Thorson's rule

Thorson's rule (named after Gunnar Thorson by S. A. Mileikovsky in 1971) [1] is an ecogeographical rule which states that benthic marine invertebrates at low latitudes tend to produce large numbers of eggs developing to pelagic (often planktotrophic [plankton-feeding]) and widely dispersing larvae, whereas at high latitudes such organisms tend to produce fewer and larger lecithotrophic (yolk-feeding) eggs and larger offspring, often by viviparity or ovoviviparity, which are often brooded.[2]

Groups involved

The rule was originally established for marine bottom invertebrates, but it also applies to a group of parasitic flatworms, monogenean ectoparasites on the gills of marine fish.[3] Most low-latitude species of Monogenea produce large numbers of ciliated larvae. However, at high latitudes, species of the entirely viviparous family Gyrodactylidae, which produce few nonciliated offspring and are very rare at low latitudes, represent the majority of gill Monogenea, i.e., about 80–90% of all species at high northern latitudes, and about one third of all species in Antarctic and sub-Antarctic waters, against less than 1% in tropical waters. Data compiled by A.V. Gusev in 1978 indicates that Gyrodactylidae may also be more common in cold than tropical freshwater systems, suggesting that Thorson's rule may apply to freshwater invertebrates.[4]

There are exceptions to the rule, such as ascoglossan snails: tropical ascoglossans have a higher incidence of lecithotrophy and direct development than temperate species.[5] A study in 2001 indicated that two factors are important for Thorson's rule to be valid for marine gastropods: 1) the habitat must include rocky substrates, because soft-bottom habitats appear to favour non-pelagic development; and 2) a diverse assemblage of taxa need to be compared to avoid the problem of phyletic constraints, which could limit the evolution of different developmental modes.[6]

Application to deep-sea species

The temperature gradient from warm surface waters to the deep sea is similar to that along latitudinal gradients. A gradient as described by Thorson's rule may therefore be expected. However, evidence for such a gradient is ambiguous;[1] Gyrodactylidae have not yet been found in the deep sea.[3]

Explanations

Several explanations of the rule have been given. They include:

  1. Because of the reduced speed of development at low temperatures, most species cannot complete development during the short time of phytoplankton bloom, on which planktotrophic species depend;
  2. Most species cannot synchronize hatching with the phytoplankton bloom;
  3. Slower development increases the risk of predation on pelagic larvae;
  4. Non-pelagic larvae can settle close to the parent, i.e. in a favourable environment;
  5. Small pelagic larvae may have osmotic difficulties in Arctic and Antarctic summers, due to the melting ice;
  6. Small larvae may not be able to survive at very low temperatures;
  7. Cold temperature may select for large size at the beginning of development, resulting in non-pelagic larvae; and
  8. In cold waters it is more difficult to precipitate dissolved calcium, which results in reduced body size of animals supported by calcium skeletons, leading to viviparity.

Most of these explanations can be excluded for the Monogenea, whose larvae are never planktotrophic (therefore eliminating explanations 1 and 2), their larvae are always short-lived (3), Gyrodactylidae are most common not only close to melting ice but in cold seas generally (5). Explanation 6 is unlikely, because small organisms are common in cold seas, Gyrodactylidae are among the smallest Monogenea (7), and Monogenea do not possess calcareous skeletons (8). The conclusion is that the most likely explanation for the Monogenea (and by implication for other groups) is that small larvae cannot locate suitable habitats at low temperatures, where physiological including sensory processes are slowed down, and/or that low temperatures prevent the production of sufficient numbers of pelagic larvae, which would be necessary to find suitable habitats in the vast oceanic spaces.[3]

Implications for Rapoport's rule

Rapoport's rule states that latitudinal ranges of species are generally smaller at low than at high latitudes. Thorson's rule contradicts this rule, because species disperse more widely at low than at high latitudes, supplementing much evidence against the generality of Rapoport's rule and for the fact that tropical species often have wider geographical ranges than high latitude species.[7][8]

See also

References

  1. ^ a b Mileikovsky, S. A. 1971. Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a reevaluation. Marine Biology 19: 193-213
  2. ^ Thorson, G. 1957 Bottom communities (sublittoral or shallow shelf). In "Treatise on Marine Ecology and Palaeoecology" (Ed J.W. Hedgpeth) pp. 461-534. Geological Society of America.
  3. ^ a b c Rohde, K. 1985. Increased viviparity of marine parasites at high latitudes. Hydrobiologia 127: 197-201.
  4. ^ Gusev, A.V. 1978. Monogenoidea of freshwater fish. Principles of systematics, analysis of the world fauna and its evolution. Parasitologicheskij Sbornik 28: 96-198 (in Russian).
  5. ^ Krug, P.J. 1998. Poecilogony in an estuarine opisthobranch: planktotrophy, lecithotrophy, and mixed clutches in a population of the ascoglossan Alderia modesta. Marine Biology 132:483-494.
  6. ^ Gallardo, C.S. and Penchaszadeh, P.E. 2001. Hatching mode and latitude in marine gastropods: revisiting Thorson's paradigm in the southern hemisphere. Marine Biology 138 547-552
  7. ^ Rohde, K., Heap M. and Heap, D. 1993. Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. American Naturalist 142: 1-16.
  8. ^ Rohde, K. 1999. Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work, and what can parasites teach us about the causes of the gradients? Ecography 22: 593-613. Also published In Ecology 1999 - and tomorrow (Ed T Fenchel), pp. 73-93. (Ecology Institute: University of Lund, Sweden).

Sources

  • Aenaud, P.M. 1977. "Adaptations within the Antarctic marine benthic ecosystem. In: Adaptations within Antarctic ecosystems". Proceedings 3rd SCAR Symposium Antarctic Biology (Ed. Llana, G.), pp. 135–157.
  • Jablonski, D. and Lutz, R.A. 1983. "Larval ecology of marine benthic invertebrates: Palaeobiological implications". Biological Reviews 58: 21–89.
  • Laptikhovsky, V. 2006. "Latitudinal and bathymetric trends in egg size variation: a new look at Thorson's and Rass's rules". Marine Ecology 27: 7–14.
  • Pearse, J.S. 1994. "Cold-water echinoderms break 'Thorson's rule'". In: Reproduction, larval biology, and recruitment in deep-sea benthos ( Ed.Ecklebarger, K.J, Young, C.M.) pp 26–43. Columbia University Press, New York.
  • Picken, G.B. 1980. "Reproductive adaptations in Antarctic invertebrates". Biological Journal of the Linnean Society 14: 67–75.
  • Rohde, K. 2002. "Ecology and biogeography of marine parasites". Advances in Marine Biology 43: 1–86.
  • Rohde, K. 2005. "Latitudinal. Longitudinal and depth gradients". In: Marine Parasitology (Ed. K. Rohde) pp. 348–351. CSIRO Publishing, Melbourne and CABI, Wallingford, Oxon.
  • Simpson, R.D. 1900. "The reproduction of some littoral molluscs from Macquarie Island (Sub-Antarctic)". Marine Biology 44: 125–142.
  • Stanwell-Smith, D., Peck, L.S. Clarke, A., Murray, A.W.A. and Todd, C.D. 1999. "The distribution, abundance and seasonality of pelagic marine invertebrate larvae in the maritime Antarctic". Philosophical Transactions of the Royal Society B: Biological Sciences 354: 471–484.
Aquatic ecosystem

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

Bacterivore

Bacterivores are free-living, generally heterotrophic organisms, exclusively microscopic, which obtain energy and nutrients primarily or entirely from the consumption of bacteria. Many species of amoeba are bacterivores, as well as other types of protozoans. Commonly, all species of bacteria will be prey, but spores of some species, such as Clostridium perfringens, will never be prey, because of their cellular attributes.

Copiotroph

A copiotroph is an organism found in environments rich in nutrients, particularly carbon. They are the opposite to oligotrophs, which survive in much lower carbon concentrations.

Copiotrophic organisms tend to grow in high organic substrate conditions. For example, copiotrophic organisms grow in Sewage lagoons. They grow in organic substrate conditions up to 100x higher than oligotrophs.

Decomposer

Decomposers are organisms that break down dead or decaying organisms, and in doing so, they carry out the natural process of decomposition. Like herbivores and predators, decomposers are heterotrophic, meaning that they use organic substrates to get their energy, carbon and nutrients for growth and development. While the terms decomposer and detritivore are often interchangeably used, detritivores must ingest and digest dead matter via internal processes while decomposers can directly absorb nutrients through chemical and biological processes hence breaking down matter without ingesting it. Thus, invertebrates such as earthworms, woodlice, and sea cucumbers are technically detritivores, not decomposers, since they must ingest nutrients and are unable to absorb them externally.

Dominance (ecology)

Ecological dominance is the degree to which a taxon is more numerous than its competitors in an ecological community, or makes up more of the biomass.

Most ecological communities are defined by their dominant species.

In many examples of wet woodland in western Europe, the dominant tree is alder (Alnus glutinosa).

In temperate bogs, the dominant vegetation is usually species of Sphagnum moss.

Tidal swamps in the tropics are usually dominated by species of mangrove (Rhizophoraceae)

Some sea floor communities are dominated by brittle stars.

Exposed rocky shorelines are dominated by sessile organisms such as barnacles and limpets.

Ecological threshold

Ecological threshold is the point at which a relatively small change or disturbance in external conditions causes a rapid change in an ecosystem. When an ecological threshold has been passed, the ecosystem may no longer be able to return to its state by means of its inherent resilience . Crossing an ecological threshold often leads to rapid change of ecosystem health. Ecological threshold represent a non-linearity of the responses in ecological or biological systems to pressures caused by human activities or natural processes.Critical load, tipping point and regime shift are examples of other closely related terms.

Feeding frenzy

In ecology, a feeding frenzy occurs when predators are overwhelmed by the amount of prey available. For example, a large school of fish can cause nearby sharks, such as the lemon shark, to enter into a feeding frenzy. This can cause the sharks to go wild, biting anything that moves, including each other or anything else within biting range. Another functional explanation for feeding frenzy is competition amongst predators. This term is most often used when referring to sharks or piranhas. It has also been used as a term within journalism.

Gunnar Thorson

Gunnar Axel Wright Thorson (31 December 1906 – 25 January 1971) was a Danish marine zoologist and ecologist, who studied at the University of Copenhagen under the professors C.G. Johannes Petersen, August Krogh, Theodor Mortensen, Ragnar Spärck and Carl Wesenberg-Lund. In 1957, Thorson was appointed professor of marine biology at the University of Copenhagen.

Thorson studied planktonic larvae of marine benthic invertebrates. He conceived the idea that in the Tropics, benthos tend to produce large numbers of eggs developing into pelagic and widely dispersing larvae, whereas at higher latitudes they tend to produce fewer and larger eggs and offspring. This idea was later coined Thorson's rule.Thorson participated in the Three-year Expedition to East Greenland led by Lauge Koch. He founded the Marine Biological Laboratory under the University of Copenhagen and was a professor there 1958-1968.The icebreaker HDMS Gunnar Thorson was named after him.

Landscape epidemiology

Landscape epidemiology draws some of its roots from the field of landscape ecology. Just as the discipline of landscape ecology is concerned with analyzing both pattern and process in ecosystems across time and space, landscape epidemiology can be used to analyze both risk patterns and environmental risk factors. This field emerges from the theory that most vectors, hosts and pathogens are commonly tied to the landscape as environmental determinants control their distribution and abundance. In 1966, Evgeniy Pavlovsky introduced the concept of natural nidality or focality, defined by the idea that microscale disease foci are determined by the entire ecosystem. With the recent availability of new computing technologies such as geographic information systems, remote sensing, statistical methods including spatial statistics and theories of landscape ecology, the concept of landscape epidemiology has been applied analytically to a variety of disease systems, including malaria, hantavirus, Lyme disease and Chagas' disease.

Lithoautotroph

A lithoautotroph or chemolithoautotroph is a microbe which derives energy from reduced compounds of mineral origin. Lithoautotrophs are a type of lithotrophs with autotrophic metabolic pathways. Lithoautotrophs are exclusively microbes; macrofauna do not possess the capability to use mineral sources of energy. Most lithoautotrophs belong to the domain Bacteria, while some belong to the domain Archaea. For lithoautotrophic bacteria, only inorganic molecules can be used as energy sources. The term "Lithotroph" is from Greek lithos (λίθος) meaning "rock" and trōphos (τροφοσ) meaning "consumer"; literally, it may be read "eaters of rock". Many lithoautotrophs are extremophiles, but this is not universally so.

Lithoautotrophs are extremely specific in using their energy source. Thus, despite the diversity in using inorganic molecules in order to obtain energy that lithoautotrophs exhibit as a group, one particular lithoautotroph would use only one type of inorganic molecule to get its energy.

Mesotrophic soil

Mesotrophic soils are soils with a moderate inherent fertility. An indicator of soil fertility is its base status, which is expressed as a ratio relating the major nutrient cations (calcium, magnesium, potassium and sodium) found there to the soil's clay percentage. This is commonly expressed in hundredths of a mole of cations per kilogram of clay, i.e. cmol (+) kg−1 clay.

Mycotroph

A mycotroph is a plant that gets all or part of its carbon, water, or nutrient supply through symbiotic association with fungi. The term can refer to plants that engage in either of two distinct symbioses with fungi:

Many mycotrophs have a mutualistic association with fungi in any of several forms of mycorrhiza. The majority of plant species are mycotrophic in this sense. Examples include Burmanniaceae.

Some mycotrophs are parasitic upon fungi in an association known as myco-heterotrophy.

Organotroph

An organotroph is an organism that obtains hydrogen or electrons from organic substrates. This term is used in microbiology to classify and describe organisms based on how they obtain electrons for their respiration processes. Some organotrophs such as animals and many bacteria, are also heterotrophs. Organotrophs can be either anaerobic or aerobic.

Antonym: Lithotroph, Adjective: Organotrophic.

Planktivore

A planktivore is an aquatic organism that feeds on planktonic food, including zooplankton and phytoplankton.

Population cycle

A population cycle in zoology is a phenomenon where populations rise and fall over a predictable period of time. There are some species where population numbers have reasonably predictable patterns of change although the full reasons for population cycles is one of the major unsolved ecological problems. There are a number of factors which influence population change such as availability of food, predators, diseases and climate.

Rapoport's rule

Rapoport's rule is an ecogeographical rule that states that latitudinal ranges of plants and animals are generally smaller at lower latitudes than at higher latitudes.

Recruitment (biology)

In biology, especially marine biology, recruitment occurs when a juvenile organism joins a population, whether by birth or immigration, usually at a stage whereby the organisms are settled and able to be detected by an observer.There are two types of recruitment: closed and open.In the study of fisheries, recruitment is "the number of fish surviving to enter the fishery or to some life history stage such as settlement or maturity".

Relative abundance distribution

In the field of ecology, the relative abundance distribution (RAD) or species abundance distribution describes the relationship between the number of species observed in a field study as a function of their observed abundance. The graphs obtained in this manner are typically fitted to a Zipf–Mandelbrot law, the exponent of which serves as an index of biodiversity in the ecosystem under study.

Species homogeneity

In ecology, species homogeneity is a lack of biodiversity. Species richness is the fundamental unit in which to assess the homogeneity of an environment. Therefore, any reduction in species richness, especially endemic species, could be argued as advocating the production of a homogenous environment.

Rules
Related
General
Producers
Consumers
Decomposers
Microorganisms
Food webs
Example webs
Processes
Defense,
counter
Ecology: Modelling ecosystems: Other components
Population
ecology
Species
Species
interaction
Spatial
ecology
Niche
Other
networks
Other
Aquatic ecosystems

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.