Time standard

A time standard is a specification for measuring time: either the rate at which time passes; or points in time; or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.

Standardized time measurements are made using a clock to count periods of some period changes, which may be either the changes of a natural phenomenon or of an artificial machine.

Historically, time standards were often based on the Earth's rotational period. From the late 18 century to the 19th century it was assumed that the Earth's daily rotational rate was constant.[note 1] Astronomical observations of several kinds, including eclipse records, studied in the 19th century, raised suspicions that the rate at which Earth rotates is gradually slowing and also shows small-scale irregularities, and this was confirmed in the early twentieth century.[note 2] Time standards based on Earth rotation were replaced (or initially supplemented) for astronomical use from 1952 onwards by an ephemeris time standard based on the Earth's orbital period and in practice on the motion of the Moon. The invention in 1955 of the caesium atomic clock has led to the replacement of older and purely astronomical time standards, for most practical purposes, by newer time standards based wholly or partly on atomic time.

Various types of second and day are used as the basic time interval for most time scales. Other intervals of time (minutes, hours, and years) are usually defined in terms of these two.

Time standards based on Earth rotation

Apparent solar time ('apparent' is often used in English-language sources, but 'true' in French astronomical literature[note 3]) is based on the solar day, which is the period between one solar noon (passage of the real Sun across the meridian) and the next. A solar day is approximately 24 hours of mean time. Because the Earth's orbit around the sun is elliptical, and because of the obliquity of the Earth's axis relative to the plane of the orbit (the ecliptic), the apparent solar day varies a few dozen seconds above or below the mean value of 24 hours. As the variation accumulates over a few weeks, there are differences as large as 16 minutes between apparent solar time and mean solar time (see Equation of time). However, these variations cancel out over a year. There are also other perturbations such as Earth's wobble, but these are less than a second per year.

Sidereal time is time by the stars. A sidereal rotation is the time it takes the Earth to make one revolution with rotation to the stars, approximately 23 hours 56 minutes 4 seconds. For accurate astronomical work on land, it was usual to observe sidereal time rather than solar time to measure mean solar time, because the observations of 'fixed' stars could be measured and reduced more accurately than observations of the Sun (in spite of the need to make various small compensations, for refraction, aberration, precession, nutation and proper motion). It is well known that observations of the Sun pose substantial obstacles to the achievement of accuracy in measurement.[1] In former times, before the distribution of accurate time signals, it was part of the routine work at any observatory to observe the sidereal times of meridian transit of selected 'clock stars' (of well-known position and movement), and to use these to correct observatory clocks running local mean sidereal time; but nowadays local sidereal time is usually generated by computer, based on time signals.[2]

Mean solar time was originally apparent solar time corrected by the equation of time. Mean solar time was sometimes derived, especially at sea for navigational purposes, by observing apparent solar time and then adding to it a calculated correction, the equation of time, which compensated for two known irregularities, caused by the ellipticity of the Earth's orbit and the obliquity of the Earth's equator and polar axis to the ecliptic (which is the plane of the Earth's orbit around the sun).

Greenwich Mean Time (GMT) was originally mean time deduced from meridian observations made at the Royal Greenwich Observatory (RGO). The principal meridian of that observatory was chosen in 1884 by the International Meridian Conference to be the Prime Meridian. GMT either by that name or as 'mean time at Greenwich' used to be an international time standard, but is no longer so; it was initially renamed in 1928 as Universal Time (UT) (partly as a result of ambiguities arising from the changed practice of starting the astronomical day at midnight instead of at noon, adopted as from 1 January 1925). The more current refined version of UT, UT1, is still in reality mean time at Greenwich. Greenwich Mean Time is still the legal time in the UK (in winter, and as adjusted by one hour for summer time). But Coordinated Universal Time (UTC) (an atomic-based time scale which is always kept within 0.9 second of UT1) is in common actual use in the UK, and the name GMT is often inaccurately used to refer to it. (See articles Greenwich Mean Time, Universal Time, Coordinated Universal Time and the sources they cite.)

Universal Time (UT) is mean solar time at 0° longitude; some implementations are

  • UT0 is the rotational time of a particular place of observation. It is observed as the diurnal motion of stars or extraterrestrial radio sources.
  • UT1 is computed by correcting UT0 for the effect of polar motion on the longitude of the observing site. It varies from uniformity because of the irregularities in Earth's rotation.

Time standards for planetary motion calculations

Ephemeris time and its successor time scales described below have all been intended for astronomical use, e.g. in planetary motion calculations, with aims including uniformity, in particular, freedom from irregularities of Earth rotation. Some of these standards are examples of dynamical time scales and/or of coordinate time scales.

  • Ephemeris Time (ET) was from 1952 to 1976 an official time scale standard of the International Astronomical Union; it was a dynamical time scale based on the orbital motion of the Earth around the Sun, from which the ephemeris second was derived as a defined fraction of the tropical year. This ephemeris second was the standard for the SI second from 1956 to 1967, and it was also the source for calibration of the caesium atomic clock; its length has been closely duplicated, to within 1 part in 1010, in the size of the current SI second referred to atomic time.[3] This Ephemeris Time standard was non-relativistic and did not fulfil growing needs for relativistic coordinate time scales. It was in use for the official almanacs and planetary ephemerides from 1960 to 1983, and was replaced in official almanacs for 1984 and after, by numerically integrated Jet Propulsion Laboratory Development Ephemeris DE200 (based on the JPL relativistic coordinate time scale Teph).

For applications at the Earth's surface, ET's official replacement was Terrestrial Dynamical Time (TDT), since redefined as Terrestrial Time (TT). For the calculation of ephemerides, TDB was officially recommended to replace ET, but deficiencies were found in the definition of TDB (though not affecting Teph), and these led to the IAU defining and recommending further time scales, Barycentric Coordinate Time (TCB) for use in the solar system as a whole, and Geocentric Coordinate Time (TCG) for use in the vicinity of the Earth. As defined, TCB (as observed from the Earth's surface) is of divergent rate relative to all of ET, Teph and TDT/TT;[4] and the same is true, to a lesser extent, of TCG. The ephemerides of sun, moon and planets in current widespread and official use continue to be those calculated at the Jet Propulsion Laboratory (updated as from 2003 to DE405) using as argument Teph.

  • Terrestrial Dynamic Time (TDT) replaced Ephemeris Time and maintained continuity with it. TDT is a uniform atomic time scale, whose unit is the SI second. TDT is tied in its rate to the SI second, as is International Atomic Time (TAI), but because TAI was somewhat arbitrarily defined at its inception in 1958 to be initially equal to a refined version of UT, TT is offset from TAI, by a constant 32.184 seconds. The offset provided a continuity from Ephemeris Time to TDT. TDT has since been redefined as Terrestrial Time (TT).
  • Barycentric Dynamical Time (TDB) is similar to TDT but includes relativistic corrections that move the origin to the barycenter. TDB differs from TT only in periodic terms. The difference is at most 2 milliseconds.

In 1991, in order to clarify the relationships between space-time coordinates, new time scales were introduced, each with a different frame of reference. Terrestrial Time is time at Earth's surface. Geocentric Coordinate Time is a coordinate time scale at Earth's center. Barycentric Coordinate Time is a coordinate time scale at the center of mass of the solar system, which is called the barycenter. Barycentric Dynamical Time is a dynamical time at the barycenter.[5]

  • Terrestrial Time (TT) is the time scale which had formerly been called Terrestrial Dynamical Time. It is now defined as a coordinate time scale at Earth's surface.
  • Geocentric Coordinate Time (TCG) is a coordinate time having its spatial origin at the center of Earth's mass. TCG is linearly related to TT as: TCG - TT = LG * (JD -2443144.5) * 86400 seconds, with the scale difference LG defined as 6.969290134e-10 exactly.
  • Barycentric Coordinate Time (TCB) is a coordinate time having its spatial origin at the solar system barycenter. TCB differs from TT in rate and other mostly periodic terms. Neglecting the periodic terms, in the sense of an average over a long period of time the two are related by: TCB - TT = LB * (JD -2443144.5) * 86400 seconds. According to IAU the best estimate of the scale difference LB is 1.55051976772e-08.

Constructed time standards

International Atomic Time (TAI) is the primary international time standard from which other time standards, including UTC, are calculated. TAI is kept by the BIPM (International Bureau of Weights and Measures), and is based on the combined input of many atomic clocks around the world, each corrected for environmental and relativistic effects. It is the primary realisation of Terrestrial Time.

Coordinated Universal Time (UTC) is an atomic time scale designed to approximate Universal Time. UTC differs from TAI by an integral number of seconds. UTC is kept within 0.9 second of UT1 by the introduction of one-second steps to UTC, the "leap second". To date these steps have always been positive.

Standard time or civil time in a region deviates a fixed, round amount, usually a whole number of hours, from some form of Universal Time, now usually UTC. The offset is chosen such that a new day starts approximately while the sun is crossing the nadir meridian. See Time zone. Alternatively the difference is not really fixed, but it changes twice a year a round amount, usually one hour, see Daylight saving time.

Other time scales

Julian day number is a count of days elapsed since Greenwich mean noon on 1 January 4713 B.C., Julian proleptic calendar. The Julian Date is the Julian day number followed by the fraction of the day elapsed since the preceding noon. Conveniently for astronomers, this avoids the date skip during an observation night.

Modified Julian day (MJD) is defined as MJD = JD - 2400000.5. An MJD day thus begins at midnight, civil date. Julian dates can be expressed in UT, TAI, TDT, etc. and so for precise applications the timescale should be specified, e.g. MJD 49135.3824 TAI.

See also

Notes

  1. ^ Before the time of John Flamsteed it was widely believed that the Earth's rotation had seasonal variations comparable in size with what is now called the equation of time. See articles on Vincent Wing and Thomas Streete for examples of astronomers before Flamsteed who believed this. The equation of time, correctly based on the two major components of the Sun's irregularity of apparent motion, i.e. the effect of the obliquity of the ecliptic and the effect of the Earth's orbital eccentricity, was not generally adopted until after John Flamsteed's tables of 1672/3, published with the posthumous edition of the works of Jeremiah Horrocks. See S Vince, "A Complete System of Astronomy", 2nd edition, volume 1, 1814, at p.49; see also Equation of time - history.
  2. ^ See Ephemeris time - history, and sources shown there.
  3. ^ See for example a recent description of "temps vrai" Archived 2009-11-23 at the Wayback Machine by the Bureau des Longitudes; and for an older example S Vince, 'A complete system of astronomy' (1814), esp. at page 46.

References

Citations

  1. ^ See H A Harvey, "The Simpler Aspects of Celestial Mechanics", in Popular Astronomy 44 (1936), 533-541.
  2. ^ A E Roy, D Clarke, 'Astronomy: Principles and Practice' (4th edition, 2003) at p.89.
  3. ^ W Markowitz, R G Hall, L Essen, J V L Parry (1958), 'Frequency of caesium in terms of ephemeris time', Phys Rev Letters v1 (1958), 105-107; and Wm Markowitz (1988) 'Comparisons of ET(Solar), ET(Lunar), UT and TDT', in (eds.) A K Babcock & G A Wilkins, 'The Earth's Rotation and Reference Frames for Geodesy and Geophysics', IAU Symposia #128 (1988), at pp 413-418.
  4. ^ P K Seidelmann & T Fukushima (1992), "Why new time scales?", Astronomy & Astrophysics vol.265 (1992), pages 833-838, including Fig. 1 at p.835, a graph giving an overview of the rate differences and offsets between various standard time scales, present and past, defined by the IAU.
  5. ^ V Brumberg, S Kopeikin (1990), 'Relativistic time scales in the solar system', Celestial Mechanics and Dynamical Astronomy (1990), Vol. 48, 23-44

Sources

  • IExplanatory Supplement to the Astronomical Almanac, P. K. Seidelmann, ed., University Science Books, 1992, ISBN 0-935702-68-7.

External links

Atomic clock

An atomic clock is a clock device that uses an electron transition frequency in the microwave, optical, or ultraviolet region of the electromagnetic spectrum of atoms as a frequency standard for its timekeeping element. Atomic clocks are the most accurate time and frequency standards known, and are used as primary standards for international time distribution services, to control the wave frequency of television broadcasts, and in global navigation satellite systems such as GPS.

The principle of operation of an atomic clock is based on atomic physics; it measures the electromagnetic signal that electrons in atoms emit when they change energy levels. Early atomic clocks were based on masers at room temperature. Since 2004, more accurate atomic clocks first cool the atoms to near absolute zero temperature by slowing them with lasers and probing them in atomic fountains in a microwave-filled cavity. An example of this is the NIST-F1 atomic clock, one of the national primary time and frequency standards of the United States.

The accuracy of an atomic clock depends on two factors. The first factor is temperature of the sample atoms—colder atoms move much more slowly, allowing longer probe times. The second factor is the frequency and intrinsic width of the electronic transition. Higher frequencies and narrow lines increase the precision.

National standards agencies in many countries maintain a network of atomic clocks which are intercompared and kept synchronized to an accuracy of 10−9 seconds per day (approximately 1 part in 1014). These clocks collectively define a continuous and stable time scale, the International Atomic Time (TAI). For civil time, another time scale is disseminated, Coordinated Universal Time (UTC). UTC is derived from TAI, but has added leap seconds from UT1, to account for variations in the rotation of the Earth with respect to the solar time.

Barycentric Coordinate Time

Barycentric Coordinate Time (TCB, from the French Temps-coordonnée barycentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to orbits of planets, asteroids, comets, and interplanetary spacecraft in the Solar system. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the barycenter of the Solar system: that is, a clock that performs exactly the same movements as the Solar system but is outside the system's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Sun and the rest of the system.

TCB was defined in 1991 by the International Astronomical Union, in Recommendation III of the XXIst General Assembly. It was intended as one of the replacements for the problematic 1976 definition of Barycentric Dynamical Time (TDB). Unlike former astronomical time scales, TCB is defined in the context of the general theory of relativity. The relationships between TCB and other relativistic time scales are defined with fully general relativistic metrics.

Because the reference frame for TCB is not influenced by the gravitational potential caused by the Solar system, TCB ticks faster than clocks on the surface of the Earth by 1.550505 × 10−8 (about 490 milliseconds per year). Consequently, the values of physical constants to be used with calculations using TCB differ from the traditional values of physical constants (The traditional values were in a sense wrong, incorporating corrections for the difference in time scales). Adapting the large body of existing software to change from TDB to TCB is an ongoing task, and as of 2002 many calculations continue to use TDB in some form.

Time coordinates on the TCB scale are conventionally specified using traditional means of specifying days, carried over from non-uniform time standards based on the rotation of the Earth. Specifically, both Julian Dates and the Gregorian calendar are used. For continuity with its predecessor Ephemeris Time, TCB was set to match ET at around Julian Date 2443144.5 (1977-01-01T00Z). More precisely, it was defined that TCB instant 1977-01-01T00:00:32.184 exactly corresponds to the International Atomic Time (TAI) instant 1977-01-01T00:00:00.000 exactly, at the geocenter. This is also the instant at which TAI introduced corrections for gravitational time dilation.

Barycentric Dynamical Time

Barycentric Dynamical Time (TDB, from the French Temps Dynamique Barycentrique) is a relativistic coordinate time scale, intended for astronomical use as a time standard to take account of time dilation when calculating orbits and astronomical ephemerides of planets, asteroids, comets and interplanetary spacecraft in the Solar System. TDB is now (since 2006) defined as a linear scaling of Barycentric Coordinate Time (TCB). A feature that distinguishes TDB from TCB is that TDB, when observed from the Earth's surface, has a difference from Terrestrial Time (TT) that is about as small as can be practically arranged with consistent definition: the differences are mainly periodic, and overall will remain at less than 2 milliseconds for several millennia.TDB applies to the Solar-System-barycentric reference frame, and was first defined in 1976 as a successor to the (non-relativistic) former standard of ephemeris time (adopted by the IAU in 1952 and superseded 1976). In 2006, after a history of multiple time-scale definitions and deprecation since the 1970s, a redefinition of TDB was approved by the IAU. The 2006 IAU redefinition of TDB as an international standard expressly acknowledged that the long-established JPL ephemeris time argument Teph, as implemented in JPL Development Ephemeris DE405, "is for practical purposes the same as TDB defined in this Resolution" (By 2006, ephemeris DE405 had already been in use for a few years as the official basis for planetary and lunar ephemerides in the Astronomical Almanac; it was the basis for editions for 2003 through 2014; in the edition for 2015 it is superseded by DE430).

Coordinated Universal Time

Coordinated Universal Time (abbreviated to UTC) is the primary time standard by which the world regulates clocks and time. It is within about 1 second of mean solar time at 0° longitude, and is not adjusted for daylight saving time. In some countries where English is spoken, the term Greenwich Mean Time (GMT) is often used as a synonym for UTC and predates UTC by nearly 300 years.The first Coordinated Universal Time was informally adopted on 1 January 1960 and was first officially adopted as CCIR Recommendation 374, Standard-Frequency and Time-Signal Emissions, in 1963, but the official abbreviation of UTC and the official English name of Coordinated Universal Time (along with the French equivalent) were not adopted until 1967.The system has been adjusted several times, including a brief period where time coordination radio signals broadcast both UTC and "Stepped Atomic Time (SAT)" before a new UTC was adopted in 1970 and implemented in 1972. This change also adopted leap seconds to simplify future adjustments. This CCIR Recommendation 460 "stated that (a) carrier frequencies and time intervals should be maintained constant and should correspond to the definition of the SI second; (b) step adjustments, when necessary, should be exactly 1 s to maintain approximate agreement with Universal Time (UT); and (c) standard signals should contain information on the difference between UTC and UT."A number of proposals have been made to replace UTC with a new system that would eliminate leap seconds. A decision whether to remove them altogether has been deferred until 2023.The current version of UTC is defined by International Telecommunications Union Recommendation (ITU-R TF.460-6), Standard-frequency and time-signal emissions, and is based on International Atomic Time (TAI) with leap seconds added at irregular intervals to compensate for the slowing of the Earth's rotation. Leap seconds are inserted as necessary to keep UTC within 0.9 seconds of the UT1 variant of universal time. See the "Current number of leap seconds" section for the number of leap seconds inserted to date.

Geocentric Coordinate Time

Geocentric Coordinate Time (TCG - Temps-coordonnée géocentrique) is a coordinate time standard intended to be used as the independent variable of time for all calculations pertaining to precession, nutation, the Moon, and artificial satellites of the Earth. It is equivalent to the proper time experienced by a clock at rest in a coordinate frame co-moving with the center of the Earth: that is, a clock that performs exactly the same movements as the Earth but is outside the Earth's gravity well. It is therefore not influenced by the gravitational time dilation caused by the Earth.

TCG was defined in 1991 by the International Astronomical Union, in Recommendation III of the XXIst General Assembly. It was intended as one of the replacements for the ill-defined Barycentric Dynamical Time (TDB). Unlike former astronomical time scales, TCG is defined in the context of the general theory of relativity. The relationships between TCG and other relativistic time scales are defined with fully general relativistic metrics.

Because the reference frame for TCG is not rotating with the surface of the Earth and not in the gravitational potential of the Earth, TCG ticks faster than clocks on the surface of the Earth by a factor of about 7.0 × 10−10 (about 22 milliseconds per year). Consequently, the values of physical constants to be used with calculations using TCG differ from the traditional values of physical constants. (The traditional values were in a sense wrong, incorporating corrections for the difference in time scales.) Adapting the large body of existing software to change from TDB to TCG is a formidable task, and as of 2002 many calculations continue to use TDB in some form.

Time coordinates on the TCG scale are conventionally specified using traditional means of specifying days, carried over from non-uniform time standards based on the rotation of the Earth. Specifically, both Julian Dates and the Gregorian calendar are used. For continuity with its predecessor Ephemeris Time, TCG was set to match ET at around Julian Date 2443144.5 (1977-01-01T00Z). More precisely, it was defined that TCG instant 1977-01-01T00:00:32.184 exactly corresponds to TAI instant 1977-01-01T00:00:00.000 exactly. This is also the instant at which TAI introduced corrections for gravitational time dilation.

TCG is a Platonic time scale: a theoretical ideal, not dependent on a particular realisation. For practical purposes, TCG must be realised by actual clocks in the Earth system. Because of the linear relationship between Terrestrial Time (TT) and TCG, the same clocks that realise TT also serve for TCG. See the article on TT for details of the relationship and how TT is realised.

Barycentric Coordinate Time (TCB) is the analog of TCG, used for calculations relating to the solar system beyond Earth orbit. TCG is defined by a different reference frame from TCB, such that they are not linearly related. Over the long term, TCG ticks more slowly than TCB by about 1.6 × 10−8 (about 0.5 seconds per year). In addition there are periodic variations, as Earth moves within the Solar system. When the Earth is at perihelion in January, TCG ticks even more slowly than it does on average, due to gravitational time dilation from being deeper in the Sun's gravity well and also velocity time dilation from moving faster relative to the Sun. At aphelion in July the opposite holds, with TCG ticking faster than it does on average.

International Atomic Time

International Atomic Time (TAI, from the French name temps atomique international) is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. It is the principal realisation of Terrestrial Time (with a fixed offset of epoch). It is also the basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth's surface. As of 31 December 2016, when another leap second was added, TAI is exactly 37 seconds ahead of UTC. The 37 seconds results from the initial difference of 10 seconds at the start of 1972, plus 27 leap seconds in UTC since 1972.

TAI may be reported using traditional means of specifying days, carried over from non-uniform time standards based on the rotation of the Earth. Specifically, both Julian Dates and the Gregorian calendar are used. TAI in this form was synchronised with Universal Time at the beginning of 1958, and the two have drifted apart ever since, due to the changing motion of the Earth.

Leap second

A leap second is a one-second adjustment that is occasionally applied to civil time Coordinated Universal Time (UTC) to keep it close to the mean solar time at Greenwich, in spite of the Earth's rotation slowdown and irregularities. UTC was introduced on January 1, 1972, initially with a 10 second lag behind International Atomic Time (TAI). Since that date, 27 leap seconds have been inserted, the most recent on December 31, 2016 at 23:59:60 UTC, so in 2018, UTC lags behind TAI by an offset of 37 seconds.The UTC time standard, which is widely used for international timekeeping and as the reference for civil time in most countries, uses the international system (SI) definition of the second. The UTC second has been calibrated with atomic clocks to the duration of the Earth's mean day of the astronomical year 1900. Because the rotation of the Earth has since further slowed down, the duration of today's mean solar day is longer (by roughly 0.001 seconds) than 24 SI hours (86,400 SI seconds). UTC would step ahead of solar time and need adjustment even if the Earth's rotation remained constant in the future. Therefore, if the UTC day were defined as precisely 86,400 SI seconds, the UTC time-of-day would slowly drift apart from that of solar-based standards, such as Greenwich Mean Time (GMT) and its successor UT1. The point on the Earth's equator where the sun culminates at 12:00:00 UTC would wander to the East by some 300 m each year. The leap second compensates for this drift, by occasionally scheduling a UTC day with 86,401 or (in principle) 86,399 SI seconds.

When it occurs, a positive leap second is inserted between second 23:59:59 of a chosen UTC calendar date and second 00:00:00 of the following date. The definition of UTC states that the last day of December and June are preferred, with the last day of March or September as second preference, and the last day of any other month as third preference. All leap seconds (as of 2017) have been scheduled for either June 30 or December 31. The extra second is displayed on UTC clocks as 23:59:60. On clocks that display local time tied to UTC, the leap second may be inserted at the end of some other hour (or half-hour or quarter-hour), depending on the local time zone. A negative leap second would suppress second 23:59:59 of the last day of a chosen month, so that second 23:59:58 of that date would be followed immediately by second 00:00:00 of the following date. Since the introduction of leap seconds, the mean solar day has outpaced UTC only for very brief periods, and has not triggered a negative leap second.

Because the Earth's rotation speed varies in response to climatic and geological events, UTC leap seconds are irregularly spaced and unpredictable. Insertion of each UTC leap second is usually decided about six months in advance by the International Earth Rotation and Reference Systems Service (IERS), when needed to ensure that the difference between the UTC and UT1 readings will never exceed 0.9 seconds.

Marine chronometer

A marine chronometer is a timepiece that is precise and accurate enough to be used as a portable time standard; it can therefore be used to determine longitude by means of accurately measuring the time of a known fixed location, for example Greenwich Mean Time (GMT) and the time at the current location. When first developed in the 18th century, it was a major technical achievement, as accurate knowledge of the time over a long sea voyage is necessary for navigation, lacking electronic or communications aids. The first true chronometer was the life work of one man, John Harrison, spanning 31 years of persistent experimentation and testing that revolutionized naval (and later aerial) navigation and enabling the Age of Discovery and Colonialism to accelerate.

The term chronometer was coined from the Greek words chronos (meaning time) and meter (meaning counter) in 1714 by Jeremy Thacker, an early competitor for the prize set by the Longitude Act in the same year. It has recently become more commonly used to describe watches tested and certified to meet certain precision standards. Timepieces made in Switzerland may display the word "chronometer" only if certified by the COSC (Official Swiss Chronometer Testing Institute).

Minute

The minute is a unit of time or angle. As a unit of time, the minute is most of times equal to ​1⁄60 (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a negative leap second, which would result in a 59-second minute, but this has never happened in more than 40 years under this system). As a unit of angle, the minute of arc is equal to ​1⁄60 of a degree, or 60 seconds (of arc). Although not an SI unit for either time or angle, the minute is accepted for use with SI units for both. The SI symbols for minute or minutes are min for time measurement, and the prime symbol after a number, e.g. 5′, for angle measurement. The prime is also sometimes used informally to denote minutes of time.

Radio clock

A radio clock or radio-controlled clock (RCC) is a clock that is automatically synchronized by a time code transmitted by a radio transmitter connected to a time standard such as an atomic clock. Such a clock may be synchronized to the time sent by a single transmitter, such as many national or regional time transmitters, or may use multiple transmitters, like the Global Positioning System. Such systems may be used to automatically set clocks or for any purpose where accurate time is needed.

One common style of radio-controlled clock uses time signals transmitted by dedicated terrestrial longwave radio transmitters, which emit a time code that can be demodulated and displayed by the radio controlled clock. The radio controlled clock will contain an accurate time base oscillator to maintain timekeeping if the radio signal is momentarily unavailable. Other radio controlled clocks use the time signals transmitted by dedicated transmitters in the shortwave bands. Systems using dedicated time signal stations can achieve accuracy of a few tens of milliseconds.

GPS satellite navigation receivers also internally generate accurate time information from the satellite signals. Dedicated GPS timing receivers are accurate to better than 1 microsecond; however, general-purpose or consumer grade GPS may have an offset of up to one second between the internally calculated time, which is much more accurate than 1 second, and the time displayed on the screen.

Other broadcast services may include timekeeping information of varying accuracy within their signals.

South African Standard Time

South African Standard Time (SAST) is the time zone used by all of South Africa, Botswana as well as Eswatini and Lesotho. The zone is two hours ahead of UTC (UTC+02:00) and is the same as Central Africa Time. Daylight saving time is not observed in either time zone. Solar noon in this time zone occurs at 30° E in SAST, effectively making Pietermaritzburg at the correct solar noon point, with Johannesburg and Pretoria slightly west at 28° E and Durban slightly east at 31° E. Thus, most of South Africa's population experience true solar noon at approximately 12:00 daily.

The western Northern Cape and Western Cape differ, however. Everywhere on land west of 22°30′ E effectively experiences year-round daylight saving time because of its location in true UTC+01:00 but still being in South African Standard Time. Sunrise and sunset are thus relatively late in Cape Town, compared to the rest of the country.

To illustrate, daylight hours for South Africa's western and eastern-most major cities:

The South African National Time Standard, or 'SA Time' Master Clock, is maintained at the Time and Frequency Laboratory of the National Metrology Institute of South Africa (NMISA) at Pretoria and is distributed publicly by an NTP Internet Time service.

Standard time

Standard time is the synchronization of clocks within a geographical area or region to a single time standard, rather than using solar time or a locally chosen meridian (longitude) to establish a local mean time standard. Historically, the concept was established during the 19th century to aid weather forecasting and train travel. Applied globally in the 20th century, the geographical areas became extended around evenly spaced meridians into time zones which (usually) centered on them. The standard time set in each time zone has come to be defined in terms of offsets from Universal Time. In regions where daylight saving time is used, that time is defined by another offset, from the standard time in its applicable time zones.

The adoption of standard time, because of the inseparable correspondence between time and longitude, solidified the concepts of halving the globe into an eastern and western hemisphere, with one prime meridian (as well its opposite International Date Line) replacing the various prime meridians that had previously been used.

Terrestrial

Terrestrial refers to things related to land or the planet Earth.

Terrestrial may also refer to:

Terrestrial animal, an animal that lives on land opposed to living in water, or sometimes an animal that lives on or near the ground, as opposed to arboreal life (in trees)

A fishing fly that simulates the appearance of a land insect is referred to as a terrestrial fly.

Terrestrial ecoregion, land ecoregions, as distinct from freshwater ecoregions and marine ecoregions

Terrestrial ecosystem, an ecosystem found only on landforms

Terrestrial gamma-ray flash, a burst of gamma rays produced in Earth's atmosphere

Terrestrial locomotion, evolutionary adaptation from aquatic types of locomotion

Terrestrial plant, a plant that grows on land rather than in water or on rocks or trees

Terrestrial planet, a planet that is primarily composed of silicate rocks, and thus "Earth-like"

Terrestrial radio, radio signals received through a conventional aerial, as opposed to satellite radio

Terrestrial radiation, due to the insolation of heat by the earth surface, earth re-radiates the heat to the atmosphere in the form of long waves

Terrestrial reconnaissance, a type of reconnaissance that is employed along the elements of ground warfare

Terrestrial reference frame, the reference frame as one views from earth

Terrestrial television, television signals received through a conventional aerial, as opposed to satellite television or cable television

Terrestrial Time, an astronomical time standard

Terrestrial Trunked Radio, a specialist walkie talkie standard used by police departments, fire departments, ambulance services and the military

Cretaceous Terrestrial Revolution, the intense diversification of land animals

Terrestrial Time

Terrestrial Time (TT) is a modern astronomical time standard defined by the International Astronomical Union, primarily for time-measurements of astronomical observations made from the surface of Earth.

For example, the Astronomical Almanac uses TT for its tables of positions (ephemerides) of the Sun, Moon and planets as seen from Earth. In this role, TT continues Terrestrial Dynamical Time (TDT or TD), which in turn succeeded ephemeris time (ET). TT shares the original purpose for which ET was designed, to be free of the irregularities in the rotation of Earth.

The unit of TT is the SI second, the definition of which is currently based on the caesium atomic clock, but TT is not itself defined by atomic clocks. It is a theoretical ideal, and real clocks can only approximate it.

TT is distinct from the time scale often used as a basis for civil purposes, Coordinated Universal Time (UTC). TT indirectly underlies UTC, via International Atomic Time (TAI). Because of the historical difference between TAI and ET when TT was introduced, TT is approximately 32.184 s ahead of TAI.

Time in China

The time in China follows a single standard time offset of UTC+08:00 (eight hours ahead of Coordinated Universal Time), despite China spanning five geographical time zones. The official national standard time is called Beijing Time (Chinese: 北京时间) domestically and China Standard Time (CST) internationally. Daylight saving time has not been observed since 1991.The special administrative regions (SARs) maintain their own time authorities, with standards called Hong Kong Time (香港時間) and Macau Standard Time (澳門標準時間). These have been equivalent to Beijing time since 1992.

In addition, it has been proposed during 2005's NPC & CPPCC of China that provinces in the west (such as Shaanxi, Sichuan, and Chongqing) should use the time offset of UTC+07:00. However, this proposal has not been voted upon yet.

Time in the United States

Time in the United States, by law, is divided into nine standard time zones covering the states and its possessions, with most of the United States observing daylight saving time (DST) for approximately the spring, summer, and fall months. The time zone boundaries and DST observance are regulated by the Department of Transportation. Official and highly precise timekeeping services (clocks) are provided by two federal agencies: the National Institute of Standards and Technology (NIST) (an agency of the Department of Commerce); and its military counterpart, the United States Naval Observatory (USNO). The clocks run by these services are kept synchronized with each other as well as with those of other international timekeeping organizations.

It is the combination of the time zone and daylight saving rules, along with the timekeeping services, which determines the legal civil time for any U.S. location at any moment.

Time signal

A time signal is a visible, audible, mechanical, or electronic signal used as a reference to determine the time of day.

Church bells or voices announcing hours of prayer gave way to automatically operated chimes on public clocks; however, audible signals (even signal guns) have limited range. Busy seaports used a visual signal, the dropping of a ball, to allow mariners to check the chronometers used for navigation. The advent of electrical telegraphs allowed widespread and precise distribution of time signals from central observatories. Railways were among the first customers for time signals, which allowed synchronization of their operations over wide geographic areas. Dedicated radio time signal stations transmit a signal that allows automatic synchronization of clocks, and commercial broadcasters still include time signals in their programming.

Today, GPS navigation radio signals are used to precisely distribute time signals over much of the world. There are many commercially available radio controlled clocks available to accurately indicate the local time, both for business and residential use. Computers often set their time from an Internet atomic clock source. Where this is not available, a locally connected GPS receiver can precisely set the time using one of several software applications.

Universal Time

Universal Time (UT) is a time standard based on Earth's rotation. It is a modern continuation of Greenwich Mean Time (GMT), i.e., the mean solar time on the Prime Meridian at Greenwich, England. In fact, the expression "Universal Time" is ambiguous (when accuracy of better than a few seconds is required), as there are several versions of it, the most commonly used being Coordinated Universal Time (UTC) and UT1 (see § Versions). All of these versions of UT, except for UTC, are based on Earth's rotation relative to distant celestial objects (stars and quasars), but with a scaling factor and other adjustments to make them closer to solar time. UTC is based on International Atomic Time, with leap seconds added to keep it within 0.9 second of UT1.

Key concepts
Measurement and
standards
Clocks
  • Religion
  • Mythology
Philosophy of time
Human experience
and use of time
Time in
Related topics
Time measurement and standards
International standards
Obsolete standards
Time in physics
Horology
Calendar
Archaeology and geology
Astronomical chronology
Other units of time
Related topics
UTC offset for standard time and
Daylight saving time (DST)
Italics: historical or unofficial
Time zone data sources
Lists of time zones

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.