Tool stone

In archaeology, a tool stone is a type of stone that is used to manufacture stone tools,[1] or stones used as the raw material for tools.[2]

Generally speaking, tools that require a sharp edge are made using cryptocrystalline materials that fracture in an easily controlled conchoidal manner.[1] Cryptocrystalline tool stones include flint and chert, which are fine-grained sedimentary materials; rhyolite and felsite, which are igneous flowstones; and obsidian, a form of natural glass created by igneous processes. These materials fracture in a predictable fashion, and are easily resharpened. For more information on this subject, see lithic reduction.

Large-grained materials, such as basalt, granite, and sandstone, may also be used as tool stones, but for a very different purpose: they are ideal for ground stone artifacts. Whereas cryptocrystalline materials are most useful for killing and processing animals, large-grained materials are usually used for processing plant matter. Their rough faces often make excellent surfaces for grinding plant seeds. With much effort, some large-grained stones may be ground down into awls, adzes, and axes.

See also

References

  1. ^ a b Andrefsky Jr., William (2005). Lithics: Macroscopic Approaches to Analysis (Second ed.). Cambridge University Press. ISBN 0-521-61500-3.
  2. ^ Daniel S. Amick (1999). Folsom lithic technology: explorations in structure and variation. International Monographs in Prehistory. ISBN 978-1-879621-27-5. Retrieved 2010-10-03.
Celt (tool)

In archaeology, a celt is a long, thin, prehistoric, stone or bronze tool similar to an adze, a hoe or axe-like tool.

Chopping tool

In archaeology a chopping tool is a stone tool. Stone tools have been dated using scientific dating such as Carbon 14 dating and Potassium argon dating. Stone tools have been found to be almost 2 million years old. Chopping tools have been found to be about 2 million years old as well. The oldest object in the British Museum is a Chopping Tool. It was found in the Olduvai Gorge in Tanzania. Since Chopping tools are a sub category of stone tools we can see how these tools have developed over time.

Looking at how these tools are made is an important part in the history of the Chopping Tool. A large hard stone was needed as well as a softer stone that would be made into the chopper. The soft stone was commonly basalt (volcanic rock). The large hard stone acted as a hammer as it was hit against the soft stone. The soft stone would begin to chip away. The maker of the chopping tool would use the hard stone to create the edges and point needed to make the chopping tool efficient. Double sided sharp edges and a point are a common form of the chopping tool. The look is Similar to a Native American Projectile point, except that a chopping tool was used for stationary objects.

The use of the chopping tool varied from place to place just like any other archaeological artifact. Depending on what the maker of the chopping tool made or ate depended on what the chopping tool was used for. Most commonly the chopping tool was used for food purposes. They could be used for cutting down tree branches to get to fruits or to cut large plants that could be used for food. Anything that requires a knife today could have been replaced with a chopping tool. They were also used to help assist the maker in cutting the meat of the animals. Just like butchers today, skinning and cleaning of all the meat that we eat is needed. The chopping tool helped assist hunters gather the meat, especially from large animals that were hard to carry back to the location they were staying at, and make it edible for them to consume. Another use for the chopping tool was to smash bones. Bone marrow is a good source of nutrients to help your body function. For hunters and gatherers this was important since the next source of food could have been days to weeks away. When they would hunt animals they would use the sharp edge to cut the meat off the bones and then the back edge was hard enough to smash and crush bones. Once the bones were crushed the marrow could be collected.

The flakes that were chipped off the soft rock did not go to waste. Many of the thick sharp pieces were used as small knives to do very light cutting tasks. The flakes were a very important part of everyday life just like the chopping tool. Both pieces were used in everyday life to help with survival.

The idea of the chopping tool spread from people to people throughout the land. In Asia stone tools did not develop as much as other places in the world. To make these tools like the chopping tool you have to have specific types of rock such as flint and jasper. In Asia these rocks were hard to find but the amount of the coarse-grained rocks and material was much easier to find. Even though the materials they used such as volcanic material and petrified wood wasn't as strong or as easy to shape they still were able to make tools that resembled the chopping tool and they were used in very similar ways. Many of the tools that were found in Asia, they were found in the Choukoutienian caves. The Choukoutienian industry is where a lot of the stone tools in Asia started. The caves are filled with many artifacts and the early chopping tool is one of the many artifacts found.

The resources used to make many variations of the chopping tool were present in much of the world. Even if the items that were used to make the chopping tool in various parts of the world were not as durable or as powerful or sharp they still were used for cutting items as well as day to day survival.

Cumberland point

A Cumberland point is a lithic projectile point, attached to a spear and used as a hunting tool. These sturdy points were intended for use as thrusting weapons and employed by various mid-Paleo-Indians (c. 11,000 BP) in the Southeastern US in the killing of large game mammals.

Eraillure

In lithic analysis (a subdivision of archaeology), an eraillure is a flake removed from a lithic flake's bulb of force, which is a lump left on the ventral surface of a flake after it is detached from a core of tool stone during the process of lithic reduction. The mechanics of eraillure formation are related to the propagation of a Hertzian cone of force through the cryptocrystalline matrix of the stone, but the particulars are poorly understood. Eraillures usually form only when a hammerstone is used for lithic reduction, and then only occasionally; use of 'soft' hammer fabricators made from bone, antler, and wood produce different flake characteristics but may also produce an eraillure in rare cases.

Grattoir de côté

A Grattoir de côté (translates from French as Side Scraper) is an archaeological term for a ridged variety of steep-scrapers distinguished by a working edge on one side. They were found at various archaeological sites in Lebanon including Ain Cheikh and Jdeideh II and are suggested to date to Upper Paleolithic stages three or four (Antelian).

Grinding slab

In archaeology, a grinding slab is a ground stone artifact generally used to grind plant materials into usable size, though some slabs were used to shape other ground stone artifacts. Some grinding stones are portable; others are not and, in fact, may be part of a stone outcropping.

Grinding slabs used for plant processing typically acted as a coarse surface against which plant materials were ground using a portable hand stone, or mano ("hand" in Spanish). Variant grinding slabs are referred to as metates or querns, and have a ground-out bowl. Like all ground stone artifacts, grinding slabs are made of large-grained materials such as granite, basalt, or similar tool stones.

Ground stone

In archaeology, ground stone is a category of stone tool formed by the grinding of a coarse-grained tool stone, either purposely or incidentally. Ground stone tools are usually made of basalt, rhyolite, granite, or other cryptocrystalline and igneous stones whose coarse structure makes them ideal for grinding other materials, including plants and other stones.

Hammerstone

In archaeology, a hammerstone is a hard cobble used to strike off lithic flakes from a lump of tool stone during the process of lithic reduction. The hammerstone is a rather universal stone tool which appeared early in most regions of the world including Europe, India and North America. This technology was of major importance to prehistoric cultures before the age of metalworking.

Hand axe

A hand axe (or handaxe) is a prehistoric stone tool with two faces that is the longest-used tool in human history. It is usually made from flint or chert. It is characteristic of the lower Acheulean and middle Palaeolithic (Mousterian) periods. Its technical name (biface) comes from the fact that the archetypical model is generally bifacial Lithic flake and almond-shaped (amygdaloidal). Hand axes tend to be symmetrical along their longitudinal axis and formed by pressure or percussion. The most common hand axes have a pointed end and rounded base, which gives them their characteristic shape, and both faces have been knapped to remove the natural cortex, at least partially. Hand axes are a type of the somewhat wider biface group of two-faced tools or weapons.

Hand axes were the first prehistoric tools to be recognized as such: the first published representation of a hand axe was drawn by John Frere and appeared in a British publication in 1800. Until that time, their origins were thought to be natural or supernatural. They were called thunderstones, because popular tradition held that they had fallen from the sky during storms or were formed inside the earth by a lightning strike and then appeared at the surface. They are used in some rural areas as an amulet to protect against storms.

Hand axe tools were possibly used to butcher animals; to dig for tubers, animals and water; to chop wood and remove tree bark; to throw at prey; and as a source for flake tools.

Hertzian cone

A Hertzian cone is the cone produced when an object passes through a solid, such as a bullet through glass. More technically, it is a cone of force that propagates through a brittle, amorphous or cryptocrystalline solid material from a point of impact. This force eventually removes a full or partial cone in the material. This is the physical principle that explains the form and characteristics of the flakes removed from a core of tool stone during the process of lithic reduction.

This phenomenon is named after the German physicist Heinrich Rudolf Hertz, who first described this type of wave-front propagation through various media.

Although it might not be agreed by all, natural phenomena which have been grouped with the Hertzian cone phenomena include the crescentic "chatter marks" made on smoothed bedrock by glacial ice dragging along boulders at its base, the numerous crescentic impact marks sometimes seen on pebbles and cobbles, and the shatter cones found at bolide impact sites. James Byous, working independently (at privately funded Dowd Research, Savannah, Georgia USA) has made a protracted study of Hertzian cones. Some of his work may be found via sharing points or directly at Dowd Research. He has produced a comprehensive glossary on Hertzian fractures and related terms. A Hertzian cone is often 104 degrees when created by an indenter. Smaller cones may be produced due to lack of size of the material, or irregularities in the structure of the material. However, in ballistics the faster the projectile the steeper the edges and angle of the cone.

Lithic core

In archaeology, a lithic core is a distinctive artifact that results from the practice of lithic reduction. In this sense, a core is the scarred nucleus resulting from the detachment of one or more flakes from a lump of source material or tool stone, usually by using a hard hammer percussor such as a hammerstone. The core is marked with the negative scars of these flakes. The surface area of the core which received the blows necessary for detaching the flakes is referred to as the striking platform. The core may be discarded or shaped further into a core tool, such as can be seen in some types of handaxe.

The purpose of lithic reduction may be to rough out a blank for later refinement into a projectile point, knife, or other stone tool, or it may be performed in order to obtain sharp flakes, from which a variety of simple tools can be made. Generally, the presence of a core is indicative of the latter process, since the former process usually leaves no core. Because the morphology of cores will influence the shape of flakes, by studying the core surface morphology, we might be able to know more information about the dimensional flake attribute, including their length and thickness. Cores may be subdivided into specific types by a lithic analyst. Type frequencies, as well as the general types of materials at an archaeological site, can give the lithic analyst a better understanding of the lithic reduction processes occurring at that site.

Lithic Cores may be multidirectional, conical, cylindrical, biconical, or bifacial. A multidirectional core is the product of any random rock, from which flakes were taken based on the geometry of the rock in any pattern until no further flakes could be removed. Often, multidirectional cores are used in this way until no obvious platforms are present, and then are reduced through bipolar reduction, until the core itself is too small to produce useful flakes. Conical cores have a definite pattern. One flake was removed from a narrow end of the tool stone, and this was then used as the platform to take flakes off in a unifacial fashion all around the edge of the rock. The end result is a cone-like shape. Cylindrical lithic cores are made in a similar fashion, but there is a platform on both ends of the toolstone, with flakes going up and down the side of the cylinder from either direction.

Biconical cores have several platforms around the edge of the stone, with flakes taken alternately from either side, resulting in what looks like a pair of cones stuck together at the bases.Bifacial cores are similar to biconical cores, except that instead of forming a pair of cones, the flakes are taken off in such a way that the core itself grows thinner, without the edges shrinking much. Bifacial cores are usually further reduced into trade bifaces, biface blanks, or bifacial tools. Bifacial cores have been recognized as a technology allowing for efficient material usage(specifically in the creation of edge scrapers) and for their suitability for highly mobile hunter gatherer groups in need of tools made of high quality lithic materials.

Lithic flake

In archaeology, a lithic flake is a "portion of rock removed from an objective piece by percussion or pressure," and may also be referred to as a chip or spall, or collectively as debitage. The objective piece, or the rock being reduced by the removal of flakes, is known as a core. Once the proper tool stone has been selected, a percussor or pressure flaker (e.g., an antler tine) is used to direct a sharp blow, or apply sufficient force, respectively, to the surface of the stone, often on the edge of the piece. The energy of this blow propagates through the material, often (but not always) producing a Hertzian cone of force which causes the rock to fracture in a controllable fashion. Since cores are often struck on an edge with a suitable angle (x<90°) for flake propagation, the result is that only a portion of the Hertzian cone is created. The process continues as the flintknapper detaches the desired number of flakes from the core, which is marked with the negative scars of these removals. The surface area of the core which received the blows necessary for detaching the flakes is referred to as the striking platform.

Lithic reduction

In archaeology, in particular of the Stone Age, lithic reduction is the process of fashioning stones or rocks from their natural state into tools or weapons by removing some parts. It has been intensely studied and many archaeological industries are identified almost entirely by the lithic analysis of the precise style of their tools and the chaîne opératoire of the reduction techniques they used.

Normally the starting point is the selection of a piece of tool stone that has been detached by natural geological processes, and is an appropriate size and shape. In some cases solid rock or larger boulders may be quarried and broken into suitable smaller pieces, and in others the starting point may be a piece of the debitage, a flake removed from a previous operation to make a larger tool. The selected piece is called the lithic core (also known as the "objective piece"). A basic distinction is that between flaked or chipped stone, the main subject here, and ground stone objects made by grinding. Flaked stone reduction involves the use of a hard hammer percussor, such as a hammerstone, a soft hammer fabricator (made of wood, bone or antler), or a wood or antler punch to detach lithic flakes from the lithic core. As flakes are detached in sequence, the original mass of stone is reduced; hence the term for this process. Lithic reduction may be performed in order to obtain sharp flakes, of which a variety of tools can be made, or to rough out a blank for later refinement into a projectile point, knife, or other object. Flakes of regular size that are at least twice as long as they are broad are called blades. Lithic tools produced this way may be bifacial (exhibiting flaking on both sides) or unifacial (exhibiting flaking on one side only).

Cryptocrystalline or amorphous stone such as chert, flint, obsidian, and chalcedony, as well as other fine-grained stone material, such as rhyolite, felsite, and quartzite, were used as a source material for producing stone tools. As these materials lack natural planes of separation, conchoidal fractures occur when they are struck with sufficient force; for these stones this process is called knapping. The propagation of force through the material takes the form of a Hertzian cone that originates from the point of impact and results in the separation of material from the objective piece, usually in the form of a partial cone, commonly known as a lithic flake. This process is predictable, and allows the flintknapper to control and direct the application of force so as to shape the material being worked. Controlled experiments may be performed using glass cores and consistent applied force in order to determine how varying factors affect core reduction.It has been shown that stages in the lithic reduction sequence may be misleading and that a better way to assess the data is by looking at it as a continuum. The assumptions that archaeologists sometimes make regarding the reduction sequence based on the placement of a flake into a stage can be unfounded. For example, a significant amount of cortex can be present on a flake taken off near the very end of the reduction sequence. Removed flakes exhibit features characteristic of conchoidal fracturing, including striking platforms, bulbs of force, and occasionally eraillures (small secondary flakes detached from the flake's bulb of force). Flakes are often quite sharp, with distal edges only a few molecules thick when they have a feather termination. These flakes can be used directly as tools or modified into other utilitarian implements, such as spokeshaves and scrapers.

Pesse canoe

The Pesse canoe is believed to be the world's oldest known boat, and certainly the oldest known canoe. Carbon dating indicates that the boat was constructed during the early mesolithic period between 8040 BCE and 7510 BCE. It is now in the Drents Museum in Assen, Netherlands.

Plano point

In archeology, Plano point is flaked stone projectile points and tools created by the various Plano cultures of the North American Great Plains between 9000 BC and 6000 BC for hunting, and possibly to kill other humans.

They are bifacially worked and have been divided into numerous sub-groups based on variations in size, shape and function including Alberta points, Cody points, Frederick points, Eden points and Scottsbluff points. Plano points do not include the hollowing or 'fluting' found in Clovis and Folsom points.

Racloir

In archeology, a racloir, also known as racloirs sur talon (French for scraper on the platform), is a certain type of flint tool made by prehistoric peoples.

It is a type of side scraper distinctive of Mousterian assemblages. It is created from a flint flake and looks like a large scraper. As well as being used for scraping hides and bark, it may also have been used as a knife. Racloirs are most associated with the Neanderthal Mousterian industry. These racloirs are retouched along the ridge between the striking platform and the dorsal face. They have shaped edges and are modified by abrupt flaking from the dorsal face.

Stone tool

A stone tool is, in the most general sense, any tool made either partially or entirely out of stone. Although stone tool-dependent societies and cultures still exist today, most stone tools are associated with prehistoric (particularly Stone Age) cultures that have become extinct. Archaeologists often study such prehistoric societies, and refer to the study of stone tools as lithic analysis. Ethnoarchaeology has been a valuable research field in order to further the understanding and cultural implications of stone tool use and manufacture.Stone has been used to make a wide variety of different tools throughout history, including arrow heads, spearpoints and querns. Stone tools may be made of either ground stone or chipped stone, and a person who creates tools out of the latter is known as a flintknapper.

Chipped stone tools are made from cryptocrystalline materials such as chert or flint, radiolarite, chalcedony, obsidian, basalt, and quartzite via a process known as lithic reduction. One simple form of reduction is to strike stone flakes from a nucleus (core) of material using a hammerstone or similar hard hammer fabricator. If the goal of the reduction strategy is to produce flakes, the remnant lithic core may be discarded once it has become too small to use. In some strategies, however, a flintknapper reduces the core to a rough unifacial or bifacial preform, which is further reduced using soft hammer flaking techniques or by pressure flaking the edges.

More complex forms of reduction include the production of highly standardized blades, which can then be fashioned into a variety of tools such as scrapers, knives, sickles and microliths. In general terms, chipped stone tools are nearly ubiquitous in all pre-metal-using societies because they are easily manufactured, the tool stone is usually plentiful, and they are easy to transport and sharpen.

Uniface

In archeology, a uniface is a specific type of stone tool that has been flaked on one surface only. There are two general classes of uniface tools: modified flakes—and formalized tools, which display deliberate, systematic modification of the marginal edges, evidently formed for a specific purpose.

Yubetsu technique

The Yubetsu technique (湧別技法, Yūbetsu gihō) is a special technique to make microblades, proposed by Japanese scholar Yoshizaki in 1961, based on his finds in some Upper Palaeolithic sites in Hokkaido, Japan, which date from c. 13,000 bp.

The name comes from the Yūbetsu River (湧別川, Yubetsugawa), on the right bank of which the Shirataki (白滝遺跡, Shirataki Iseki) Palaeolithic sites were discovered.

To make microblades by this technique, a large biface is made into a core which looks like a tall carinated scraper. Then one lateral edge of the bifacial core is removed, producing at first a triangular spall. After, more edge removals will produce ski spalls of parallel surfaces.

This technique was also used from Mongolia to Kamchatka Peninsula during the later Pleistocene.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.