Time discipline

In sociology and anthropology, time discipline is the general name given to social and economic rules, conventions, customs, and expectations governing the measurement of time, the social currency and awareness of time measurements, and people's expectations concerning the observance of these customs by others.

The concept of "time discipline" as a field of special attention in sociology and anthropology was pioneered by E. P. Thompson in Time, Work-Discipline, and Industrial Capitalism, published in 1967. Coming from a Marxist viewpoint, Thompson argued that observance of clock-time is a consequence of the European industrial revolution, and that neither industrial capitalism nor the creation of the modern state would have been possible without the imposition of synchronic forms of time and work discipline. The new clock time imposed by government and capitalist interests replaced earlier, collective perceptions of time that Thompson believed flowed from the collective wisdom of human societies. While in fact it appears likely that earlier views of time were imposed instead by religious and other social authorities prior to the industrial revolution, Thompson's work identified time discipline as an important concept for study within the social sciences.

Windup alarm clock
The alarm clock is for many people a reminder of the intrusion of socio-economic time discipline into their sleep cycle.

Other views of time discipline

While Thompson's theory of industrial time-discipline has dominated the field for more than 40 years, critics of his work have emerged.

Paul Glennie and Nigel Thrift posit an alternative perspective on the development of time-consciousness in "Reworking E. P. Thompson's 'Time, Work-Discipline and Industrial Capitalism'" (1996).[1] According to Glennie and Thrift, Thompson and subsequent theorists on modern time competence in England have theorized that industrial work-discipline centered on the clock is responsible for spreading a unitary concept of time rooted in materialist realities. In contrast, Glennie and Thrift explore the role of symbolic, qualitative, and multiple time-senses in the West. Different kinds of work and multiple means of measuring time problematize the centrality of factory work and the clock. Generally, they argue that time-discipline was evident before the spread of industrialization and that it did not trigger a significant change in time-sense. Because it rests on the argument that disparate, spatial temporalities can not be unified, critics have argued that their analysis seems incomplete.[2] In short, they offer poignant critiques of the dominant theory without positing a stronger theory in its place.

Michael J. Sauter argues that Thompson's approach to time discipline is "gendered and Eurocentric". Time discipline did not arise because of the Industrial Revolution, but had been a phenomenon since the Middle Ages as the government, religion, and economics played larger roles in day-to-day life. In Sauter's article "Clockwaters and Stargazers: Time Discipline in Early Modern Berlin", he argues that time discipline came from the streets, and was part of the rise of "local knowledge" as public clocks were used by public event planners. People began to learn where clocks were located and which social groups used which ones. Furthermore, Sauter argues that time discipline is not "externally imposed" on people, but "a standard that is determined by people with specialized knowledge and skills". Prior to the rise of mechanical timekeeping, clocks were based on the easily accessed sun, and after 1800 precise timekeeping again returned to the Earth's position in relationship to the stars, as measured by scientists using specialized instruments.[3]

The natural world

In societies based around agriculture, hunting, and other pursuits that involve human interaction with the natural world, time discipline is a matter governed by astronomical and biological factors. Specific times of day or seasons of the year are defined by reference to these factors, and measured, to the extent that they need measuring, by observation. Different peoples' needs with respect to these things mean sharply differing cultural perceptions of time. For example, it surprises many non-Muslims that the Islamic calendar is entirely lunar and makes no reference at all to the seasons; the desert-dwelling Arabs who devised it were nomads rather than agriculturalists, and a calendar that made no reference to the seasons was no inconvenience for most of them.

In Western societies

In more urban societies, some of these natural phenomena were no longer at hand, and most were of much less consequence to the inhabitants. Artificial means of dividing and measuring time were needed. Plautus complained of the social effect of the invention of such divisions in his lines complaining of the sundial:

The gods confound the man who first found out
How to distinguish hours! Confound him, too,
Who in this place set up a sun-dial,
To cut and hack my days so wretchedly
Into small portions. When I was a boy
My belly was my sun-dial; one more sure,
Truer, and more exact than any of them.
This dial told me when 'twas proper time
To go to dinner, when I had aught to eat.
But now-a-days, why, even when I have,
I can't fall-to, unless the sun give leave.
The town's so full of these confounded dials,
The greatest part of its inhabitants,
Shrunk up with hunger, creep along the streets.

Plautus's protagonist here complains about the social discipline and expectations that arose when these measurements of time were introduced. The invention of artificial units of time measurement made the introduction of time management possible, and time management was not universally appreciated by those whose time was managed.

Western religious influences

In western Europe, the practice of Christian monasticism introduced new factors into the time discipline observed by members of religious communities. The rule of Saint Benedict introduced canonical hours; these were religious observances that were held on a daily basis, and based on factors again mostly unrelated to natural phenomena. It is no surprise, then, that religious communities were likely the inventors, and certainly the major consumers, of early clocks. The invention of the mechanical clock in western Europe, and its subsequent technical developments, enabled a public time discipline even less related to natural phenomena. (Highly sophisticated clepsydras existed in China, where they were used by astrologers connected with the imperial court; these water clocks were quite large, and their use limited to those who were professionally interested in precise timekeeping.)

The invention of the clock

The English word clock comes from an Old French word for "bell," for the striking feature of early clocks was a greater concern than their dials. Shakespeare's Sonnet XII begins, "When I do count the clock that tells the time." Even after the introduction of the clock face, clocks were costly, and found mostly in the homes of aristocrats. The vast majority of urban dwellers had to rely on clock towers, and outside the sight of their dials or the sound of their bells, clock time held no sway. Clock towers did define the time of day, at least for those who could hear and see them. As the saying goes, "a person with a clock always knows what time it is; a person with two clocks is never sure."

Improvements of the clock

The discipline imposed by these public clocks still remained lax by contemporary standards. A clock that only strikes the hours can only record the nearest hour that has passed; most early clocks had only hour hands in any case. Minute hands did not come into widespread use until the pendulum enabled a large leap in the accuracy of clocks; for watches, a similar leap in accuracy was not made possible before the invention of the balance spring. Before these improvements, the equation of time, the difference between apparent and mean solar time, was not even noticed.

During the 17th and 18th centuries, private ownership of clocks and watches became more common, as their improved manufacture made them available for purchase by at least the bourgeoisie of the cities. Their proliferation had many social and even religious consequences for those who could afford and use them.

Before time became standardized, clock masters used “True Time”. The day work began and ended with the sun. This time period was divided into 12 equal hours. This meant that these hours would vary with the seasons, as the length of daylight changed. Each town would have their own variance of this “True Time”. Eventually, cities adopted “Mean Time”, which is how we think of time nowadays. Astronomers used the Earth’s rotation and the stars to calculate the time, and divided the day into 24 uniform and equal hours. Geneva was the first city to adopt mean time in 1780, followed by London in 1792, Berlin in 1810, Paris in 1816, and Vienna in 1823.[4]

Religious consequences

Religious texts of the period make many more references to the irreversible passage of time, and artistic themes appeared at this time such as Vanitas, a reminder of death in the form of a still life, which always included a watch, clock, or some other timepiece. The relentless ticking of a clock or watch, and the slow but certain movement of its hands, functioned as a visible and audible memento mori. Clocks and sundials would be decorated with mottos such as ultima forsan ("perhaps the last" [hour]) or vulnerant omnes, ultima necat ("they all wound, and the last kills"). Even today, clocks often carry the motto tempus fugit, "time flies." Mary, Queen of Scots was said to have owned a large watch made in the shape of a silver skull.

Economic consequences

Economically, their impact was even greater; an awareness that time is money, a limited commodity not to be wasted, also appears during this period. Because Protestantism was at this time chiefly a religion of literate city dwellers, the so-called "Protestant work ethic" came to be associated with this newly fashioned time discipline. Production of clocks and watches during this period shifted from Italy and Bavaria to Protestant areas such as Geneva, the Netherlands, and England; the names of French clockmakers during this time disclose a large number of commonly Huguenot names from the Old Testament.

Standard, synchronous, public time

In the nineteenth century, the introduction of standard time and time zones divorced the "time of day" from local mean solar time and any links to astronomy. Time signals, like the bells and dials of public clocks, once were relatively local affairs; the ball that is dropped in Times Square on New Year's Eve in New York City once served as a time signal whose original purpose was for navigators to check their marine chronometers. However, when the railroads began running trains on complex schedules, keeping a schedule that could be followed over distances of hundreds of miles required synchronization on a scale not attempted before. Telegraphy and later shortwave radio were used to broadcast time signals from the most accurate clocks available. Radio and television broadcasting schedules created a further impetus to regiment everyone's clock so that they all told the same time within a very small tolerance; the broadcasting of time announcements over radio and television enabled all the households in their audience to get in synch with the clocks at the network.

The mass production of clocks and watches further tightened time discipline in the Western world; before these machines were made, and made to be more accurate, it would be pointless to complain about someone's being fifteen, or five, minutes late. For many employees, the time clock was the clock that told the time that mattered: it was the clock that recorded their hours of work. By the time that time clocks became commonplace, public, synchronized clock time was considered a fact of life. Uniform, synchronized, public clock time did not exist until the nineteenth century.

When one speaks about the intellectual history of time, one essentially is stating that changes have occurred in the way humans experience and measure time. Our conceived abstract notions of time have presumably developed in accordance with our art, our science, and our social infrastructure. (See also horology.)

Towards time-keeping

The units of time first developed by humans would likely have been days and months (moons). In some parts of the world the cycle of seasons is apparent enough to lead to people speaking about years and seasons (e.g. 4 summers ago, or 4 floods ago). With the invention of agriculture in the 3rd millennium BC, people relied heavily on the cycle of the seasons for planting and harvesting crops. Most humans came to live in settled societies and the whole community relied upon accurate predictions of the seasonal cycle. This led to the development of calendars. Over time, some people came to recognize patterns of the stars with the seasons. Learning astronomy became an assigned duty for certain people so they could coordinate the lunar and solar calendars by adding days or months to the year.

At about the same time, sundials were developed, likely marked first at noon, sunrise and sunset. In ancient Sumer and Egypt, numbers were soon used to divide the day into 12 hours; the night was similarly divided. In Egypt there is not as much seasonal variation in the length of the day, but those further from the equator would need to make many more modifications in calibrating their sundials to deal with these differences. Ancient traditions did not begin the day at midnight, some starting at dawn instead, others at dusk (both being more obvious).

Since a sundial has only one "hand," a minute probably only meant "a short time." It took centuries for technology to make measurements precise enough for minutes (and later seconds) to become fixed meaningful units—longer still for milliseconds, nanoseconds, and further subdivisions.

When the water clock was invented, time could also be measured at night—though there was significant variation in flow rate and less accuracy and precision. With water clocks, and also candle clocks, modifications were made to have them make sounds on a regular basis.

With the invention of the hourglass (perhaps as early as the 11th century), hours and units of time smaller than an hour could be measured much more reliably than with water clocks and candle clocks.

The earliest reasonably accurate mechanical clocks are the 13th century tower clocks probably developed for (and perhaps by) monks in Northern Italy. Using gears and gradually falling weights, these were adjusted to conform with canonical hours—which varied with the length of the day. As these were used primarily to ring bells for prayer, the clock dial likely only came later. When dials were eventually incorporated into clocks, they were analogous to the dials on sundials, and, like a sundial, the clocks themselves had only one hand.

A possible explanation for the shift from having the first hour being the one after dawn, to having the hour after noon being designated as 1 pm (post meridiem), is that these clocks would likely regularly be reset at local high noon each day. This, of course, results in midnight becoming 12 o'clock.

Peter Henlein, a locksmith and burgher of Nuremberg, Germany, invented a spring-powered clock around 1510. It had only one hand, had no glass cover, and was rather imprecise because it slowed down as the spring unwound. In fact, Henlein went so far as to develop the first portable watch; it was six inches high. People usually carried it by hand, or wore it around their necks or in large pockets. The first reported person to actually wear a watch on the wrist was the French mathematician and philosopher, Blaise Pascal (1623–1662). He attached his pocket watch to his wrist with a piece of string.

In 1577, the minute hand was added by a Swiss clock maker, Jost Burgi (who also is a contender for the invention of logarithms), and was incorporated into a clock Burgi made for astronomer Tycho Brahe, who had a need for more accuracy as he charted the heavens.

Isochronous time

With invention of the pendulum clock in 1656 by Christiaan Huygens, came isochronous time, with a fixed pace of 3600 seconds per hour. By 1680, both a minute hand and then a second hand were added. Some of the first of these had a separate dial for the minute hand (turning counter-clockwise), and a second hand that took 5 minutes per cycle.[5] Even as late as 1773, towns were content to order clocks without minute hands.[6]

But the clocks were still aligned with the local noonday sun. Following the invention of the locomotive in 1830, time had to be synchronized across vast distances in order to organize the train schedules. This eventually led to the development of time zones, and, thus, global isochronous time. These time changes were not accepted everywhere right away, because many people's lives were still tied closely to the length of the daytime. With the invention in 1879 of the light bulb, that changed too.

The isochronous clock changed lives. Appointments are rarely "within the hour," but at quarter hours (and being five minutes late is often considered being tardy). People often eat, drink, sleep, and even go to the bathroom in adherence to some time-dependent schedule.

See also

References

  1. ^ Glennie, Paul, and Nigel Thrift. "Reworking EP Thompson's Time, work-discipline and industrial capitalism'." Time & Society 5, no. 3 (1996): 275-299
  2. ^ Corfield, Penelope J. "Paul Glennie, Nigel Thrift. Shaping the Day: A History of Timekeeping in England and Wales, 1300–1800. New York: Oxford University Press. 2009. Pp. xiv, 456. $70.00." The American Historical Review 115, no. 2 (2010): 603-604.
  3. ^ Sauter, Michael J. (June 2007). "Clockwatchers and Stargazers: Time Discipline in Early Modern Berlin". American Historical Review. 112 (3): 685.
  4. ^ Sauter, Michael J. (June 2007). "Clockwatchers and Stargazers: Time Discipline in Early Modern Berlin". American Historical Review. 112 (3): 685.
  5. ^ [1]
  6. ^ [2]

Further reading

  • The DiscoverersDaniel J. Boorstin
  • Theory Out of Bounds – Isabelle Stengers/Ilya Prigogine
  • Order out of ChaosIlya Prigogine
  • Multifractals and 1/f noiseBenoît Mandelbrot
  • Conversations on Science, Culture, and Time ( Studies in Literature and Science)Michel Serres; et al.
  • The Structure of Scientific RevolutionsThomas S. Kuhn
  • Technics and CivilizationLewis Mumford
  • Landes, David: Revolution in Time: Clocks and the Making of the Modern World: (Belknap/Harvard, 1983) ISBN 0-674-76800-0
  • Aveni, Anthony: Empires of Time: Calendars, Clocks, and Cultures: (Basic Books, 1989) ISBN 0-465-01951-X
  • Thompson, EP: Time, work-discipline and industrial capitalism. Past & Present 38(1), 56–97 (1967)

External links

Astrarium

An astrarium, also called a planetarium, is the mechanical representation of the cyclic nature of astronomical objects in one timepiece. It is an astronomical clock.

BPL (time service)

BPL is the call sign of the official long-wave time signal service of the People's Republic of China, operated by the Chinese Academy of Sciences, broadcasting on 100 kHz from CAS's National Time Service Center in Pucheng County, Shaanxi at 34°56′54″N 109°32′34″E, roughly 70 km northeast of Lintong, along with NTSC's short-wave time signal BPM on 2.5, 5.0, 10.0, and 15.0 MHz.

BPL broadcasts LORAN-C compatible format signal from 5:30 to 13:30 UTC, using an 800 kW transmitter covering a radius up to 3000 km.

Carpe diem

Carpe diem is a Latin aphorism, usually translated "seize the day", taken from book 1 of the Roman poet Horace's work Odes (23 BC).

Chronometry

Chronometry (from Greek χρόνος chronos, "time" and μέτρον metron, "measure") is the science of the measurement of time, or timekeeping. Chronometry applies to electronic devices, while horology refers to mechanical devices.

It should not to be confused with chronology, the science of locating events in time, which often relies upon it.

Clock position

A clock position is the relative direction of an object described using the analogy of a 12-hour clock to describe angles and directions. One imagines a clock face lying either upright or flat in front of oneself, and identifies the twelve hour markings with the directions in which they point.

Using this analogy, 12 o'clock means ahead or above, 3 o'clock means to the right, 6 o'clock means behind or below, and 9 o'clock means to the left. The other eight hours refer to directions that are not directly in line with the four cardinal directions.

In aviation, a clock position refers to a horizontal direction; it may be supplemented with the word high or low to describe the vertical direction which is pointed towards your feet. 6 o'clock high means behind and above the horizon, while 12 o'clock low means ahead and below the horizon.

Common year

A common year is a calendar year with 365 days, as distinguished from a leap year, which has 366. More generally, a common year is one without intercalation. The Gregorian calendar, (like the earlier Julian calendar), employs both common years and leap years to keep the calendar aligned with the tropical year, which does not contain an exact number of days.

The common year of 365 days has 52 weeks and one day, hence a common year always begins and ends on the same day of the week (for example, January 1 and December 31 fell on a Sunday in 2017) and the year following a common year will start on the subsequent day of the week. In common years, February has four weeks, so March will begin on the same day of the week. November will also begin on this day.

In the Gregorian calendar, 303 of every 400 years are common years. By comparison, in the Julian calendar, 300 out of every 400 years are common years, and in the Revised Julian calendar (used by Greece) 682 out of every 900 years are common years.

E. P. Thompson

Edward Palmer Thompson (3 February 1924 – 28 August 1993) was a British historian, writer, socialist and peace campaigner. He is probably best known today for his historical work on the British radical movements in the late 18th and early 19th centuries, in particular The Making of the English Working Class (1963).Thompson published influential biographies of William Morris (1955) and (posthumously) William Blake (1993) and was a prolific journalist and essayist. He published the novel The Sykaos Papers and a collection of poetry.

His work is considered to have been among the most important contributions to labour history and social history in the latter twentieth-century, with a global impact, including on scholarship in Asia and Africa.Thompson was one of the principal intellectuals of the Communist Party in Great Britain. Although he left the party in 1956 over the Soviet invasion of Hungary, he nevertheless remained a "historian in the Marxist tradition", calling for a rebellion against Stalinism as a prerequisite for the restoration of communists' "confidence in our own revolutionary perspectives".Thompson played a key role in the first New Left in Britain in the late 1950s. He was a vociferous left-wing socialist critic of the Labour governments of 1964–70 and 1974–79, and an early and constant supporter of the Campaign for Nuclear Disarmament, becoming during the 1980s the leading intellectual light of the movement against nuclear weapons in Europe.

Endurantism

Endurantism or endurance theory is a philosophical theory of persistence and identity. According to the endurantist view, material objects are persisting three-dimensional individuals wholly present at every moment of their existence, which goes with an A-theory of time. This conception of an individual as always present is opposed to perdurantism or four dimensionalism, which maintains that an object is a series of temporal parts or stages, requiring a B-theory of time. The use of "endure" and "perdure" to distinguish two ways in which an object can be thought to persist can be traced to David Lewis.

HD2IOA

HD2IOA is the callsign of a time signal radio station operated by the Navy of Ecuador. The station is located at Guayaquil, Ecuador and transmits in the HF band on 3.81 and 7.6 MHz.The transmission is in AM mode with only the lower sideband (part of the time H3E and the rest H2B/H2D) and consists of 780 Hz tone pulses repeated every ten seconds and voice announcements in Spanish.

While sometimes this station is described as defunct, reception reports of this station on 3.81 MHz appear regularly at the Utility DX Forum.

Hexadecimal time

Hexadecimal time is the representation of the time of day as a hexadecimal number in the interval [0,1).

The day is divided into 1016 (1610) hexadecimal hours, each hour into 10016 (25610) hexadecimal minutes, and each minute into 1016 (1610) hexadecimal seconds.

Intercalation (timekeeping)

Intercalation or embolism in timekeeping is the insertion of a leap day, week, or month into some calendar years to make the calendar follow the seasons or moon phases. Lunisolar calendars may require intercalations of both days and months.

Minute

The minute is a unit of time or angle. As a unit of time, the minute is most of times equal to ​1⁄60 (the first sexagesimal fraction) of an hour, or 60 seconds. In the UTC time standard, a minute on rare occasions has 61 seconds, a consequence of leap seconds (there is a provision to insert a negative leap second, which would result in a 59-second minute, but this has never happened in more than 40 years under this system). As a unit of angle, the minute of arc is equal to ​1⁄60 of a degree, or 60 seconds (of arc). Although not an SI unit for either time or angle, the minute is accepted for use with SI units for both. The SI symbols for minute or minutes are min for time measurement, and the prime symbol after a number, e.g. 5′, for angle measurement. The prime is also sometimes used informally to denote minutes of time.

New Earth Time

New Earth Time (or NET) is an alternative naming system for measuring the time of day. In NET the day is split into 360 NET degrees, each NET degree is split into 60 NET minutes and each NET minute is split into 60 NET seconds. One NET degree is therefore equivalent to four standard minutes, and one standard hour is equivalent to 15 NET degrees.

NET is equivalent to the UTC read from a 24-hour analog clock as the clockwise angle past midnight of the hour hand. For example, noon is 180°0'0" NET and at that time the hour hand is pointing straight down forming a 180° angle when measured from the top, at midnight. A full circle is 360 degrees and one NET day.

Past

The past is the set of all events that occurred before a given point in time. The past is contrasted with and defined by the present and the future. The concept of the past is derived from the linear fashion in which human observers experience time, and is accessed through memory and recollection. In addition, human beings have recorded the past since the advent of written language. The first known use of the word "past" was in the fourteenth century; it developed as the past participle of the middle english verb passen meaning "to pass."

Timeline

A timeline is a display of a list of events in chronological order. It is typically a graphic design showing a long bar labelled with dates paralleling it, and usually contemporaneous events; a Gantt chart is a form of timeline used in project management.

Timelines can use any suitable scale representing time, suiting the subject and data; many use a linear scale, in which a unit of distance is equal to a set amount of time. This timescale is dependent on the events in the timeline. A timeline of evolution can be over millions of years, whereas a timeline for the day of the September 11 attacks can take place over minutes, and that of an explosion over milliseconds. While many timelines use a linear timescale -- especially where very large or small timespans are relevant -- logarithmic timelines entail a logarithmic scale of time; some "hurry up and wait" chronologies are depicted with zoom lens metaphors.

Tomorrow (time)

Tomorrow is a temporal construct of the relative future; literally of the day after the current day (today), or figuratively of future periods or times. Tomorrow is usually considered just beyond the present and counter to yesterday. It is important in time perception because it is the first direction the arrow of time takes humans on Earth.

UTC offset

The UTC offset is the difference in hours and minutes from Coordinated Universal Time (UTC) for a particular place and date. It is generally shown in the format ±[hh]:[mm], ±[hh][mm], or ±[hh]. So if the time being described is one hour ahead of UTC (such as the time in Berlin during the winter), the UTC offset would be "+01:00", "+0100", or simply "+01".

Every inhabited place in the world has a UTC offset that is a multiple of 15 minutes, and the majority of offsets (as well as all nautical time zones) are measured in whole hours.

UTC is the equivalent to GMT.

YVTO

YVTO is the callsign of the official time signal from the Juan Manuel Cagigal Naval Observatory in Caracas, Venezuela. The content of YVTO's signal, which is a continuous 1 kW amplitude modulated carrier wave at 5.000 MHz, is much simpler than that broadcast by some of the other time signal stations around the world, such as WWV.

The methods of time transmission from YVTO are very limited. The broadcast employs no form of digital time code. The time of day is given in Venezuelan Standard Time (VET), and is only sent using Spanish language voice announcements. YVTO also transmits 100 ms-long beeps of 1000 Hz every second, except for thirty seconds past the minute. The top of the minute is marked by a 0.5 second 800 Hz tone.The station previously broadcast on 6,100 MHz but appears to have changed to the current frequency by 1990.

Yesterday (time)

Yesterday is a temporal construct of the relative past; literally of the day before the current day (today), or figuratively of earlier periods or times, often but not always within living memory.

Key concepts
Measurement and
standards
Clocks
  • Religion
  • Mythology
Philosophy of time
Human experience
and use of time
Time in
Related topics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.