Thorne–Żytkow object

A Thorne–Żytkow object (TŻO or TZO) is a conjectured type of star wherein a red giant or supergiant contains a neutron star at its core, formed from the collision of the giant with the neutron star. Such objects were hypothesized by Kip Thorne and Anna Żytkow in 1977.[1] In 2014, it was discovered that the star HV 2112 was a strong candidate[2] but this has since been called into question.[3]


A Thorne–Żytkow object is formed when a neutron star collides with a star, typically a red giant or supergiant. The colliding objects can simply be wandering stars. This is only likely to occur in extremely crowded globular clusters. Alternatively, the neutron star could form in a binary system after one of the two stars went supernova. Because no supernova is perfectly symmetric, and because the binding energy of the binary changes with the mass lost in the supernova, the neutron star will be left with some velocity relative to its original orbit. This kick may cause its new orbit to intersect with its companion, or, if its companion is a main-sequence star, it may be engulfed when its companion evolves into a red giant.[4]

Once the neutron star enters the red giant, drag between the neutron star and the outer, diffuse layers of the red giant causes the binary star system's orbit to decay, and the neutron star and core of the red giant spiral inward toward one another. Depending on their initial separation, this process may take hundreds of years. When the two finally collide, the neutron star and red giant core will merge. If their combined mass exceeds the Tolman-Oppenheimer-Volkoff limit then the two will collapse into a black hole, resulting in a supernova that disperses the outer layers of the star. Otherwise, the two will coalesce into a single neutron star.

If a neutron star and a white dwarf merge, this could form a Thorne–Żytkow object with the properties of an R Coronae Borealis variable.[5]


The surface of the neutron star is very hot, with temperatures exceeding 109 K: hotter than the cores of all but the most massive stars. This heat is dominated either by nuclear fusion in the accreting gas or by compression of the gas by the neutron star's gravity.[6][7] Because of the high temperature, unusual nuclear processes may take place as the envelope of the red giant falls onto the neutron star's surface. Hydrogen may fuse to produce a different mixture of isotopes than it does in ordinary stellar nucleosynthesis, and some astronomers have proposed that the rapid proton nucleosynthesis that occurs in X-ray bursts also takes place inside Thorne–Żytkow objects.[8]

Observationally, a Thorne–Żytkow object may resemble a red supergiant,[9] or, if it is hot enough to blow off the hydrogen-rich surface layers, a nitrogen-rich Wolf–Rayet star (type WN8).[10]

A TŻO has an estimated lifespan of 105–106 years. Given this lifespan, it is possible that between 20 and 200 Thorne-Żytkow objects currently exist in the Milky Way.[11]


It has been theorized that mass loss will eventually end the TŻO stage, with the remaining envelope converted to a disk, resulting in the formation of a neutron star with a massive accretion disc.[12] These neutron stars may form the population of isolated pulsars with accretion discs.[12] The massive accretion disc may also result in the collapse of a star, becoming a stellar companion to the neutron star. The neutron star may also accrete sufficient material to collapse into a black hole.[13]

Observation history

As of 2014, the most recent candidate, star HV 2112, has been observed to have some unusual properties that suggest that it may be a Thorne–Żytkow object. The discovering team, with Emily Levesque being the lead author, noted that HV 2112 displays some chemical characteristics that don't quite match theoretical models, but emphasize that the theoretical predictions for a Thorne–Żytkow object are quite old and theoretical improvements have been made since it was originally conceptualized.[9]

A 2018 paper reappraising the properties of HV 2112, however, has shown that star is unlikely to be a Thorne-Żytkow object, and it is more likely an intermediate mass AGB star.[3]

List of candidate TŻOs

Candidate Right Ascension Declination Location Discovery Notes Refs
HV 2112  01h 10m 03.87s −72° 36′ 52.6″ Small Magellanic Cloud 2014 This star was previously catalogued as an asymptotic-giant-branch star, but observationally is a better fit for red supergiant status. [9]
U Aquarii  22h 03m 19.69s −16° 37′ 35.2″ Aquarius 1999 This star was catalogued as a R Coronae Borealis variable. [5]
VZ Sagittarii  18h 15m 08.58s −29° 42′ 29.6″ Sagittarius 1999 This star was catalogued as a R Coronae Borealis variable. [5]

List of candidate former TŻOs

Candidate former TŻO Right Ascension Declination Location Discovery Notes Refs
GRO J1655-40  16h 54m 00.14s −39° 50′ 44.9″ Scorpius 1995 The progenitor for both the companion star and the black hole in this system is hypothesized to have been a TŻO. [13]

See also


  1. ^ Thorne, Kip S.; Żytkow, Anna N. (15 March 1977). "Stars with degenerate neutron cores. I - Structure of equilibrium models". The Astrophysical Journal. 212 (1): 832–858. Bibcode:1977ApJ...212..832T. doi:10.1086/155109.
  2. ^ Levesque, Emily M.; Massey, Philip; Zytkow, Anna N.; Morrell, Nidia (2014). "Discovery of a Thorne–Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080. Lay summaryPhysOrg (4 June 2014).
  3. ^ a b Beasor, Emma; Davies, Ben; Cabrera-Ziri, Ivan; Hurst, Georgia (2 July 2018). "A critical re-evaluation of the Thorne-Żytkow object candidate HV 2112". Monthly Notices of the Royal Astronomical Society. 479 (3): 3101–3105. arXiv:1806.07399. Bibcode:2018MNRAS.479.3101B. doi:10.1093/mnras/sty1744.
  4. ^ Brandt, W. Niel; Podsiadlowski, Philipp (May 1995). "The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries". Monthly Notices of the Royal Astronomical Society. 274 (2): 461–484. arXiv:astro-ph/9412023. Bibcode:1995MNRAS.274..461B. doi:10.1093/mnras/274.2.461.
  5. ^ a b c Vanture, Andrew; Zucker, Daniel; Wallerstein, George (April 1999). "U Aquarii a Thorne–Żytkow Object?". The Astrophysical Journal. 514 (2): 932–938. Bibcode:1999ApJ...514..932V. doi:10.1086/306956.
  6. ^ Eich, Chris; Zimmerman, Mark; Thorne, Kip; Żytkow, Anna N. (November 1989). "Giant and supergiant stars with degenerate neutron cores". The Astrophysical Journal. 346 (1): 277–283. Bibcode:1989ApJ...346..277E. doi:10.1086/168008.
  7. ^ Cannon, Robert; Eggleton, Peter; Żytkow, Anna N.; Podsialowsky, Philip (February 1992). "The structure and evolution of Thorne-Zytkow objects". The Astrophysical Journal. 386 (1): 206–214. Bibcode:1992ApJ...386..206C. doi:10.1086/171006.
  8. ^ Cannon, Robert (August 1993). "Massive Thorne–Żytkow Objects – Structure and Nucleosynthesis". Monthly Notices of the Royal Astronomical Society. 263 (4): 817–838. Bibcode:1993MNRAS.263..817C. doi:10.1093/mnras/263.4.817.
  9. ^ a b c Levesque, Emily; Massey, Philip; Żytkow, Anna; Morrell, Nidia (30 May 2014). "Discovery of a Thorne-Zytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society Letters. 1406: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  10. ^ Foellmi, C.; Moffat, A.F.J. (2002). "Are Peculiar Wolf-Rayet Stars of Type WN8 Thorne-Zytkow Objects?". In Shara, Michael M. (ed.). Stellar Collisions, Mergers and their Consequences. ASP Conference Proceedings. 263. arXiv:astro-ph/0607217. Bibcode:2002ASPC..263..123F. ISBN 1-58381-103-6.
  11. ^ Podsiadlowski, P.; Cannon, R. C.; Rees, M. J. (May 1995). "The evolution and final fate of massive Thorne-Żytkow objects". Monthly Notices of the Royal Astronomical Society. 274 (2): 485–490. Bibcode:1995MNRAS.274..485P. doi:10.1093/mnras/274.2.485.
  12. ^ a b Mereghetti, Sandro (1995). "A Spin-down Variation in the 6 Second X-Ray Pulsar 1E 1048.1-5937". Astrophysical Journal (published December 1995). 455: 598. Bibcode:1995ApJ...455..598M. doi:10.1086/176607.
  13. ^ a b Brandt, W. Niel; Podsiadlowski, Philipp; Sigurðsson, Steinn (1995). "On the high space velocity of X-ray Nova SCO 1994: Implications for the formation of its black hole". Monthly Notices of the Royal Astronomical Society. 277 (2): L35–L40. Bibcode:1995MNRAS.277L..35B. doi:10.1093/mnras/277.1.L35.
Anna N. Żytkow

Anna N. Żytkow (Polish pronunciation: [ˈanːa ˈʐɨtkɔf], born 21 February 1947) is a Polish astrophysicist working at the Institute of Astronomy of the University of Cambridge. Żytkow and Kip Thorne proposed a model for what is called the Thorne–Żytkow object, which is a star within another star. Żytkow in 2014 participated in the team lead by Emily M. Levesque which discovered the first candidate for such an object.


Blitzars are a hypothetical type of astronomical object in which a spinning pulsar rapidly collapses into a black hole. They are proposed as an explanation for fast radio bursts (FRBs). The idea was proposed in 2013 by Heino Falcke and Luciano Rezzolla.

Bright giant

The luminosity class II in the Yerkes spectral classification is given to bright giants. These are stars which straddle the boundary between ordinary giants and supergiants, based on the appearance of their spectra.

CN star

A CN star is a star with strong cyanogen bands in its spectrum. Cyanogen is a simple molecule of one carbon atom and one nitrogen atom, with absorption bands around 388.9 and 421.6 nm. This group of stars was first noticed by Nancy G. Roman who called them 4150 stars.

Contact binary

In astronomy, a contact binary is a binary star system whose component stars are so close that they touch each other or have merged to share their gaseous envelopes. A binary system whose stars share an envelope may also be called an overcontact binary. Almost all known contact binary systems are eclipsing binaries; eclipsing contact binaries are known as W Ursae Majoris variables, after their type star, W Ursae Majoris.Contact binaries are not to be confused with common envelopes. Whereas the configuration of two touching stars in a contact binary has a typical lifetime of millions to billions of years, the common envelope is a dynamically unstable phase in binary evolution that either expels the stellar envelope or merges the binary in a timescale of months to years.

Frozen star (hypothetical star)

In astronomy, a frozen star, besides a disused term for a black hole, is a type of hypothetical star that, according to the astronomers Fred Adams and Gregory P. Laughlin, may appear in the future of the Universe when the metallicity of the interstellar medium is several times the solar value. Frozen stars would belong to a spectral class "H", due to being rich in hydrides.

HV 2112

HV 2112 is a cool luminous variable star in the Small Magellanic Cloud. Until 2018, it was considered to be the most likely candidate for a Thorne–Żytkow object, but it is now thought to be an asymptotic giant branch star.

Helium-weak star

Helium-weak stars are chemically peculiar stars which have a weak helium lines for their spectral type. Their helium lines place them in a later (ie. cooler) spectral type then their hydrogen lines.

Hypothetical star

A hypothetical star is a star, or type of star, that is speculated to exist but has yet to be definitively observed. Hypothetical types of stars have been conjectured to exist, have existed or will exist in the future universe.

Lambda Boötis star

A Lambda Boötis star is a type of peculiar star which has an unusually low abundance of iron peak elements in its surface layers. One possible explanation for this is that it is the result of accretion of metal-poor gas from a circumstellar disc, and a second possibility is the accretion of material from a hot Jupiter suffering from mass loss. The prototype is Lambda Boötis.

Lead star

A lead star is a low-metallicity star with an overabundance of lead and bismuth as compared to other products of the S-process.

Nidia Morrell

Nidia Irene Morrell (born 3 July 1953) is an Argentine astronomer who is a permanent staff member at the Las Campanas Observatory in La Serena, Chile. She was a member of the Massive Stars research group led by Virpi Niemelä and the Hubble Heritage Project. Professionally, she is known for her numerous contributions related to the astrophysics of massive stars. She participates in the systematic search for variations of brightness in stellar objects, including the observation of a candidate for the Thorne–Żytkow object. She was also a member of the team that discovered the supernova ASASSN-15lh.

Photometric-standard star

Photometric-standard stars are a series of stars that have had their light output in various passbands of photometric system measured very carefully. Other objects can be observed using CCD cameras or photoelectric photometers connected to a telescope, and the flux, or amount of light received, can be compared to a photometric-standard star to determine the exact brightness, or stellar magnitude, of the object.A current set of photometric-standard stars for UBVRI photometry was published by Arlo U. Landolt in 1992 in the Astronomical Journal.

Q star

A Q-Star, also known as a grey hole, is a hypothetical type of a compact, heavy neutron star with an exotic state of matter. The Q stands for a conserved particle number. A Q-Star may be mistaken for a stellar black hole.


A quasi-star (also called black hole star) is a hypothetical type of extremely massive star that may have existed very early in the history of the Universe. Unlike modern stars, which are powered by nuclear fusion in their cores, a quasi-star's energy would come from material falling into a central black hole.

A quasi-star is predicted to have formed when the core of a large protostar collapses into a black hole during its formation and the outer layers of the star are massive enough to absorb the resulting burst of energy without being blown away (as they are with modern supernovae). Such a star would have to be at least 1,000 solar masses (2.0×1033 kg). These stars may have also been formed by dark matter halos drawing in enormous amounts of gas via gravity, in the early universe, which can produce supermassive stars with tens of thousands of solar masses. Stars this large could only form early in the history of the Universe before the hydrogen and helium were contaminated by heavier elements; thus, they may have been very massive Population III stars.

Once the black hole had formed at the core of the protostar, it would continue generating a large amount of radiant energy from the infall of additional stellar material. This energy would counteract the force of the gravity, creating an equilibrium similar to the one that supports modern fusion-based stars. A quasi-star is predicted to have had a maximum lifespan of about 7 million years, after which the core black hole would have grown to about 1,000–10,000 solar masses (2×1033–2×1034 kg). These intermediate-mass black holes have been suggested as the origin of the modern era's supermassive black holes. Quasi-stars are predicted to have surface temperatures limited to about 4,000 K (3,730 °C), but, with diameters of approximately 10 billion kilometres (66.85 au) or 7,187 times that of the Sun, each one would produce as much light as a small galaxy.

R Coronae Borealis variable

An R Coronae Borealis variable (abbreviated RCB, R CrB) is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation (a few tenths of a magnitude), and one irregular, unpredictably-sudden fading by 1 to 9 magnitudes. The prototype star R Coronae Borealis was discovered by the English amateur astronomer Edward Pigott in 1795, who first observed the enigmatic fadings of the star. Only about 150 RCB stars are currently known in our Galaxy while up to 1000 were expected, making this class a very rare kind of star.

It is increasingly suspected that R Coronae Borealis (RCB) stars – rare hydrogen-deficient and carbon-rich supergiant stars – are the product of mergers of white-dwarfs in the intermediary mass regime (0.6 Starfield (astronomy)

A starfield refers to a set of stars visible in an arbitrarily-sized field of view, usually in the context of some region of interest within the celestial sphere. For example: the starfield surrounding the stars Betelgeuse and Rigel could be defined as encompassing some or all of the Orion constellation.

Stellar atmosphere

The stellar atmosphere is the outer region of the volume of a star, lying above the stellar core, radiation zone and convection zone.

Yellow giant

A yellow giant is a luminous giant star of low or intermediate mass (roughly 0.5–11 solar masses (M)) in a late phase of its stellar evolution. The outer atmosphere is inflated and tenuous, making the radius large and the surface temperature as low as 5,200-7500 K. The appearance of the yellow giant is from white to yellow, including the spectral types F and G. About 10.6 percent of all giant stars are yellow giants.

Star systems
Related articles

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.