Temperature gradient

A temperature gradient is a physical quantity that describes in which direction and at what rate the temperature changes the most rapidly around a particular location. The temperature gradient is a dimensional quantity expressed in units of degrees (on a particular temperature scale) per unit length. The SI unit is kelvin per second (K/s). It can be found in the formula for dQ/dt, the rate of heat transfer per second.

Temperature gradients in the atmosphere are important in the atmospheric sciences (meteorology, climatology and related fields).

Mathematical description

Assuming that the temperature T is an intensive quantity, i.e., a single-valued, continuous and differentiable function of three-dimensional space (often called a scalar field), i.e., that

where x, y and z are the coordinates of the location of interest, then the temperature gradient is the vector quantity defined as


Physical processes


On a global and annual basis, the dynamics of the atmosphere (and the oceans) can be understood as attempting to reduce the large difference of temperature between the poles and the equator by redistributing warm and cold air and water, known as Earth's heat engine.


Differences in air temperature between different locations are critical in weather forecasting and climate. The absorption of solar light at or near the planetary surface increases the temperature gradient and may result in convection (a major process of cloud formation, often associated with precipitation). Meteorological fronts are regions where the horizontal temperature gradient may reach relatively high values, as these are boundaries between air masses with rather distinct properties.

Clearly, the temperature gradient may change substantially in time, as a result of diurnal or seasonal heating and cooling for instance. This most likely happens during an inversion. For instance, during the day the temperature at ground level may be cold while it's warmer up in the atmosphere. As the day shifts over to night the temperature might drop rapidly while at other places on the land stay warmer or cooler at the same elevation. This happens on the West Coast of the United States sometimes due to geography.


Expansion and contraction of rock, caused by temperature changes during a wildfire, through thermal stress weathering, may result in thermal shock and subsequent structure failure.

See also


  • Edward N. Lorenz (1967). The Nature and Theory of the General Circulation of the Atmosphere. Publication No. 218. Geneva, Switzerland: World Meteorological Organization.
  • M. I. Budyko (1978). Climate and Life. International Geophysics Series. 18. Academic Press. ISBN 0-12-139450-6.
  • Robert G. Fleagle; Joost A. Businger (1980). An introduction to atmospheric physics. International Geophysics Series. 25. Academic Press. ISBN 0-12-260355-9.
  • David Miller (1981). Energy at the surface of the earth : an introduction to the energetics of ecosystems. Academic Press. ISBN 978-0-08-095460-8.
  • John M. Wallace; Peter V. Hobbs (2006). Atmospheric Science: An Introductory Survey. Elsevier. ISBN 978-0-08-049953-6.

External links


Ametrine, also known as trystine or by its trade name as bolivianite, is a naturally occurring variety of quartz. It is a mixture of amethyst and citrine with zones of purple and yellow or orange. Almost all commercially available ametrine is mined in Bolivia.

The colour of the zones visible within ametrine are due to differing oxidation states of iron within the crystal. The citrine segments have oxidized iron while the amethyst segments are unoxidized. The different oxidation states occur due to there being a temperature gradient across the crystal during its formation. Artificial ametrine is created from natural citrine through beta irradiation (which creates an amethyst portion), or from an amethyst that is turned into citrine through differential heat treatment.Ametrine in the low price segment may stem from synthetic material. Green-yellow or golden-blue ametrine does not exist naturally.

Atmospheric refraction

Atmospheric refraction is the deviation of light or other electromagnetic wave from a straight line as it passes through the atmosphere due to the variation in air density as a function of height. This refraction is due to the velocity of light through air, decreasing (the refractive index increases) with increased density. Atmospheric refraction near the ground produces mirages. Such refraction can also raise or lower, or stretch or shorten, the images of distant objects without involving mirages. Turbulent air can make distant objects appear to twinkle or shimmer. The term also applies to the refraction of sound. Atmospheric refraction is considered in measuring the position of both celestial and terrestrial objects.

Astronomical or celestial refraction causes astronomical objects to appear higher above the horizon than they actually are. Terrestrial refraction usually causes terrestrial objects to appear higher than they actually are, although in the afternoon when the air near the ground is heated, the rays can curve upward making objects appear lower than they actually are.

Refraction not only affects visible light rays, but all electromagnetic radiation, although in varying degrees. For example, in the visible spectrum, blue is more affected than red. This may cause astronomical objects to appear dispersed into a spectrum in high-resolution images.

Whenever possible, astronomers will schedule their observations around the times of culmination, when celestial objects are highest in the sky. Likewise, sailors will not shoot a star below 20° above the horizon. If observations of objects near the horizon cannot be avoided, it is possible to equip an optical telescope with control systems to compensate for the shift caused by the refraction. If the dispersion is also a problem (in case of broadband high-resolution observations), atmospheric refraction correctors (made from pairs of rotating glass prisms) can be employed as well.

Since the amount of atmospheric refraction is a function of the temperature gradient, temperature, pressure, and humidity (the amount of water vapor, which is especially important at mid-infrared wavelengths), the amount of effort needed for a successful compensation can be prohibitive. Surveyors, on the other hand, will often schedule their observations in the afternoon, when the magnitude of refraction is minimum.

Atmospheric refraction becomes more severe when temperature gradients are strong, and refraction is not uniform when the atmosphere is heterogeneous, as when turbulence occurs in the air. This causes suboptimal seeing conditions, such as the twinkling of stars and various deformations of the Sun's apparent shape soon before sunset or after sunrise.

Bridgman–Stockbarger technique

The Bridgman–Stockbarger technique is named after Harvard physicist Percy Williams Bridgman (1882-1961) and MIT physicist Donald C. Stockbarger (1895–1952). The technique includes two similar but distinct methods primarily used for growing boules (single crystal ingots), but which can be used for solidifying polycrystalline ingots as well.

The methods involve heating polycrystalline material above its melting point and slowly cooling it from one end of its container, where a seed crystal is located. A single crystal of the same crystallographic orientation as the seed material is grown on the seed and is progressively formed along the length of the container. The process can be carried out in a horizontal or vertical orientation, and usually involves a rotating crucible/ampoule to stir the melt.The Bridgman method is a popular way of producing certain semiconductor crystals such as gallium arsenide, for which the Czochralski process is more difficult. The process can reliably produce single crystal ingots, but does not necessarily result in uniform properties through the crystal.

The difference between the Bridgman technique and Stockbarger technique is subtle: While both methods utilize a temperature gradient and a moving crucible, the Bridgman technique utilizes the relatively uncontrolled gradient produced at the exit of the furnace; the Stockbarger technique introduces a baffle, or shelf, separating two coupled furnaces with temperatures above and below the freezing point. Stockbarger's modification of the Bridgman technique allows for better control over the temperature gradient at the melt/crystal interface.

When seed crystals are not employed as described above, polycrystalline ingots can be produced from a feedstock consisting of rods, chunks, or any irregularly shaped pieces once they are melted and allowed to re-solidify. The resultant microstructure of the ingots so obtained are characteristic of directionally solidified metals and alloys with their aligned grains.

A variant of the technique known as the horizontal directional solidification method or HDSM developed by Khachik Bagdasarov starting in the 1960s in the Soviet Union uses a flat-bottomed crucible with short sidewalls rather than an enclosed ampoule, and has been used to grow various large oxide crystals including Yb:YAG (a laser host crystal), and sapphire crystals 45 cm wide and over 1 meter long.

Clear-air turbulence

Clear-air turbulence (CAT) is the turbulent movement of air masses in the absence of any visual clues, such as clouds, and is caused when bodies of air moving at widely different speeds meet.The atmospheric region most susceptible to CAT is the high troposphere at altitudes of around 7,000–12,000 metres (23,000–39,000 ft) as it meets the tropopause. Here CAT is most frequently encountered in the regions of jet streams. At lower altitudes it may also occur near mountain ranges. Thin cirrus clouds can also indicate high probability of CAT.

CAT can be hazardous to the comfort, but rarely the safety, of air travelers.

CAT in the jet stream is expected to become stronger and more frequent because of climate change, with transatlantic wintertime CAT increasing by 59% (light), 94% (moderate), and 149% (severe) by the time of CO2 doubling.

Convection zone

A convection zone, convective zone or convective region of a star is a layer which is unstable to convection. Energy is primarily or partially transported by convection in such a region. In a radiation zone, energy is transported by radiation and conduction.

Stellar convection consists of mass movement of plasma within the star which usually forms a circular convection current with the heated plasma ascending and the cooled plasma descending.

The Schwarzschild criterion expresses the conditions under which a region of a star is unstable to convection. A parcel of gas that rises slightly will find itself in an environment of lower pressure than the one it came from. As a result, the parcel will expand and cool. If the rising parcel cools to a lower temperature than its new surroundings, so that it has a higher density than the surrounding gas, then its lack of buoyancy will cause it to sink back to where it came from. However, if the temperature gradient is steep enough (i. e. the temperature changes rapidly with distance from the center of the star), or if the gas has a very high heat capacity (i. e. its temperature changes relatively slowly as it expands) then the rising parcel of gas will remain warmer and less dense than its new surroundings even after expanding and cooling. Its buoyancy will then cause it to continue to rise. The region of the star in which this happens is the convection zone.

Ettingshausen effect

The Ettingshausen Effect (named for Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon that affects the electric current in a conductor when a magnetic field is present.

Ettingshausen and his PhD student Walther Nernst were studying the Hall effect in bismuth, and noticed an unexpected perpendicular current flow when one side of the sample was heated. This is also known as the Nernst effect. Conversely, when applying a current (along the y-axis) and a perpendicular magnetic field (along the z-axis) a temperature gradient appears along the x-axis. Because of the Hall effect, electrons are forced to move perpendicular to the applied current. Due to the accumulation of electrons on one side of the sample, the number of collisions increases and a heating of the material occurs. This effect is quantified by the Ettingshausen coefficient P, which is defined as:

where dT/dx is the temperature gradient that results from the y-component Jy of an electric current density and the z-component Bz of a magnetic field.

In most metals like copper, silver and gold P is on the order of 10−16 Km/(TA) and thus difficult to observe in common magnetic fields. In bismuth the Ettingshausen coefficient is several orders of magnitude larger because of its poor thermal conductivity.

Eyeball planet

An eyeball planet is a hypothetical type of tidally locked planet, for which tidal locking induces spatial features (for example in the geography or composition of the planet) resembling an eyeball. It is mainly used for terrestrial planets where liquids may be present, in which tidal locking will induce a spatially dependent temperature gradient (the planet will be hotter on the side facing the star and colder on the other side). This temperature gradient may therefore limit the places in which liquid may exist on the surface of the planet to ring-or disk-shaped areas.

Such planets are further divided into "hot" and "cold" eyeball planets, depending on which side of the planet the liquid is present. A "hot" eyeball planet is usually closer to its host star, and the centre of the "eye", facing the star (day side), is made of rock while liquid is present on the opposite side (night side). A "cold" eyeball planet, usually farther from the star, will have liquid on the side facing the host star while the rest of its surface is made of ice and rocks.

Eyeball planets may be common and could possibly host life.

Kepler Object of Interest 2626-01 is potentially an eyeball planet. The TRAPPIST-1 system may contain several such planets.

Microscale thermophoresis

Microscale thermophoresis (MST) is a technology for the biophysical analysis of interactions between biomolecules. Microscale thermophoresis is based on the detection of a temperature-induced change in fluorescence of a target as a function of the concentration of a non-fluorescent ligand. The observed change in fluorescence is based on two distinct effects. On the one hand it is based on a temperature related intensity change (TRIC) of the fluorescent probe, which can be affected by binding events. On the other hand it is based on thermophoresis, the directed movement of particles in a microscopic temperature gradient. Any change of the chemical microenvironment of the fluorescent probe, as well as changes in the hydration shell of biomolecules result in a relative change of the fluorescence detected when a temperature gradient is applied and can be used to determine binding affinities. MST allows measurement of interactions directly in solution without the need of immobilization to a surface (immobilization-free technology).

Nernst effect

In physics and chemistry, the Nernst effect (also termed first Nernst–Ettingshausen effect, after Walther Nernst and Albert von Ettingshausen) is a thermoelectric (or thermomagnetic) phenomenon observed when a sample allowing electrical conduction is subjected to a magnetic field and a temperature gradient normal (perpendicular) to each other. An electric field will be induced normal to both.

This effect is quantified by the Nernst coefficient |N|, which is defined to be

where is the y-component of the electric field that results from the magnetic field's z-component and the temperature gradient .

The reverse process is known as the Ettingshausen effect and also as the second Nernst–Ettingshausen effect.

Polar front

In meteorology, the polar front is the boundary between the polar cell and the Ferrel cell around the 60° latitude in each hemisphere. At this boundary a sharp gradient in temperature occurs between these two air masses, each at very different temperatures.

The polar front arises as a result of cold polar air meeting warm tropical air. It is a stationary front as the air masses are not moving against each other. Off the coast of eastern North America, especially in winter, there is a sharp temperature gradient between the snow-covered land and the warm offshore currents.

The polar front theory says that mid-latitude cyclones form on boundaries between warm and cold air. In winter, the polar front shifts towards the Equator, whereas high pressure systems dominate more in the summer.

Radiation zone

A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

Matter in a radiation zone is so dense that photons can travel only a short distance before they are absorbed or scattered by another particle, gradually shifting to longer wavelength as they do so. For this reason, it takes an average of 171,000 years for gamma rays from the core of the Sun to leave the radiation zone. Over this range, the temperature of the plasma drops from 15 million K near the core down to 1.5 million K at the base of the convection zone.

Sound speed gradient

In acoustics, the sound speed gradient is the rate of change of the speed of sound with distance, for example with depth in the ocean,

or height in the Earth's atmosphere. A sound speed gradient leads to refraction of sound wavefronts in the direction of lower sound speed, causing the sound rays to follow a curved path. The radius of curvature of the sound path is inversely proportional to the gradient.When the sun warms the Earth's surface, there is a negative temperature gradient in atmosphere. The speed of sound decreases with decreasing temperature, so this also creates a negative sound speed gradient. The sound wave front travels faster near the ground, so the sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source. The opposite effect happens when the ground is covered with snow, or in the morning over water, when the sound speed gradient is positive. In this case, sound waves can be refracted from the upper levels down to the surface.In underwater acoustics, speed of sound depends on pressure (hence depth), temperature, and salinity of seawater, thus leading to vertical speed gradients similar to those that exist in atmospheric acoustics. However, when there is a zero sound speed gradient, values of sound speed have the same "isospeed" in all parts of a given water column (there is no change in sound speed with depth). The same effect happens in an isothermal atmosphere with the ideal gas assumption.

Sublimation apparatus

Sublimation apparatus is equipment, commonly laboratory glassware, for purification of compounds by selective sublimation. In principle, the operation resembles purification by distillation, except that the products do not pass through a liquid phase.

Temperature gradient gel electrophoresis

Temperature gradient gel electrophoresis (TGGE) and denaturing gradient gel electrophoresis (DGGE) are forms of electrophoresis which use either a temperature or chemical gradient to denature the sample as it moves across an acrylamide gel. TGGE and DGGE can be applied to nucleic acids such as DNA and RNA, and (less commonly) proteins. TGGE relies on temperature dependent changes in structure to separate nucleic acids. DGGE separates genes of the same size based on their different denaturing ability which is determined by their base pair sequence. DGGE was the original technique, and TGGE a refinement of it.

Thermal wind

The thermal wind is the vector difference between the geostrophic wind at upper altitudes minus that at lower altitudes in the atmosphere. It is the hypothetical vertical wind shear that would exist if the winds obey geostrophic balance in the horizontal, while pressure obeys hydrostatic balance in the vertical. The combination of these two force balances is called thermal wind balance, a term generalizable also to more complicated horizontal flow balances such as gradient wind balance.

Since the geostrophic wind at a given pressure level flows along geopotential height contours on a map, and the geopotential thickness of a pressure layer is proportional to virtual temperature, it follows that the thermal wind flows along thickness or temperature contours. For instance, the thermal wind associated with pole-to-equator temperature gradients is the primary physical explanation for the jet stream in the upper half of the troposphere, which is the atmospheric layer extending from the surface of the planet up to altitudes of about 12-15 km.

Mathematically, the thermal wind relation defines a vertical wind shear – a variation in wind speed or direction with height. The wind shear in this case is a function of a horizontal temperature gradient, which is a variation in temperature over some horizontal distance. Also called baroclinic flow, the thermal wind varies with height in proportion to the horizontal temperature gradient. The thermal wind relation results from hydrostatic balance and geostrophic balance in the presence of a temperature gradient along constant pressure surfaces, or isobars.

The term thermal wind is often considered a misnomer, since it really describes the change in wind with height, rather than the wind itself. However, one can view the thermal wind as a geostrophic wind that varies with height, so that the term wind seems appropriate. In the early years of meteorology, when data was scarce, the wind field could be estimated using the thermal wind relation and knowledge of a surface wind speed and direction as well as thermodynamic soundings aloft. In this way, the thermal wind relation acts to define the wind itself, rather than just its shear. Many authors retain the thermal wind moniker, even though it describes a wind gradient, sometimes offering a clarification to that effect.

Thermoacoustic heat engine

Thermoacoustic engines (sometimes called "TA engines") are thermoacoustic devices which use high-amplitude sound waves to pump heat from one place to another (this requires work, which is provided by the loudspeaker) or use a heat difference to produce work in the form of sound waves (these waves can then be converted into electrical current the same way as a microphone does).

These device can be designed to use either standing wave or travelling wave.

Compared to vapor refrigerators, thermoacoustic refrigerators have no coolant and few moving parts (only the loudspeaker), therefore require no dynamic sealing or lubrication.


Thermophoresis (also thermomigration, thermodiffusion, the Soret effect, or the Ludwig–Soret effect) is a phenomenon observed in mixtures of mobile particles where the different particle types exhibit different responses to the force of a temperature gradient. The term thermophoresis most often applies to aerosol mixtures, but may also commonly refer to the phenomenon in all phases of matter. The term Soret effect normally applies to liquid mixtures, which behave according to different, less well-understood mechanisms than gaseous mixtures. Thermophoresis may not apply to thermomigration in solids, especially multi-phase alloys.

Uniflow steam engine

The uniflow type of steam engine uses steam that flows in one direction only in each half of the cylinder. Thermal efficiency is increased in the compound and multiple expansion types of steam engine by separating expansion into steps in separate cylinders; in the uniflow design, thermal efficiency is achieved by having a temperature gradient along the cylinder. Steam always enters at the hot ends of the cylinder and exhausts through ports at the cooler centre. By this means, the relative heating and cooling of the cylinder walls is reduced.


A windtower (wind catcher) (Persian: بادگیر‎ bâdgir: bâd "wind" + gir "catcher") is a traditional Iranian architectural element to create natural ventilation in buildings. Windcatchers come in various designs: uni-directional, bi-directional, and multi-directional. The devices were used in ancient Iranian architecture. Windcatchers remain present in Iran and can also be found in traditional Persian-influenced architecture throughout the West Asia, including in the Arab states of the Persian Gulf, Pakistan, and Afghanistan.


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.