and switching
Multiplexing
Networks

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.