Timeline of volcanism on Earth

This timeline of volcanism on Earth is a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index (VEI) or equivalent sulfur dioxide emission around the Quaternary period (from 2.58 Mya to the present).

Some eruptions cooled the global climate—inducing a volcanic winter—depending on the amount of sulfur dioxide emitted[1] and the magnitude of the eruption.[2] Before the present Holocene epoch, the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. Only some eruptions before the Neogene period (from 23 Mya to 2.58 Mya) are listed. Known large eruptions after the Paleogene period (from 66 Mya to 23 Mya) are listed, especially those relating to the Yellowstone hotspot, the Santorini caldera, and the Taupo Volcanic Zone.

Active volcanoes such as Stromboli, Mount Etna and Kilauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: so Santorini, six times and Yellowstone hotspot, twenty-one times. The Bismarck volcanic arc, New Britain, and the Taupo Volcanic Zone, New Zealand, appear often too.

In addition to the events listed below, are many examples of eruptions in the Holocene on the Kamchatka Peninsula,[3] which are described in a supplemental table by Peter Ward.[4]

2011 Puyehue-Cordón Caulle eruption1980 eruption of Mount St. Helens1912 eruption of NovaruptaYellowstone CalderaAD 79 Eruption of Mount Vesuvius1902 eruption of Santa María1280 eruption of Quilotoa1600 eruption of Huaynaputina2010 eruptions of EyjafjallajökullYellowstone Caldera1783 eruption of Laki1477 eruption of Bárðarbunga1650 eruption of KolumboVolcanic activity at SantoriniToba catastrophe theoryKuril IslandsBaekdu MountainKikai Caldera1991 eruption of Mount PinatuboLong Island (Papua New Guinea)1815 eruption of Mount Tambora1883 eruption of Krakatoa2010 eruptions of Mount MerapiBilly Mitchell (volcano)Taupo VolcanoTaupo VolcanoTaupo VolcanoCrater Lake
Clickable imagemap of notable volcanic eruptions. The apparent volume of each bubble is linearly proportional to the volume of tephra ejected, colour-coded by time of eruption as in the legend. Pink lines denote convergent boundaries, blue lines denote divergent boundaries and yellow spots denote hotspots.

Large Quaternary eruptions

The Holocene epoch begins 11,700 years BP[5] (10,000 14C years ago).

Since 1000 AD

  • Pinatubo, island of Luzon, Philippines; 1991, June 15; VEI 6; 6 to 16 km3 (1.4 to 3.8 cu mi) of tephra;[6] an estimated 20,000,000 tonnes (22,000,000 short tons) of SO
    2
    were emitted[2]
  • Novarupta, Alaska Peninsula; 1912, June 6; VEI 6; 13 to 15 km3 (3.1 to 3.6 cu mi) of lava[7][8][9]
  • Santa Maria, Guatemala; 1902, October 24; VEI 6; 20 km3 (4.8 cu mi) of tephra[10]
  • Krakatoa, Indonesia; 1883, August 26–27; VEI 6; 21 km3 (5.0 cu mi) of tephra[11]
  • Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; 150 km3 (36 cu mi) of tephra;[6] an estimated 200,000,000 t (220,000,000 short tons) of SO
    2
    were emitted, produced the "Year Without a Summer"[12]
  • 1808 mystery eruption, VEI 6–7; discovered from ice cores in the 1980s.[13][14][15]
  • Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; 14 km3 (3.4 cu mi) of lava, an estimated 120,000,000 t (130,000,000 short tons) of SO
    2
    were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.[16]
  • Long Island (Papua New Guinea), Northeast of New Guinea; 1660 ±20; VEI 6; 30 km3 (7.2 cu mi) of tephra[6]
  • Kolumbo, Santorini, Greece; 1650, September 27; VEI 5; 2 km3 (0.5 cu mi) of tephra[17]
  • Huaynaputina, Peru; 1600, February 19; VEI 6; 30 km3 (7.2 cu mi) of tephra[18]
  • Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; 14 km3 (3.4 cu mi) of tephra[6]
  • Bárðarbunga, Northeastern Iceland; 1477; VEI 6; 10 cubic kilometres (2.4 cu mi) of tephra[6]
  • 1465 mystery eruption "the location of this eruption is uncertain, as it has only been identified from distant ice core records and atmospheric events around the time of King Alfonso II of Naples's wedding; it is believed to have been VEI 7 and possibly even larger than Mount Tambora's in 1815.[19][20]
  • 1452–53 New Hebrides arc, Vanuatu; the location of this eruption in the South Pacific is uncertain, as it has been identified from distant ice core records; the only pyroclastic flows are found at Kuwae; 36 to 96 km3 (8.6 to 23.0 cu mi) of tephra; 175,000,000–700,000,000 t (193,000,000–772,000,000 short tons) of sulfuric acid[21][22][23]
  • 1280(?) in Quilotoa, Ecuador; VEI 6; 21 km3 (5.0 cu mi) of tephra[6]
  • 1257 Samalas eruption, Rinjani volcanic complex, Lombok Island, Indonesia; 40 km3 (dense-rock equivalent) of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.[24][25]

Overview of Common Era

This is a sortable summary of 27 major eruptions in the last 2000 years with VEI ≥6, implying an average of about 1.3 per century. The count does not include the notable VEI 5 eruptions of Mount St. Helens and Mount Vesuvius. Date uncertainties, tephra volumes, and references are also not included.

Caldera/ Eruption name Volcanic arc/ belt
or Subregion or Hotspot
VEI Date Known/proposed consequences
Mount Pinatubo Luzon Volcanic Arc 6 1991, Jun 15 Global temperature fell by 0.4 °C
Novarupta Aleutian Range 6 1912, Jun 6
Santa María Central America Volcanic Arc 6 1902, Oct 24
Krakatoa Sunda Arc 6 1883, Aug 26–27 At least 30,000 dead
Mount Tambora Lesser Sunda Islands 7 1815, Apr 10 Year Without a Summer (1816)
1808 mystery eruption Southwestern Pacific Ocean 6 1808, Dec A sulfate spike in ice cores
Grímsvötn and Laki Iceland 6 1783–85 Mist Hardships, French Revolution
Long Island (Papua New Guinea) Bismarck Volcanic Arc 6 1660
Huaynaputina Andes, Central Volcanic Zone 6 1600, Feb 19 Russian famine of 1601–1603
Billy Mitchell Bougainville & Solomon Is. 6 1580
Bárðarbunga Iceland 6 1477
10 October 1465 mystery eruption unknown 7 1465 Possibly larger than Mount Tambora's
Kuwae New Hebrides Arc 6 1452–53 2nd pulse[26] of Little Ice Age?
Quilotoa Andes, Northern Volcanic Zone 6 1280
Samalas (Mount Rinjani) Lombok, Lesser Sunda Islands 7 1257 1257 Samalas eruption, 1st pulse[27][28] of Little Ice Age? (c.1250)
Baekdu Mountain/Tianchi eruption China/ North Korea border 7 946, Nov-947 Limited regional climatic effects.[29]
Katla/Eldgjá eruption Iceland 6 934–940
Ceboruco Trans-Mexican Volcanic Belt 6 930
Dakataua Bismarck Volcanic Arc 6 800
Pago Bismarck Volcanic Arc 6 710
Mount Churchill eastern Alaska, USA 6 700
Rabaul Caldera Bismarck Volcanic Arc 6 540 (est.) Extreme weather events of 535–536
Ilopango Central America Volcanic Arc 6 450
Ksudach Kamchatka Peninsula 6 240
Taupo Caldera/Hatepe eruption Taupo Volcano 7 180 or 230 Affected skies over Rome and China
Mount Vesuvius/Pompeii eruption Italy 5 79
Mount Churchill eastern Alaska, USA 6 60
Ambrym New Hebrides Arc 6 50
Apoyeque Central America Volcanic Arc 6 50 BC (±100)

Note: Caldera names tend to change over time. For example, Okataina Caldera, Haroharo Caldera, Haroharo volcanic complex, Tarawera volcanic complex had the same magma source in the Taupo Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field had all Yellowstone hotspot as magma source.

Earlier Quaternary eruptions

2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.

Large Neogene eruptions

Pliocene eruptions

Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.

Timeline of volcanism on Earth is located in Nevada
Santa Rosa-Calico
Santa Rosa-Calico
Virgin Valley
Virgin Valley
McDermitt
McDermitt
Black Mountain
Black Mountain
Silent Canyon
Silent Canyon
Timber Mountain
Timber Mountain
Stonewall
Stonewall
Long Valley
Long Valley
Lunar Crater
Lunar Crater
Nevada/ California:
Volcanism locations.
Timeline of volcanism on Earth is located in Colorado
Cochetopa
Cochetopa
La Garita
La Garita
Lake City
Lake City
Platoro
Platoro
Dotsero
Dotsero
Colorado volcanism. Links: La Garita, Cochetopa and North Pass (North Pass), Lake City, and Dotsero.
Timeline of volcanism on Earth is located in New Mexico
Valles
Valles
Socorro
Socorro
Potrillo
Potrillo
Zuni-Bandera
Zuni-Bandera
Carizzozo
Carizzozo
New Mexico volcanism. Links: Valles, Socorro, Potrillo, Carrizozo, and Zuni-Bandera.

Miocene eruptions

Approximately 23.03 million years BP, the Neogene period and Miocene epoch begin.

  • Cerro Guacha, Bolivia; 5.6–5.8 Ma (Guacha ignimbrite).[59]
  • Lord Howe Island, Australia; Mount Lidgbird and Mount Gower are both made of basalt rock, remnants of lava flows that once filled a large volcanic caldera 6.4 Ma.[60]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.51 Ma ±0.13 (Conant Creek Tuff).[58]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 5.6 Ma; 500 cubic kilometers (120 cu mi) of Blue Creek Tuff.[4]
  • Cerro Panizos (size: 18 km wide), Altiplano-Puna Volcanic Complex, Bolivia; 6.1 Ma; 652 cubic kilometers (156 cu mi) of Panizos Ignimbrite.[4][61]
  • Yellowstone hotspot, Heise volcanic field, Idaho; 6.27 Ma ±0.04 (Walcott Tuff).[58]
  • Yellowstone hotspot, Heise volcanic field, Idaho; Blacktail Caldera (size: 100 x 60 km), Idaho; 6.62 Ma ±0.03; 1,500 cubic kilometers (360 cu mi) of Blacktail Tuff.[4][58]
  • Pastos Grandes Caldera (size: 40 x 50 km), Altiplano-Puna Volcanic Complex, Bolivia; 8.3 Ma; 652 cubic kilometers (156 cu mi) of Sifon Ignimbrite.[4]
  • Manus Island, Admiralty Islands, northern Papua New Guinea; 8–10 Ma
  • Banks Peninsula, New Zealand; Akaroa erupted 9 Ma, Lyttelton erupted 12 Ma.[62]
  • Mascarene Islands were formed in a series of undersea volcanic eruptions 8–10 Ma, as the African plate drifted over the Réunion hotspot.
  • Yellowstone hotspot, Twin Fall volcanic field, Idaho; 8.6 to 10 Ma.[63]
  • Yellowstone hotspot, Picabo volcanic field, Idaho; 10.21 Ma ± 0.03 (Arbon Valley Tuff).[58]
  • Mount Cargill, New Zealand; the last eruptive phase ended some 10 Ma. The center of the caldera is about Port Chalmers, the main port of the city of Dunedin.[64][65][66]
  • Yellowstone hotspot, Idaho; Bruneau-Jarbidge volcanic field; 10.0 to 12.5 Ma (Ashfall Fossil Beds eruption).[63]
  • Anahim hotspot, British Columbia, Canada; has generated the Anahim Volcanic Belt over the last 13 million years.
  • Yellowstone hotspot, Owyhee-Humboldt volcanic field, Nevada/ Oregon; around 12.8 to 13.9 Ma.[63][67]
  • Tejeda Caldera, Gran Canaria, Spain; 13.9 Ma; the 80 km3 eruption produced a composite ignimbrite (P1) of rhyolite, trachyte and basaltic materials, with a thickness of 30 metres at 10 km from the caldera center[68]
  • Gran Canaria shield basalt eruption, Spain; 14.5 to 14 Ma; 1,000 km3 of tholeiitic to alkali basalts
  • Campi Flegrei, Naples, Italy; 14.9 Ma; 79 cubic kilometers (19 cu mi) of Neapolitan Yellow Tuff.[4]
  • Huaylillas Ignimbrite, Bolivia, southern Peru, northern Chile; 15 Ma ±1; 1,100 cubic kilometers (264 cu mi) of tephra.[4]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Whitehorse Caldera (size: 15 km wide), Oregon; 15 Ma; 40 cubic kilometers (10 cu mi) of Whitehorse Creek Tuff.[4][69]
  • Yellowstone hotspot (?), Lake Owyhee volcanic field; 15.0 to 15.5 Ma.[70]
  • Yellowstone hotspot, McDermitt volcanic field (South), Jordan Meadow Caldera, (size: 10–15 km wide), Nevada/ Oregon; 15.6 Ma; 350 cubic kilometers (84 cu mi) Longridge Tuff member 2-3.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Longridge Caldera, (size: 33 km wide), Nevada/ Oregon; 15.6 Ma; 400 cubic kilometers (96 cu mi) Longridge Tuff member 5.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Calavera Caldera, (size: 17 km wide), Nevada/ Oregon; 15.7 Ma; 300 cubic kilometers (72 cu mi) of Double H Tuff.[4][63][69][71]
  • Yellowstone hotspot, McDermitt volcanic field (South), Hoppin Peaks Caldera, 16 Ma; Hoppin Peaks Tuff.[72]
  • Yellowstone hotspot, McDermitt volcanic field (North), Trout Creek Mountains, Pueblo Caldera (size: 20 x 10 km), Oregon; 15.8 Ma; 40 cubic kilometers (10 cu mi) of Trout Creek Mountains Tuff.[4][69][72]
  • Yellowstone hotspot, McDermitt volcanic field (South), Washburn Caldera, (size: 30 x 25 km wide), Nevada/ Oregon; 16.548 Ma; 250 cubic kilometers (60 cu mi) of Oregon Canyon Tuff.[4][69][71]
  • Yellowstone hotspot (?), Northwest Nevada volcanic field (NWNV), Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of Pine Forest Range, Nevada; 15.5 to 16.5 Ma.[73]
  • Yellowstone hotspot, Steens and Columbia River flood basalts, Pueblo, Steens, and Malheur Gorge-region, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho, USA; most vigorous eruptions were from 14–17 Ma; 180,000 cubic kilometers (43,184 cu mi) of lava.[4][74][75][76][77][78][79][80]
  • Mount Lindesay (New South Wales), Australia; is part of the remnants of the Nandewar extinct volcano that ceased activity about 17 Ma after 4 million years of activity.
  • Oxaya Ignimbrites, northern Chile (around 18°S); 19 Ma; 3,000 cubic kilometers (720 cu mi) of tephra.[4]
  • Pemberton Volcanic Belt was erupting about 21 to 22 Ma.[81]

Volcanism before the Neogene

Hotspots
Distribution of selected hotspots. The numbers in the figure are related to the listed hotspots on Hotspot (geology).

Notes

Volcanic Explosivity Index (VEI)

VEIfigure en
VEI and ejecta volume correlation
VEI Tephra Volume
(cubic kilometers)
Example
0 Effusive Masaya Volcano, Nicaragua, 1570
1 >0.00001 Poás Volcano, Costa Rica, 1991
2 >0.001 Mount Ruapehu, New Zealand, 1971
3 >0.01 Nevado del Ruiz, Colombia, 1985
4 >0.1 Eyjafjallajökull, Iceland, 2010
5 >1 Mount St. Helens, United States, 1980
6 >10 Mount Pinatubo, Philippines, 1991
7 >100 Mount Tambora, Indonesia, 1815
8 >1000 Yellowstone Caldera, United States, Pleistocene

Volcanic dimming

The global dimming through volcanism (ash aerosol and sulfur dioxide) is quite independent of the eruption VEI.[99][100][101] When sulfur dioxide (boiling point at standard state: -10 °C) reacts with water vapor, it creates sulfate ions (the precursors to sulfuric acid), which are very reflective; ash aerosol on the other hand absorbs Ultraviolet.[102] Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer.[103] The lower snow line and its higher albedo might prolong this cooling period.[104] Bipolar comparison showed six sulfate events: Tambora (1815), Cosigüina (1835), Krakatoa (1883), Agung (1963), and El Chichón (1982), and the 1808 mystery eruption.[105] And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory (MLO), Hawaii (19°32'N) detected only five eruptions:[106]

But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up (greenhouse gases), global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down.[1]

Tephra fall from 1991 eruption of Mt Pinatubo

Location of Mount Pinatubo, showing area over which ash from the 1991 eruption fell.

TOMS AI Jun16 91

Satellite measurements of ash and aerosol emissions from Mount Pinatubo.

Mauna Loa atmospheric transmission

MLO transmission ratio - Solar radiation reduction due to volcanic eruptions

Aerosol dimming

NASA, Global Dimming - El Chichon, VEI 5; Pinatubo, VEI 6.

TOMS SO2 time nov03

Sulfur dioxide emissions by volcanoes. Mount Pinatubo: 20 million tons of sulfur dioxide.

TOMS SO2 Jun17 91

TOMS sulfur dioxide from the June 15, 1991 eruption of Mount Pinatubo.

Sarychev Eruption Generates Large Cloud of Sulfur Dioxide

Sarychev Peak: the sulphur dioxide cloud generated by the eruption on June 12, 2009 (in Dobson units).

Map gallery

Yellowstone Caldera map2

Yellowstone sits on top of four overlapping calderas. (US NPS)

IPCaldera

Diagram of Island Park and Henry's Fork Caldera.

Steens Mountain relief map

Steens Mountain, McDermitt volcanic field and Oregon/ Nevada stateline.

HotspotsSRP update2013

Location of Yellowstone Hotspot in Millions of Years Ago.

SnakeRiver

Snake River Plain, image from NASA's Aqua satellite, 2008

Wfm area51 map en

Location of Yucca Mountain in southern Nevada, to the West of the Nevada Test Site.

Santa Fe National Forest Jemez District

Jemez Ranger District and Jemez Mountains, Santa Fe National Forest.

See also

References

  1. ^ a b Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways". Thin Solid Films. 517 (11): 3188–3203. Bibcode:2009TSF...517.3188W. doi:10.1016/j.tsf.2009.01.005.
  2. ^ a b c Robock, A., C.M. Ammann, L. Oman, D. Shindell, S. Levis, and G. Stenchikov (2009). "Did the Toba volcanic eruption of ~74k BP produce widespread glaciation?". Journal of Geophysical Research. 114 (D10): D10107. Bibcode:2009JGRD..11410107R. doi:10.1029/2008JD011652.CS1 maint: multiple names: authors list (link)
  3. ^ "Holocene Kamchatka volcanoes. Institute of Volcanology and Seismology". www.kscnet.ru. Retrieved 2018-04-30.
  4. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Archived from the original (PDF) on 2010-01-20. Retrieved 2010-03-16.
  5. ^ "International Stratigraphic Chart" (PDF). International Commission on Stratigraphy. Archived from the original (PDF) on 2009-12-29. Retrieved 2009-12-23.
  6. ^ a b c d e f g h i j k http://www.volcano.si.edu/world/largeeruptions.cfm Large Holocene Eruptions
  7. ^ Brantley, Steven R. (1999-01-04). Volcanoes of the United States. Online Version 1.1. United States Geological Survey. p. 30. ISBN 978-0-16-045054-9. OCLC 156941033. Retrieved 2008-09-12.
  8. ^ Judy Fierstein; Wes Hildreth; James W. Hendley II; Peter H. Stauffer (1998). "Can Another Great Volcanic Eruption Happen in Alaska? - U.S. Geological Survey Fact Sheet 075-98". Version 1.0. United States Geological Survey. Retrieved 2008-09-10. Cite journal requires |journal= (help)
  9. ^ Fierstein, Judy; Wes Hildreth (2004-12-11). "The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska". Bulletin of Volcanology. Springer. 54 (8): 646–684. Bibcode:1992BVol...54..646F. doi:10.1007/BF00430778.
  10. ^ "Santa Maria". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-19.
  11. ^ Hopkinson, Deborah (January 2004). "The Volcano That Shook the world: Krakatoa 1883". 11 (4). New York: Storyworks. Scholastic.com: 8. Cite journal requires |journal= (help)
  12. ^ "Tambora". www.earlham.edu.
  13. ^ University of Bristol (19 September 2014). "First eyewitness accounts of mystery volcanic eruption" (Press release). Archived from the original on 10 December 2014.
  14. ^ "Undocumented volcano contributed to extremely cold decade from 1810–1819".
  15. ^ Guevara-Murua, A.; Williams, C. A.; Hendy, E. J.; Rust, A. C.; Cashman, K. V. (2014). "Observations of a stratospheric aerosol veil from a tropical volcanic eruption in December 1808: is this the "Unknown" ~1809 eruption?" (PDF). Climate of the Past Discussions. 10 (2): 1901–1932. Bibcode:2014CliPD..10.1901G. doi:10.5194/cpd-10-1901-2014. ISSN 1814-9359.
  16. ^ "BBC Two - Timewatch". BBC.
  17. ^ Sigurdsson Haraldur; Carey S.; Mandeville C. (1990). "Assessment of mass, dynamics and environmental effects of the Minoan eruption of the Santorini volcano". Thera and the Aegean World III: Proceedings of the Third Thera Conference. II: 100–12.
  18. ^ "Huaynaputina". Global Volcanism Program. Smithsonian Institution. Retrieved 2008-12-29.
  19. ^ http://www.bbc.com/future/story/20170630-the-massive-volcano-that-scientists-cant-find
  20. ^ https://www.academia.edu/14139518/The_day_the_sun_turned_blue._A_volcanic_eruption_in_the_early_1460s_and_its_putative_climatic_impact_a_globally_perceived_volcanic_disaster_in_the_Late_Middle_Ages
  21. ^ Nemeth, Karoly; Shane J. Cronin; James D.L. White (2007). "Kuwae caldera and climate confusion". The Open Geology Journal. 1 (5): 7–11. Bibcode:2007OGJ.....1....7N. doi:10.2174/1874262900701010007.
  22. ^ Gao, Chaochao; A. Robock; S. Self; J. B. Witter; J. P. Steffenson; H. B. Clausen; M.-L. Siggaard-Andersen; S. Johnsen; P. A. Mayewski; C. Ammann (27 June 2006). "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years". Journal of Geophysical Research. 111 (D12): D12107. Bibcode:2006JGRD..11112107G. doi:10.1029/2005JD006710. Retrieved 2010-03-19.
  23. ^ Witter, J.B.; Self S. (January 2007). "The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release". Bulletin of Volcanology. 69 (3): 301–318. Bibcode:2007BVol...69..301W. doi:10.1007/s00445-006-0075-4.
  24. ^ Lavigne, Franck (4 September 2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". Proceedings of the National Academy of Sciences of the United States of America. 110 (42): 16742–7. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132. Retrieved 1 October 2013.
  25. ^ "Mystery 13th Century eruption traced to Lombok, Indonesia". BBC News. 30 September 2013. Retrieved 1 October 2013.
  26. ^ Miller et al. 2012. "Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks" Geophysical Research Letters 39, January 31
  27. ^ Lavigne, Franck; et al. (2013). "Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia". PNAS. 110 (42): 16742–16747. Bibcode:2013PNAS..11016742L. doi:10.1073/pnas.1307520110. PMC 3801080. PMID 24082132.
  28. ^ Was the Little Ice Age Triggered by Massive Volcanic Eruptions? ScienceDaily, 30 January 2012 (accessed 21 May 2012)
  29. ^ Jiandong Xu et al. 2013. "Climatic impact of the Millennium eruption of Changbaishan volcano in China: New insights from high-precision radiocarbon wiggle-match dating" Geophysical Research Letters 40 http://academiccommons.columbia.edu/download/fedora_content/download/ac:162055/CONTENT/XU_et_al_2013_GRL.pdf
  30. ^ van den Bogaard, P (1995). 40Ar/(39Ar) ages of sanidine phenocrysts from Laacher See Tephra (12,900 yr BP): Chronostratigraphic and petrological significance
  31. ^ De Klerk, Pim; Janke, Wolfgang; Kühn, Peter; Theuerkauf, Martin (2008), "Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany)", Palaeogeography, Palaeoclimatology, Palaeoecology, 270 (1–2): 196–214, doi:10.1016/j.palaeo.2008.09.013
  32. ^ Baales, Michael; Jöris, Olaf; Street, Martin; Bittmann, Felix; Weninger, Bernhard; Wiethold, Julian (November 2002). "Impact of the Late Glacial Eruption of the Laacher See Volcano, Central Rhineland, Germany". Quaternary Research. 58 (3): 273–288. Bibcode:2002QuRes..58..273B. doi:10.1006/qres.2002.2379.
  33. ^ Forscher warnen vor Vulkan-Gefahr in der Eifel. Spiegel Online, 13. February 2007. Retrieved January 11, 2008
  34. ^ Carey, Steven N.; Sigurdsson, Haraldur (1980). "The Roseau Ash: Deep-sea Tephra Deposits from a Major Eruption on Dominica, Lesser Antilles Arc". Journal of Volcanology and Geothermal Research. 7 (1–2): 67–86. Bibcode:1980JVGR....7...67C. doi:10.1016/0377-0273(80)90020-7.
  35. ^ Alloway, Brent V.; Agung Pribadi; John A. Westgate; Michael Bird; L. Keith Fifield; Alan Hogg; Ian Smith (30 October 2004). "Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra". Earth and Planetary Science Letters. Elsevier. 227 (1–2): 121–133. Bibcode:2004E&PSL.227..121A. doi:10.1016/j.epsl.2004.08.014.
  36. ^ Twickler and K. Taylor, G. A.; Mayewski, P. A.; Meeker, L. D.; Whitlow, S.; Twickler, M. S.; Taylor, K. (1996). "Potential Atmospheric impact of the Toba mega-eruption ~71'000 years ago". Geophysical Research Letters. American Geophysical Union. 23 (8): 837–840. Bibcode:1996GeoRL..23..837Z. doi:10.1029/96GL00706.
  37. ^ Jones, S.C. (2007) The Toba supervolcanic eruption: Tephra-fall deposits in India and Paleoanthropological implications; in The evolution and history of human populations in South Asia (eds.) M D Petraglia and B Allchin (New York: Springer Press) pp. 173–200
  38. ^ a b Chesner, C.A.; Westgate, J.A.; Rose, W.I.; Drake, R.; Deino, A. (March 1991). "Eruptive History of Earth's Largest Quaternary caldera (Toba, Indonesia) Clarified" (PDF). Geology. 19 (3): 200–203. Bibcode:1991Geo....19..200C. doi:10.1130/0091-7613(1991)019<0200:EHOESL>2.3.CO;2. Retrieved 2010-01-20.
  39. ^ Ninkovich, D.; N.J. Shackleton; A.A. Abdel-Monem; J.D. Obradovich; G. Izett (7 December 1978). "K−Ar age of the late Pleistocene eruption of Toba, north Sumatra". Nature. Nature Publishing Group. 276 (5688): 574–577. Bibcode:1978Natur.276..574N. doi:10.1038/276574a0.
  40. ^ "Guatemala Volcanoes and Volcanics". USGS - CVO. Retrieved 2010-03-13.
  41. ^ "Cities on Volcanoes 5". www.eri.u-tokyo.ac.jp.
  42. ^ "Sierra la Primavera". Global Volcanism Program. Smithsonian Institution. Retrieved 2010-03-24.
  43. ^ "GEOLOGIC SETTING OF THE UZON CALDERA, KAMCHATKA, FAR EAST RUSSIA". gsa.confex.com.
  44. ^ Uzon, Global Volcanism Program, Smithsonian Institution
  45. ^ Sruoga, Patricia; Eduardo J. Llambías; Luis Fauqué; David Schonwandt; David G. Repol (September 2005). "Volcanological and geochemical evolution of the Diamante Caldera–Maipo volcano complex in the southern Andes of Argentina (34°10′S)". Journal of South American Earth Sciences. 19 (4): 399–414. Bibcode:2005JSAES..19..399S. doi:10.1016/j.jsames.2005.06.003.
  46. ^ Karlstrom, K.; Crow, R.; Peters, L.; McIntosh, W.; Raucci, J.; Crossey, L.; Umhoefer, P. (2007). "40Ar/39Ar and field studies of Quaternary basalts in Grand Canyon and model for carving Grand Canyon: Quantifying the interaction of river incision and normal faulting across the western edge of the Colorado Plateau". GSA Bulletin. 119 (11/12): 1283–1312. Bibcode:2007GSAB..119.1283K. doi:10.1130/0016-7606(2007)119[1283:AAFSOQ]2.0.CO;2.
  47. ^ Hildreth, W. (1979), Sarna-Wojcicki et al. (2000).
  48. ^ Izett, Glen A. (1981).
  49. ^ Heiken et al. (1990).
  50. ^ a b Ben G. Mason; David M. Pyle; Clive Oppenheimer (2004). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology. 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9.
  51. ^ Wood, Charles A.; Jűrgen Kienle (1990). Volcanoes of North America. Cambridge University Press. pp. 170–172.
  52. ^ Geological origins Archived 2008-09-07 at the Wayback Machine, Norfolk Island Tourism. Accessed 2007-04-13.
  53. ^ Ort, M. H.; de Silva, S.; Jiminez, N.; Salisbury, M.; Jicha, B. R. and Singer, B. S. (2009). Two new supereruptions in the Altiplano-Puna Volcanic Complex of the Central Andes.
  54. ^ Lindsay, Jan M.; Tim J. Worthington; Ian E. M. Smith; Philippa M. Black (June 1999). "Geology, petrology, and petrogenesis of Little Barrier Island, Hauraki Gulf, New Zealand" (PDF). New Zealand Journal of Geology and Geophysics. 42 (2): 155–168. doi:10.1080/00288306.1999.9514837. Archived from the original (PDF) on November 1, 2004. Retrieved 2007-12-03.
  55. ^ Philippe Nonnotte. "Étude volcano-tectonique de la zone de divergence Nord-Tanzanienne (terminaison sud du rift kenyan) – Caractérisation pétrologique et géochimique du volcanisme récent (8 Ma – Actuel) et du manteau source – Contraintes de mise en place thèse de doctorat de l'université de Bretagne occidentale, spécialité : géosciences marines" (PDF).
  56. ^ Lindsay J. M.; de Silva S.; Trumbull R.; Emmermann R.; Wemmer K. (2001). "La Pacana caldera, N. Chile: a re-evaluation of the stratigraphy and volcanology of one of the world's largest resurgent calderas". Journal of Volcanology and Geothermal Research. 106 (1–2): 145–173. Bibcode:2001JVGR..106..145L. doi:10.1016/S0377-0273(00)00270-5.
  57. ^ "Frailes Plateau".
  58. ^ a b c d e Morgan, Lisa A. Morgan; William C. McIntosh (March 2005). "Timing and development of the Heise volcanic field, Snake River Plain, Idaho, western USA" (PDF). GSA Bulletin. 117 (3–4): 288–306. Bibcode:2005GSAB..117..288M. doi:10.1130/B25519.1. Archived from the original (PDF) on 2011-10-03. Retrieved 2010-03-16.
  59. ^ Salisbury, M. J.; Jicha, B. R.; de Silva, S. L.; Singer, B. S.; Jimenez, N. C.; Ort, M. H. (21 December 2010). "40Ar/39Ar chronostratigraphy of Altiplano-Puna volcanic complex ignimbrites reveals the development of a major magmatic province". Geological Society of America Bulletin. 123 (5–6): 821–840. Bibcode:2011GSAB..123..821S. doi:10.1130/B30280.1. Retrieved 29 November 2015.
  60. ^ Geography and Geology, Lord Howe Island Tourism Association. Retrieved on 2009-04-20.
  61. ^ "Cerro Panizos". Volcano World. Retrieved 2010-03-15.
  62. ^ Te Ara - the Encyclopedia of New Zealand
  63. ^ a b c d e f "Mark Anders: Yellowstone hotspot track". Columbia University, Lamont-Doherty Earth Observatory (LDEO). Retrieved 2010-03-16.
  64. ^ Coombs, D. S., Dunedin Volcano, Misc. Publ. 37B, pp. 2–28, Geol. Soc. of N. Z., Dunedin, 1987.
  65. ^ Coombs, D. S., R. A. Cas, Y. Kawachi, C. A. Landis, W. F. Mc-Donough, and A. Reay, Cenozoic volcanism in north, east and central Otago, Bull. R. Soc. N. Z., 23, 278–312, 1986.
  66. ^ Bishop, D.G., and Turnbull, I.M. (compilers) (1996). Geology of the Dunedin Area. Lower Hutt, NZ: Institute of Geological & Nuclear Sciences. ISBN 0-478-09521-X.
  67. ^ Sawyer, David A.; R. J. Fleck; M. A. Lanphere; R. G. Warren; D. E. Broxton; Mark R. Hudson (October 1994). "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension". Geological Society of America Bulletin. 106 (10): 1304–1318. Bibcode:1994GSAB..106.1304S. doi:10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2. Retrieved 2010-03-26.
  68. ^ http://www-odp.tamu.edu/Publications/157_SR/VOLUME/CHAP_14.PDF
  69. ^ a b c d e f Lipman, P.W. (September 30, 1984). "The Roots of Ash Flow Calderas in Western North America: Windows Into the Tops of Granitic Batholiths". Journal of Geophysical Research. 89 (B10): 8801–8841. Bibcode:1984JGR....89.8801L. doi:10.1029/JB089iB10p08801.
  70. ^ Rytuba, James J.; John, David A.; McKee, Edwin H. (May 3–5, 2004). "Volcanism Associated with Eruption of the Steens Basalt and Inception of the Yellowstone Hotspot". Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting. Paper No. 44-2. Retrieved 2010-03-26.
  71. ^ a b c d Steve Ludington; Dennis P. Cox; Kenneth W. Leonard & Barry C. Moring (1996). Donald A. Singer (ed.). "An Analysis of Nevada's Metal-Bearing Mineral Resources". Nevada Bureau of Mines and Geology, University of Nevada. Cite journal requires |journal= (help); |contribution= ignored (help)
  72. ^ a b Rytuba, J.J.; McKee, E.H. (1984). "Peralkaline ash flow tuffs and calderas of the McDermitt Volcanic Field, southwest Oregon and north central Nevada". Journal of Geophysical Research. 89 (B10): 8616–8628. Bibcode:1984JGR....89.8616R. doi:10.1029/JB089iB10p08616. Retrieved 2010-03-23.
  73. ^ Matthew A. Coble & Gail A. Mahood (2008). "New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot" (PDF). Earth and Environmental Science 3. Collapse Calderas Workshop, IOP Conf. Series. 3: 012002. doi:10.1088/1755-1307/3/1/012002. Retrieved 2010-03-23.
  74. ^ Carson, Robert J.; Pogue, Kevin R. (1996). Flood Basalts and Glacier Floods:Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington. Washington State Department of Natural Resources (Washington Division of Geology and Earth Resources Information Circular 90).
  75. ^ Reidel, Stephen P. (2005). "A Lava Flow without a Source: The Cohasset Flow and Its Compositional Members". The Journal of Geology. 113 (1): 1–21. Bibcode:2005JG....113....1R. doi:10.1086/425966.
  76. ^ Brueseke, M.E.; Heizler, M.T.; Hart, W.K.; S.A. Mertzman (15 March 2007). "Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited". Journal of Volcanology and Geothermal Research. 161 (3): 187–214. Bibcode:2007JVGR..161..187B. doi:10.1016/j.jvolgeores.2006.12.004.
  77. ^ SummitPost.org, Southeast Oregon Basin and Range
  78. ^ USGS, Andesitic and basaltic rocks on Steens Mountain
  79. ^ a b GeoScienceWorld, Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon
  80. ^ "Oregon: A Geologic History. 8. Columbia River Basalt: the Yellowstone hot spot arrives in a flood of fire". Oregon Department of Geology and Mineral Industries. Retrieved 2010-03-26.
  81. ^ Madsen, J.K.; Thorkelson, D.J.; Friedman, R.M.; Marshall, D.D. (6 May 2018). "Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmatism in western North America". Geosphere. 2 (1): 11. Bibcode:2006Geosp...2...11M. doi:10.1130/ges00020.1.
  82. ^ Largest explosive eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado Archived 2011-05-19 at the Wayback Machine
  83. ^ Olivier Bachmann; Michael A. Dungan; Peter W. Lipman (2002). "The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith". Journal of Petrology. 43 (8): 1469–1503. Bibcode:2002JPet...43.1469B. doi:10.1093/petrology/43.8.1469. Retrieved 2010-03-16.
  84. ^ a b Ingrid Ukstins Peate; Joel A. Baker; Mohamed Al-Kadasi; Abdulkarim Al-Subbary; Kim B. Knight; Peter Riisager; Matthew F. Thirlwall; David W. Peate; Paul R. Renne; Martin A. Menzies (2005). "Volcanic stratigraphy of large-volume silicic pyroclastic eruptions during Oligocene Afro-Arabian flood volcanism in Yemen". Bulletin of Volcanology. 68 (2): 135–156. Bibcode:2005BVol...68..135P. doi:10.1007/s00445-005-0428-4..
  85. ^ "Archived copy". Archived from the original (PDF) on 2004-08-14. Retrieved 2010-02-06.CS1 maint: archived copy as title (link)Crustal recycling during subduction at the Eocene Cordilleran margin of North America Retrieved on 2007-06-26
  86. ^ Sur l'âge des trapps basaltiques (On the ages of flood basalt events); Vincent E. Courtillot & Paul R. Renneb; Comptes Rendus Geoscience; Vol: 335 Issue: 1, January, 2003; pp: 113–140
  87. ^ ASH FALL: Newsletter of the Volcanology and Igneous Petrology Division Geological Association of Canada Retrieved on 2007-09-21
  88. ^ "Muskox Property - The Muskox Intrusion". Archived from the original on 2009-04-08.
  89. ^ The 1.27 Ga Mackenzie Large Igneous Province and Muskox layered intrusion
  90. ^ "Westward Migrating Ignimbrite Calderas and a Large Radiating Mafic Dike Swarm of Oligocene Age, Central Rio Grande Rift, New Mexico: Surface Expression of an Upper Mantle Diapir?" (PDF). New Mexico Tech. Retrieved 2010-03-21.
  91. ^ Fialko, Y., and M. Simons, Evidence for on-going inflation of the Socorro magma body, New Mexico, from interferometric synthetic aperture radar imaging Geop. Res. Lett., 28, 3549–3552, 2001.
  92. ^ "Socorro Magma Body". New Mexico Tech. Archived from the original on 2010-06-15. Retrieved 2010-03-21.
  93. ^ "Figure: Calderas within southwestern Nevada volcanic field". Los Alamos National Laboratory. Retrieved 2010-03-16.
  94. ^ Smith, E.I. & D.L. Keenan (30 August 2005). "Yucca Mountain Could Face Greater Volcanic Threat" (PDF). Eos, Transactions, American Geophysical Union. 86 (35): 317. Bibcode:2005EOSTr..86..317S. doi:10.1029/2005eo350001. Retrieved 5 April 2016.
  95. ^ Geologic Provinces of the United States: Basin and Range Province on USGS.gov website Archived 2009-01-25 at the Wayback Machine Retrieved 9 November 2009
  96. ^ Doell, R.R., Dalrymple, G.B., Smith, R.L., and Bailey, R.A., 1986, Paleomagnetism, potassium-argon ages, and geology of rhyolite and associated rocks of the Valles Caldera, New Mexico: Geological Society of America Memoir 116, p. 211-248.
  97. ^ Izett, G.A., Obradovich, J.D., Naeser, C.W., and Cebula, G.T., 1981, Potassium-argon and fission-track ages of Cerro Toledo rhyolite tephra in the Jemez Mountains, New Mexico, in Shorter contributions to isotope research in the western United States: U.S. Geological Survey Professional Paper 1199-D, p. 37-43.
  98. ^ Christiansen, R.L., and Blank, H.R., 1972, Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park: U.S. Geological Survey Professional Paper 729-B, p. 18.
  99. ^ Salzer, Matthew W.; Malcolm K. Hughes (2007). "Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr" (PDF). Quaternary Research. 67 (1): 57–68. Bibcode:2007QuRes..67...57S. doi:10.1016/j.yqres.2006.07.004. Retrieved 2010-03-18.
  100. ^ "VEI glossary entry". USGS. Retrieved 2010-03-30.
  101. ^ "Volcanic Sulfur Aerosols Affect Climate and the Earth's Ozone Layer - Volcanic ash vs sulfur aerosols". U.S. Geological Survey. Retrieved 2010-04-21.
  102. ^ http://earthobservatory.nasa.gov/IOTD/view.php?id=38975 Earth Observatory - Sarychev Eruption
  103. ^ Jones, M.T., Sparks, R.S.J., and Valdes, P.J. (2007). "The climatic impact of supervolcanis ash blankets". Climate Dynamics. 29 (6): 553–564. Bibcode:2007ClDy...29..553J. doi:10.1007/s00382-007-0248-7.CS1 maint: multiple names: authors list (link)
  104. ^ Jones, G.S., Gregory, J.M., Scott, P.A., Tett, S.F.B., Thorpe, R.B., 2005. An AOGCM model of the climate response to a volcanic super-eruption. Climate Dynamics 25, 725–738
  105. ^ Dai, Jihong; Ellen Mosley-Thompson; Lonnie G. Thompson (1991). "Ice core evidence for an explosive tropical volcanic eruption six years preceding Tambora". Journal of Geophysical Research: Atmospheres. 96 (D9): 17, 361–17, 366. Bibcode:1991JGR....9617361D. doi:10.1029/91jd01634.
  106. ^ http://www.esrl.noaa.gov/gmd/grad/mloapt.html Atmospheric transmission of direct solar radiation (Preliminary) at Mauna Loa, Hawaii
  107. ^ "Mt. Pinatubo's cloud shades global climate". Science News. Retrieved 2010-03-07.
  108. ^ Jones, P.D., Wigley, T.M.I, and Kelly, P.M. (1982), Variations in surface air temperatures: Part I. Northern Hemisphere, 1881–1980: Monthly Weather Review, v.110, p. 59-70.

Further reading

External links

1465 mystery eruption

The 1465 mystery eruption was a large volcanic eruption conjectured to have taken place in 1465 or "the early 1460s". The location of this eruption is uncertain, as it has only been identified from distant ice core records and atmospheric events around the time of King Alfonso II of Naples's wedding in 1465; it is believed to have been VEI-7 and possibly even larger than Mount Tambora's 1815 eruption.

Bennett Lake Volcanic Complex

The Bennett Lake Volcanic Complex (BLVC) is a huge 50-million-year-old extinct caldera complex that spans across the British Columbia-Yukon border in Canada. It is located near the western end of the West Arm of Bennett Lake. The caldera complex is surrounded by granitic rocks containing pendants.

It is located near the eastern contact of the Coast Plutonic Complex and the Whitehorse Trough. There are thick series of pyroclastic and epiclastic rocks at the caldera. Remnants of this huge caldera complex are preserved near Bennett Lake in the Coast Mountains. The complex compose the Skukum Group.

Billy Mitchell (volcano)

Billy Mitchell is a volcano in the central part of the island of Bougainville, just north-east of the Bagana Volcano in Papua New Guinea. It is a small pyroclastic shield truncated by a 2 km wide caldera filled by a crater lake. It is named after Billy Mitchell, a 20th-century United States Army general who is regarded as the father of the United States Air Force.

The last two major eruptions were in 1580 AD ± 20 years and about 1030 AD. They were among the largest Holocene eruptions in Papua New Guinea. Both were explosive eruptions with a Volcanic Explosivity Index of at least 5. The 1580 AD ± 20 years eruption produced pyroclastic flows and probably formed its caldera. The ignimbrite deposit from that eruption, which had a VEI of 6, extends 22 kilometres (14 mi) from the caldera to the coast, and its volume is around 10 cubic kilometres (2.4 cu mi).

Bárðarbunga

Bárðarbunga (Icelandic pronunciation: [ˈpaurðarpuŋka] (listen)), is a stratovolcano located under Vatnajökull, Iceland's most extensive glacier. The second highest mountain in Iceland, 2,009 metres (6,591 ft) above sea level, Bárðarbunga is also part of a volcanic system that is approximately 200 kilometres (120 mi) long and 25 kilometres (16 mi) wide.

Decade Volcanoes

The Decade Volcanoes are 16 volcanoes identified by the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) as being worthy of particular study in light of their history of large, destructive eruptions and proximity to populated areas. The Decade Volcanoes project encourages studies and public-awareness activities at these volcanoes, with the aim of achieving a better understanding of the volcanoes and the dangers they present, and thus being able to reduce the severity of natural disasters.

They are named Decade Volcanoes because the project was initiated in the 1990s as part of the United Nations-sponsored International Decade for Natural Disaster Reduction.

A volcano may be designated a Decade Volcano if it exhibits more than one volcanic hazard (people living near the Decade Volcanoes may experience tephra fall, pyroclastic flows, lava flows, lahars, volcanic edifice instability and lava dome collapse); shows recent geological activity; is located in a populated area (eruptions at any of the Decade Volcanoes may threaten tens or hundreds of thousands of people, and therefore mitigating eruption hazards at these volcanoes is crucial); is politically and physically accessible for study; and there is local support for the work.

Eldgjá

Eldgjá (Icelandic pronunciation: [ˈɛltcau] (listen), "fire canyon") is a volcano and a canyon in Iceland. Eldgjá and the Katla volcano are part of the same volcanic system in the south of the country.

Situated between Landmannalaugar and Kirkjubæjarklaustur, Eldgjá is the largest volcanic canyon in the world, approx. 40 km long, 270 m deep and 600 m wide at its greatest.

Global Volcanism Program

The Smithsonian Institution's Global Volcanism Program (GVP) documents Earth's volcanoes and their eruptive history over the past 10,000 years. The GVP reports on current eruptions from around the world as well as maintaining a database repository on active volcanoes and their eruptions. In this way, a global context for the planet's active volcanism is presented. Smithsonian reporting on current volcanic activity dates back to 1968, with the Center for Short-Lived Phenomena (CSLP). The GVP is housed in the Department of Mineral Sciences, part of the National Museum of Natural History, on the National Mall in Washington, D.C.

During the early stages of an eruption, the GVP acts as a clearing house of reports, data, and imagery which are accumulated from a global network of contributors. The early flow of information is managed such that the right people are contacted as well as helping to sort out vague and contradictory aspects that typically arise during the early days of an eruption.

The Weekly Volcanic Activity Report is a cooperative project between the Smithsonian's Global Volcanism Program and the United States Geological Survey's Volcano Hazards Program. Notices of volcanic activity posted on the report website are preliminary and subject to change as events are studied in more detail. Detailed reports on various volcanoes are published monthly in the Bulletin of the Global Volcanism NetworkThe GVP also documents the last 10,000 years of Earth's volcanism. The historic activity can guide perspectives on possible future events and on volcanoes showing activity. GVP's volcano and eruption databases constitute a foundation for all statistical statements concerning locations, frequencies, and magnitudes of Earth's volcanic eruptions during the past recent 10,000 years.

Two editions of Volcanoes of the World, a regional directory... (1981) and (1994) were published based on the GVP data and interpretations.

Kolumbo

Kolumbo is an active submarine volcano in the Aegean Sea, about 8 km northeast of Cape Kolumbo, Santorini island. The largest of a line of about twenty submarine volcanic cones extending to the northeast from Santorini, it is about 3 km in diameter with a crater 1.5 km across. It was "discovered" when it breached the sea surface in 1649-50, but its explosion was not to be compared to the well-known Thera explosion and caldera collapse, currently dated ca. 1630 BCE, with its devastating consequences for Minoan civilization. The Smithsonian Institution's Global Volcanism Program treats it as part of the Santorini volcano.The 1650 explosion, which occurred when the accumulating cone reached the surface, sent pyroclastic flows across the sea surface to the shores and slopes of Santorini, where about seventy people and many animals died. A small ring of white pumice that formed was rapidly eroded away by wave action. The volcano collapsed into its caldera, triggering a tsunami that caused damage on nearby islands up to 150 km distant. The highest parts of the crater rim are now about 10 m below sea level.

In 2006, sea floor pyroclastic deposits from the two Aegean explosions were explored, sampled and mapped by an expedition by NOAA Ocean Explorer, equipped with ROV robotics.

The crater floor, averaging about 505 m below the sea surface, is marked in its northeast area by a field of hydrothermal vents and covered by a thick bacterial community, the 2006 NOAA expedition discovered. Superheated (measured as hot as 224 °C) metal-enriched water issuing from the vents has built chimneys of polymetallic sulfide/sulfates to a maximum height of 4 m, apparently accumulated since the 1650 event.

The 2006 expedition initiated new seismic air-gun techniques in order to determine the volume and distribution of the submarine volcanic deposit of pumice and ash on the sea floor around Santorini, which has been studied extensively since 1975. Revised, more accurate estimates of the total dense rock equivalent volume of the Minoan event(s), consisting of pyroclastic sea floor deposits, distal ash fallout and ignimbrites on the island of Santorini, is likely about 60 km³, a greatly increased estimate, comparable to the largest historic explosion, Mount Tambora 1815; the increased estimate affects the size of the ensuing tsunami as it has been widely modeled.

Kuwae

Kuwae is a submarine caldera between the Epi and Tongoa islands in Vanuatu. Kuwae Caldera cuts through the flank of the Tavani Ruru volcano on Epi and the northwestern end of Tongoa.

The submarine volcano Karua, one of the most active volcanoes of Vanuatu, is near the northern rim of Kuwae Caldera.

List of large volcanic eruptions

This is a sortable summary of the pages Timeline of volcanism on Earth, List of Quaternary volcanic eruptions, and Large volume volcanic eruptions in the Basin and Range Province. Uncertainties as to dates and tephra volumes are not restated, and references are not repeated. Volcanic Explosivity Index (VEI) values for events in the Miocene epoch sometimes lack references. They are given as VEI-equivalent, as orientation of the erupted tephra volume. Please note that this is not a comprehensive list, and some events are missing from the table.

Long Island (Papua New Guinea)

Long Island is a volcanic island in Papua New Guinea. It is located north of the island of New Guinea, separated from it by the Vitiaz Strait.

Novarupta

Novarupta (meaning "newly erupted" in Latin) is a volcano that was formed in 1912, located on the Alaska Peninsula in Katmai National Park and Preserve, about 290 miles (470 km) southwest of Anchorage. Formed during the largest volcanic eruption of the 20th century, Novarupta released 30 times the volume of magma of the 1980 eruption of Mount St. Helens.

Santa María (volcano)

Santa María Volcano is a large active volcano in the western highlands of Guatemala, in the Quetzaltenango Department near the city of Quetzaltenango.

The volcano was known as Gagxanul in the local K'iche' language, before the 16th century Spanish conquest of the region.The VEI-6 eruption of Santa María Volcano in 1902 was one of the three largest eruptions of the 20th century, after the 1912 Novarupta and 1991 Mount Pinatubo eruptions. It is also one of the five biggest eruptions of the past 200 (and most likely 300) years.

Supervolcano

A supervolcano is a large volcano that has had an eruption with a Volcanic Explosivity Index (VEI) of 8, the largest recorded value on the index. This means the volume of deposits for that eruption is greater than 1,000 cubic kilometers (240 cubic miles).

Supervolcanoes occur when magma in the mantle rises into the crust but is unable to break through it and pressure builds in a large and growing magma pool until the crust is unable to contain the pressure. This can occur at hotspots (for example, Yellowstone Caldera) or at subduction zones (for example, Toba). Large-volume supervolcanic eruptions are also often associated with large igneous provinces, which can cover huge areas with lava and volcanic ash. These can cause long-lasting climate change (such as the triggering of a small ice age) and threaten species with extinction. The Oruanui eruption of New Zealand's Taupo Volcano (about 26,500 years ago) was the world's most recent VEI-8 eruption.

Toba catastrophe theory

The Toba supereruption was a supervolcanic eruption that occurred about 75,000 years ago at the site of present-day Lake Toba in Sumatra, Indonesia. It is one of the Earth's largest known eruptions. The Toba catastrophe theory holds that this event caused a global volcanic winter of six to ten years and possibly a 1,000-year-long cooling episode.

In 1993, science journalist Ann Gibbons posited that a population bottleneck occurred in human evolution about 70,000 years ago, and she suggested that this was caused by the eruption. Geologist Michael R. Rampino of New York University and volcanologist Stephen Self of the University of Hawaii at Manoa support her suggestion. In 1998, the bottleneck theory was further developed by anthropologist Stanley H. Ambrose of the University of Illinois at Urbana–Champaign. Both the link and global winter theories are highly controversial.

The Toba event is the most closely studied supereruption.

Volcanic Explosivity Index

The Volcanic Explosivity Index (VEI) is a relative measure of the explosiveness of volcanic eruptions. It was devised by Chris Newhall of the United States Geological Survey and Stephen Self at the University of Hawaii in 1982.

Volume of products, eruption cloud height, and qualitative observations (using terms ranging from "gentle" to "mega-colossal") are used to determine the explosivity value. The scale is open-ended with the largest volcanoes in history given magnitude 8. A value of 0 is given for non-explosive eruptions, defined as less than 10,000 m3 (350,000 cu ft) of tephra ejected; and 8 representing a mega-colossal explosive eruption that can eject 1.0×1012 m3 (240 cubic miles) of tephra and have a cloud column height of over 20 km (66,000 ft). The scale is logarithmic, with each interval on the scale representing a tenfold increase in observed ejecta criteria, with the exception of between VEI-0, VEI-1 and VEI-2.

Volcanic winter

A volcanic winter is a reduction in global temperatures caused by volcanic ash and droplets of sulfuric acid and water obscuring the Sun and raising Earth's albedo (increasing the reflection of solar radiation) after a large, particularly explosive volcanic eruption. Long-term cooling effects are primarily dependent upon injection of sulfur gasses into the stratosphere where they undergo a series of reactions to create sulfuric acid which can nucleate and form aerosols. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation. The variations in atmospheric warming and cooling result in changes in tropospheric and stratospheric circulation.

Volcanoes of the World

Volcanoes of the World was a book that was published in three editions in 1981, 1994, and 2010 as a collaboration between volcanologists around the world, and the Smithsonian Institution's Global Volcanism Program (GVP).

Year Without a Summer

The year 1816 is known as the Year Without a Summer (also the Poverty Year and Eighteen Hundred and Froze To Death) because of severe climate abnormalities that caused average global temperatures to decrease by 0.4–0.7 °C (0.72–1.26 °F). This resulted in major food shortages across the Northern Hemisphere.Evidence suggests that the anomaly was predominantly a volcanic winter event caused by the massive 1815 eruption of Mount Tambora in April in the Dutch East Indies (now Indonesia). This eruption was the largest eruption in at least 1,300 years (after the extreme weather events of 535–536), and perhaps exacerbated by the 1814 eruption of Mayon in the Philippines.

Topics
Lists

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.