Technology

Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia[2]) is the collection of techniques, skills, methods, and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines to allow for operation without detailed knowledge of their workings. Systems (e. g. machines) applying technology by taking an input, changing it according to the system's use, and then producing an outcome are referred to as technology systems or technological systems.

The simplest form of technology is the development and use of basic tools. The prehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food, and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact freely on a global scale.

Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Innovations have always influenced the values of a society and raised new questions of the ethics of technology. Examples include the rise of the notion of efficiency in terms of human productivity, and the challenges of bioethics.

Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticize the pervasiveness of technology, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition.

Dampfturbine Montage01
A steam turbine with the case opened. Such turbines produce most of the electricity used today. Electricity consumption and living standards are highly correlated.[1] Electrification is believed to be the most important engineering achievement of the 20th century.

Definition and usage

Handtiegelpresse von 1811
The spread of paper and printing to the West, as in this printing press, helped scientists and politicians communicate their ideas easily, leading to the Age of Enlightenment; an example of technology as cultural force.

The use of the term "technology" has changed significantly over the last 200 years. Before the 20th century, the term was uncommon in English, and it was used either to refer to the description or study of the useful arts[3] or to allude to technical education, as in the Massachusetts Institute of Technology (chartered in 1861).[4]

The term "technology" rose to prominence in the 20th century in connection with the Second Industrial Revolution. The term's meanings changed in the early 20th century when American social scientists, beginning with Thorstein Veblen, translated ideas from the German concept of Technik into "technology." In German and other European languages, a distinction exists between technik and technologie that is absent in English, which usually translates both terms as "technology." By the 1930s, "technology" referred not only to the study of the industrial arts but to the industrial arts themselves.[5]

In 1937, the American sociologist Read Bain wrote that "technology includes all tools, machines, utensils, weapons, instruments, housing, clothing, communicating and transporting devices and the skills by which we produce and use them."[6] Bain's definition remains common among scholars today, especially social scientists. Scientists and engineers usually prefer to define technology as applied science, rather than as the things that people make and use.[7] More recently, scholars have borrowed from European philosophers of "technique" to extend the meaning of technology to various forms of instrumental reason, as in Foucault's work on technologies of the self (techniques de soi).

Dictionaries and scholars have offered a variety of definitions. The Merriam-Webster Learner's Dictionary offers a definition of the term: "the use of science in industry, engineering, etc., to invent useful things or to solve problems" and "a machine, piece of equipment, method, etc., that is created by technology."[8] Ursula Franklin, in her 1989 "Real World of Technology" lecture, gave another definition of the concept; it is "practice, the way we do things around here."[9] The term is often used to imply a specific field of technology, or to refer to high technology or just consumer electronics, rather than technology as a whole.[10] Bernard Stiegler, in Technics and Time, 1, defines technology in two ways: as "the pursuit of life by means other than life," and as "organized inorganic matter."[11]

Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.[12] W. Brian Arthur defines technology in a similarly broad way as "a means to fulfill a human purpose."[13]

The word "technology" can also be used to refer to a collection of techniques. In this context, it is the current state of humanity's knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as "medical technology" or "space technology," it refers to the state of the respective field's knowledge and tools. "State-of-the-art technology" refers to the high technology available to humanity in any field.

C4004 (Intel)
The invention of integrated circuits and the microprocessor (here, an Intel 4004 chip from 1971) led to the modern computer revolution.

Technology can be viewed as an activity that forms or changes culture.[14] Additionally, technology is the application of math, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and as a result has helped spawn new subcultures; the rise of cyberculture has at its basis the development of the Internet and the computer.[15] Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.

Science, engineering and technology

Zoom lunette ardente
Antoine Lavoisier conducting an experiment with combustion generated by amplified sun light

The distinction between science, engineering, and technology is not always clear. Science is systematic knowledge of the physical or material world gained through observation and experimentation.[16] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability, and safety.

Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.

Technology is often a consequence of science and engineering, although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.[17]

The exact relations between science and technology in particular have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In the immediate wake of World War II, for example, it was widely considered in the United States that technology was simply "applied science" and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush's treatise on postwar science policy, Science – The Endless Frontier: "New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature ... This essential new knowledge can be obtained only through basic scientific research."[18] In the late-1960s, however, this view came under direct attack, leading towards initiatives to fund science for specific tasks (initiatives resisted by the scientific community). The issue remains contentious, though most analysts resist the model that technology simply is a result of scientific research.[19][20]

History

Paleolithic (2.5 Ma – 10 ka)

Chopper of Dmanisi
A primitive chopper

The use of tools by early humans was partly a process of discovery and of evolution. Early humans evolved from a species of foraging hominids which were already bipedal,[21] with a brain mass approximately one third of modern humans.[22] Tool use remained relatively unchanged for most of early human history. Approximately 50,000 years ago, the use of tools and complex set of behaviors emerged, believed by many archaeologists to be connected to the emergence of fully modern language.[23]

Stone tools

Biface de St Acheul MHNT
Hand axes from the Acheulian period

Hominids started using primitive stone tools millions of years ago. The earliest stone tools were little more than a fractured rock, but approximately 75,000 years ago,[24] pressure flaking provided a way to make much finer work.

Fire

The discovery and utilization of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind.[25] The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1 Ma;[26] scholarly consensus indicates that Homo erectus had controlled fire by between 500 and 400 ka.[27][28] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.[29]

Clothing and shelter

Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were a key to humanity's progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380 ka, humans were constructing temporary wood huts.[30][31] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200 ka and into other continents such as Eurasia.[32]

Neolithic through classical antiquity (10 ka – 300 CE)

Néolithique 0001
An array of Neolithic artifacts, including bracelets, axe heads, chisels, and polishing tools

Human's technological ascent began in earnest in what is known as the Neolithic Period ("New Stone Age"). The invention of polished stone axes was a major advance that allowed forest clearance on a large scale to create farms. This use of polished stone axes increased greatly in the Neolithic, but were originally used in the preceding Mesolithic in some areas such as Ireland.[33] Agriculture fed larger populations, and the transition to sedentism allowed simultaneously raising more children, as infants no longer needed to be carried, as nomadic ones must. Additionally, children could contribute labor to the raising of crops more readily than they could to the hunter-gatherer economy.[34][35]

With this increase in population and availability of labor came an increase in labor specialization.[36] What triggered the progression from early Neolithic villages to the first cities, such as Uruk, and the first civilizations, such as Sumer, is not specifically known; however, the emergence of increasingly hierarchical social structures and specialized labor, of trade and war amongst adjacent cultures, and the need for collective action to overcome environmental challenges such as irrigation, are all thought to have played a role.[37]

Metal tools

Continuing improvements led to the furnace and bellows and provided, for the first time, the ability to smelt and forge of gold, copper, silver, and lead  – native metals found in relatively pure form in nature.[38] The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 10 ka).[39] Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BCE). The first uses of iron alloys such as steel dates to around 1800 BCE.[40][41]

Energy and transport

Wheel Iran
The wheel was invented circa 4000 BCE.

Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailing ship; the earliest record of a ship under sail is that of a Nile boat dating to the 8th millennium BCE.[42] From prehistoric times, Egyptians probably used the power of the annual flooding of the Nile to irrigate their lands, gradually learning to regulate much of it through purposely built irrigation channels and "catch" basins. The ancient Sumerians in Mesopotamia used a complex system of canals and levees to divert water from the Tigris and Euphrates rivers for irrigation.[43]

According to archaeologists, the wheel was invented around 4000 BCE probably independently and nearly simultaneously in Mesopotamia (in present-day Iraq), the Northern Caucasus (Maykop culture) and Central Europe.[44] Estimates on when this may have occurred range from 5500 to 3000 BCE with most experts putting it closer to 4000 BCE.[45] The oldest artifacts with drawings depicting wheeled carts date from about 3500 BCE;[46] however, the wheel may have been in use for millennia before these drawings were made. More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.[47]

The invention of the wheel revolutionized trade and war. It did not take long to discover that wheeled wagons could be used to carry heavy loads. The ancient Sumerians used the potter's wheel and may have invented it.[48] A stone pottery wheel found in the city-state of Ur dates to around 3429 BCE,[49] and even older fragments of wheel-thrown pottery have been found in the same area.[49] Fast (rotary) potters' wheels enabled early mass production of pottery, but it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources. The first two-wheeled carts were derived from travois[50] and were first used in Mesopotamia and Iran in around 3000 BCE.[50]

The oldest known constructed roadways are the stone-paved streets of the city-state of Ur, dating to circa 4000 BCE[51] and timber roads leading through the swamps of Glastonbury, England, dating to around the same time period.[51] The first long-distance road, which came into use around 3500 BCE,[51] spanned 1,500 miles from the Persian Gulf to the Mediterranean Sea,[51] but was not paved and was only partially maintained.[51] In around 2000 BCE, the Minoans on the Greek island of Crete built a fifty-kilometer (thirty-mile) road leading from the palace of Gortyn on the south side of the island, through the mountains, to the palace of Knossos on the north side of the island.[51] Unlike the earlier road, the Minoan road was completely paved.[51]

Plumbing

Pont du Gard BLS
Photograph of the Pont du Gard in France, one of the most famous ancient Roman aqueducts[52]

Ancient Minoan private homes had running water.[53] A bathtub virtually identical to modern ones was unearthed at the Palace of Knossos.[53][54] Several Minoan private homes also had toilets, which could be flushed by pouring water down the drain.[53] The ancient Romans had many public flush toilets,[54] which emptied into an extensive sewage system.[54] The primary sewer in Rome was the Cloaca Maxima;[54] construction began on it in the sixth century BCE and it is still in use today.[54]

The ancient Romans also had a complex system of aqueducts,[52] which were used to transport water across long distances.[52] The first Roman aqueduct was built in 312 BCE.[52] The eleventh and final ancient Roman aqueduct was built in 226 CE.[52] Put together, the Roman aqueducts extended over 450 kilometers,[52] but less than seventy kilometers of this was above ground and supported by arches.[52]

Medieval and modern history (300 CE – present)

Innovations continued through the Middle Ages with innovations such as silk, the horse collar and horseshoes in the first few hundred years after the fall of the Roman Empire. Medieval technology saw the use of simple machines (such as the lever, the screw, and the pulley) being combined to form more complicated tools, such as the wheelbarrow, windmills and clocks. The Renaissance brought forth many of these innovations, including the printing press (which facilitated the greater communication of knowledge), and technology became increasingly associated with science, beginning a cycle of mutual advancement. The advancements in technology in this era allowed a more steady supply of food, followed by the wider availability of consumer goods.

Late model Ford Model T
The automobile revolutionized personal transportation.

Starting in the United Kingdom in the 18th century, the Industrial Revolution was a period of great technological discovery, particularly in the areas of agriculture, manufacturing, mining, metallurgy, and transport, driven by the discovery of steam power. Technology took another step in a second industrial revolution with the harnessing of electricity to create such innovations as the electric motor, light bulb, and countless others. Scientific advancement and the discovery of new concepts later allowed for powered flight and advancements in medicine, chemistry, physics, and engineering. The rise in technology has led to skyscrapers and broad urban areas whose inhabitants rely on motors to transport them and their food supply. Communication was also greatly improved with the invention of the telegraph, telephone, radio and television. The late 19th and early 20th centuries saw a revolution in transportation with the invention of the airplane and automobile.

USAF F-16A F-15C F-15E Desert Storm edit2
F-15 and F-16 flying over Kuwaiti oil fires during the Gulf War in 1991.

The 20th century brought a host of innovations. In physics, the discovery of nuclear fission has led to both nuclear weapons and nuclear power. Computers were also invented and later miniaturized utilizing transistors and integrated circuits. Information technology subsequently led to the creation of the Internet, which ushered in the current Information Age. Humans have also been able to explore space with satellites (later used for telecommunication) and in manned missions going all the way to the moon. In medicine, this era brought innovations such as open-heart surgery and later stem cell therapy along with new medications and treatments.

Complex manufacturing and construction techniques and organizations are needed to make and maintain these new technologies, and entire industries have arisen to support and develop succeeding generations of increasingly more complex tools. Modern technology increasingly relies on training and education – their designers, builders, maintainers, and users often require sophisticated general and specific training. Moreover, these technologies have become so complex that entire fields have been created to support them, including engineering, medicine, and computer science, and other fields have been made more complex, such as construction, transportation, and architecture.

Philosophy

Technicism

Generally, technicism is the belief in the utility of technology for improving human societies.[55] Taken to an extreme, technicism "reflects a fundamental attitude which seeks to control reality, to resolve all problems with the use of scientific–technological methods and tools."[56] In other words, human beings will someday be able to master all problems and possibly even control the future using technology. Some, such as Stephen V. Monsma,[57] connect these ideas to the abdication of religion as a higher moral authority.

Optimism

Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good.

Transhumanists generally believe that the point of technology is to overcome barriers, and that what we commonly refer to as the human condition is just another barrier to be surpassed.

Singularitarians believe in some sort of "accelerating change"; that the rate of technological progress accelerates as we obtain more technology, and that this will culminate in a "Singularity" after artificial general intelligence is invented in which progress is nearly infinite; hence the term. Estimates for the date of this Singularity vary,[58] but prominent futurist Ray Kurzweil estimates the Singularity will occur in 2045.

Kurzweil is also known for his history of the universe in six epochs: (1) the physical/chemical epoch, (2) the life epoch, (3) the human/brain epoch, (4) the technology epoch, (5) the artificial intelligence epoch, and (6) the universal colonization epoch. Going from one epoch to the next is a Singularity in its own right, and a period of speeding up precedes it. Each epoch takes a shorter time, which means the whole history of the universe is one giant Singularity event.[59]

Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.[60]

Skepticism and critics

FrameBreaking-1812
Luddites smashing a power loom in 1812

On the somewhat skeptical side are certain philosophers like Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed. They suggest that the inevitable result of such a society is to become evermore technological at the cost of freedom and psychological health.

Many, such as the Luddites and prominent philosopher Martin Heidegger, hold serious, although not entirely, deterministic reservations about technology (see "The Question Concerning Technology"[61]). According to Heidegger scholars Hubert Dreyfus and Charles Spinosa, "Heidegger does not oppose technology. He hopes to reveal the essence of technology in a way that 'in no way confines us to a stultified compulsion to push on blindly with technology or, what comes to the same thing, to rebel helplessly against it.' Indeed, he promises that 'when we once open ourselves expressly to the essence of technology, we find ourselves unexpectedly taken into a freeing claim.'[62] What this entails is a more complex relationship to technology than either techno-optimists or techno-pessimists tend to allow."[63]

Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics such as Aldous Huxley's Brave New World, Anthony Burgess's A Clockwork Orange, and George Orwell's Nineteen Eighty-Four. In Goethe's Faust, Faust selling his soul to the devil in return for power over the physical world is also often interpreted as a metaphor for the adoption of industrial technology. More recently, modern works of science fiction such as those by Philip K. Dick and William Gibson and films such as Blade Runner and Ghost in the Shell project highly ambivalent or cautionary attitudes toward technology's impact on human society and identity.

The late cultural critic Neil Postman distinguished tool-using societies from technological societies and from what he called "technopolies," societies that are dominated by the ideology of technological and scientific progress to the exclusion or harm of other cultural practices, values, and world-views.[64]

Darin Barney has written about technology's impact on practices of citizenship and democratic culture, suggesting that technology can be construed as (1) an object of political debate, (2) a means or medium of discussion, and (3) a setting for democratic deliberation and citizenship. As a setting for democratic culture, Barney suggests that technology tends to make ethical questions, including the question of what a good life consists in, nearly impossible because they already give an answer to the question: a good life is one that includes the use of more and more technology.[65]

Nikolas Kompridis has also written about the dangers of new technology, such as genetic engineering, nanotechnology, synthetic biology, and robotics. He warns that these technologies introduce unprecedented new challenges to human beings, including the possibility of the permanent alteration of our biological nature. These concerns are shared by other philosophers, scientists and public intellectuals who have written about similar issues (e.g. Francis Fukuyama, Jürgen Habermas, William Joy, and Michael Sandel).[66]

Another prominent critic of technology is Hubert Dreyfus, who has published books such as On the Internet and What Computers Still Can't Do.

A more infamous anti-technological treatise is Industrial Society and Its Future, written by the Unabomber Ted Kaczynski and printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure. There are also subcultures that disapprove of some or most technology, such as self-identified off-gridders.[67]

Appropriate technology

The notion of appropriate technology was developed in the 20th century by thinkers such as E.F. Schumacher and Jacques Ellul to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The ecovillage movement emerged in part due to this concern.

Optimism and skepticism in the 21st century

This section mainly focuses on American concerns even if it can reasonably be generalized to other Western countries.

The inadequate quantity and quality of American jobs is one of the most fundamental economic challenges we face. [...] What's the linkage between technology and this fundamental problem?

— Bernstein, Jared, "It’s Not a Skills Gap That’s Holding Wages Down: It’s the Weak Economy, Among Other Things," in The American Prospect, October 2014

In his article, Jared Bernstein, a Senior Fellow at the Center on Budget and Policy Priorities,[68] questions the widespread idea that automation, and more broadly, technological advances, have mainly contributed to this growing labor market problem. His thesis appears to be a third way between optimism and skepticism. Essentially, he stands for a neutral approach of the linkage between technology and American issues concerning unemployment and declining wages.

He uses two main arguments to defend his point. First, because of recent technological advances, an increasing number of workers are losing their jobs. Yet, scientific evidence fails to clearly demonstrate that technology has displaced so many workers that it has created more problems than it has solved. Indeed, automation threatens repetitive jobs but higher-end jobs are still necessary because they complement technology and manual jobs that "requires flexibility judgment and common sense"[69] remain hard to replace with machines. Second, studies have not shown clear links between recent technology advances and the wage trends of the last decades.

Therefore, according to Bernstein, instead of focusing on technology and its hypothetical influences on current American increasing unemployment and declining wages, one needs to worry more about "bad policy that fails to offset the imbalances in demand, trade, income, and opportunity."[69]

For people who use both the Internet and mobile devices in excessive quantities it is likely for them to experience fatigue and over exhaustion as a result of disruptions in their sleeping patterns. Continuous studies have shown that increased BMI and weight gain are associated with people who spend long hours online and not exercising frequently.[70] Heavy Internet use is also displayed in the school lower grades of those who use it in excessive amounts.[71] It has also been noted that the use of mobile phones whilst driving has increased the occurrence of road accidents — particularly amongst teen drivers. Statistically, teens reportedly have fourfold the number of road traffic incidents as those who are 20 years or older, and a very high percentage of adolescents write (81%) and read (92%) texts while driving.[72] In this context, mass media and technology have a negative impact on people, on both their mental and physical health.

Complex technological systems

Thomas P. Hughes stated that because technology has been considered as a key way to solve problems, we need to be aware of its complex and varied characters to use it more efficiently.[73] What is the difference between a wheel or a compass and cooking machines such as an oven or a gas stove? Can we consider all of them, only a part of them, or none of them as technologies?

Technology is often considered too narrowly; according to Hughes, "Technology is a creative process involving human ingenuity".[74] This definition's emphasis on creativity avoids unbounded definitions that may mistakenly include cooking "technologies," but it also highlights the prominent role of humans and therefore their responsibilities for the use of complex technological systems.

Yet, because technology is everywhere and has dramatically changed landscapes and societies, Hughes argues that engineers, scientists, and managers have often believed that they can use technology to shape the world as they want. They have often supposed that technology is easily controllable and this assumption has to be thoroughly questioned.[73] For instance, Evgeny Morozov particularly challenges two concepts: "Internet-centrism" and "solutionism."[75] Internet-centrism refers to the idea that our society is convinced that the Internet is one of the most stable and coherent forces. Solutionism is the ideology that every social issue can be solved thanks to technology and especially thanks to the internet. In fact, technology intrinsically contains uncertainties and limitations. According to Alexis Madrigal's review of Morozov's theory, to ignore it will lead to "unexpected consequences that could eventually cause more damage than the problems they seek to address."[76] Benjamin R. Cohen and Gwen Ottinger also discussed the multivalent effects of technology.[77]

Therefore, recognition of the limitations of technology, and more broadly, scientific knowledge, is needed – especially in cases dealing with environmental justice and health issues. Ottinger continues this reasoning and argues that the ongoing recognition of the limitations of scientific knowledge goes hand in hand with scientists and engineers’ new comprehension of their role. Such an approach of technology and science "[require] technical professionals to conceive of their roles in the process differently. [They have to consider themselves as] collaborators in research and problem solving rather than simply providers of information and technical solutions."[78]

Competitiveness

Technology is properly defined as any application of science to accomplish a function. The science can be leading edge or well established and the function can have high visibility or be significantly more mundane, but it is all technology, and its exploitation is the foundation of all competitive advantage.

Technology-based planning is what was used to build the US industrial giants before WWII (e.g., Dow, DuPont, GM) and it is what was used to transform the US into a superpower. It was not economic-based planning.

Other animal species

Gorilla tool use
This adult gorilla uses a branch as a walking stick to gauge the water's depth, an example of technology usage by non-human primates.

The use of basic technology is also a feature of other animal species apart from humans. These include primates such as chimpanzees,[79] some dolphin communities,[80] and crows.[81][82] Considering a more generic perspective of technology as ethology of active environmental conditioning and control, we can also refer to animal examples such as beavers and their dams, or bees and their honeycombs.

The ability to make and use tools was once considered a defining characteristic of the genus Homo.[83] However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees utilising tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers.[84] West African chimpanzees also use stone hammers and anvils for cracking nuts,[85] as do capuchin monkeys of Boa Vista, Brazil.[86]

Future technology

Theories of technology often attempt to predict the future of technology based on the high technology and science of the time. As with all predictions of the future, however, technology's is uncertain.

In 2005, futurist Ray Kurzweil predicted that the future of technology would mainly consist of an overlapping "GNR Revolution" of genetics, nanotechnology and robotics, with robotics being the most important of the three.[87]

See also

Theories and concepts in technology
Economics of technology
Technology journalism
Other

References

  1. ^ National Research Council; Division on Engineering and Physical Sciences; Energy Engineering Board; Commission on Engineering and Technical Systems; Committee on Electricity in Economic Growth (1986). Electricity in Economic Growth. Washington, DC: National Academies Press. pp. 16, 40. ISBN 978-0-309-03677-1.CS1 maint: Multiple names: authors list (link)
  2. ^ Liddell, Henry George; Scott, Robert (1980). A Greek-English Lexicon (Abridged Edition). United Kingdom: Oxford University Press. ISBN 978-0-19-910207-5.
  3. ^ Crabb, George (1823). Universal Technological Dictionary, or Familiar Explanation of the Terms Used in All Arts and Sciences. London: Baldwin, Cradock, and Joy. p. 524 – via Internet Archive.
  4. ^ Mannix, Loretta H.; Stratton, Julius Adams (2005). Mind and Hand: The Birth of MIT. Cambridge: MIT Press. pp. 190–92. ISBN 978-0-262-19524-9.
  5. ^ "Technik Comes to America: Changing Meanings of Technology Before 1930". Technology and Culture. 47.
  6. ^ Bain, Read (1937). "Technology and State Government". American Sociological Review. 2 (6): 860. doi:10.2307/2084365. JSTOR 2084365.
  7. ^ MacKenzie, Donald A.; Wajcman, Judy (1999). "Introductory Essay". The Social Shaping of Technology (2nd ed.). Buckingham: Open University Press. ISBN 978-0-335-19913-6.
  8. ^ "Technology | Definition of Technology by Merriam-Webster". Merriam-Webster. Retrieved 7 November 2016.
  9. ^ Franklin, Ursula (1999). The Real World of Technology (revised ed.). Scarborough: House of Anansi. ISBN 978-0-88784-891-9.
  10. ^ See, for example, "Technology". BBC News. Retrieved 7 November 2016.
  11. ^ Stiegler, Bernard (1998). Technics and Time, 1: The Fault of Epimetheus. Stanford University Press. pp. 17, 82. ISBN 978-0-8047-3041-9. Stiegler has more recently stated that biotechnology can no longer be defined as "organized inorganic matter," given that it is, rather, "the reorganization of the organic." Stiegler, Bernard (2008). L'avenir du passé: Modernité de l'archéologie. La Découverte. p. 23. ISBN 978-2-7071-5495-8.
  12. ^ "Industry, Technology and the Global Marketplace: International Patenting Trends in Two New Technology Areas". Science and Engineering Indicators 2002. National Science Foundation. Archived from the original on 18 August 2005. Retrieved 7 May 2007.
  13. ^ Arthur, W. Brian (2009). The Nature of Technology. New York: Free Press. p. 28. ISBN 978-1-4165-4405-0.
  14. ^ Borgmann, Albert (2006). "Technology as a Cultural Force: For Alena and Griffin" (fee required). The Canadian Journal of Sociology. 31 (3): 351–60. doi:10.1353/cjs.2006.0050. Retrieved 16 February 2007.
  15. ^ Macek, Jakub. "Defining Cyberculture". Retrieved 25 May 2007.
  16. ^ "Science". Dictionary.com. 2016. Retrieved 7 November 2016.
  17. ^ "Intute: Science, Engineering and Technology". Intute. Archived from the original on 17 February 2007. Retrieved 17 February 2007.
  18. ^ Bush, Vannevar (July 1945). "Science the Endless Frontier". National Science Foundation. Retrieved 7 November 2016.
  19. ^ Wise, George (1985). "Science and Technology". Osiris (2nd Series). 1: 229–46. doi:10.1086/368647.
  20. ^ Guston, David H. (2000). Between Politics and Science: Assuring the Integrity and Productivity of Research. New York: Cambridge University Press. ISBN 978-0-521-65318-3.
  21. ^ "Mother of man – 3.2 million years ago". BBC. Retrieved 17 May 2008.
  22. ^ "Human Evolution". History Channel. Archived from the original on 23 April 2008. Retrieved 17 May 2008.
  23. ^ Wade, Nicholas (15 July 2003). "Early Voices: The Leap to Language". The New York Times. Retrieved 7 November 2016.
  24. ^ Bower, Bruce (29 October 2010). "Stone Agers Sharpened Skills 55,000 Years Earlier Than Thought". WIRED. Retrieved 7 November 2016.
  25. ^ Crump, Thomas (2001). A Brief History of Science. Constable & Robinson. p. 9. ISBN 978-1-84119-235-2.
  26. ^ "Fossil Hominid Sites of Sterkfontein, Swartkrans, Kromdraai, and Environs". UNESCO. Retrieved 10 March 2007.
  27. ^ "Stone Age Man". History World. Retrieved 13 February 2007.
  28. ^ James, Steven R. (February 1989). "Hominid Use of Fire in the Lower and Middle Pleistocene". Current Anthropology. 30 (1): 1–26. doi:10.1086/203705. JSTOR 2743299. (Subscription required (help)).
  29. ^ Stahl, Ann B. (1984). "Hominid dietary selection before fire". Current Anthropology. 25 (2): 151–68. doi:10.1086/203106. JSTOR 2742818. (Subscription required (help)).
  30. ^ O'Neil, Dennis. "Evolution of Modern Humans: Archaic Homo sapiens Culture". Palomar College. Retrieved 31 March 2007.
  31. ^ Villa, Paola (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press. p. 303. ISBN 978-0-520-09662-2.
  32. ^ Cordaux, Richard; Stoneking, Mark (2003). "South Asia, the Andamanese, and the Genetic Evidence for an 'Early' Human Dispersal out of Africa" (PDF). American Journal of Human Genetics. 72 (6): 1586–90, author reply 1590–93. doi:10.1086/375407. PMC 1180321. PMID 12817589.
  33. ^ Driscoll, Killian (2006). The early prehistory in the west of Ireland: Investigations into the social archaeology of the Mesolithic, west of the Shannon, Ireland.
  34. ^ University of Chicago Press Journals (4 January 2006). "The First Baby Boom: Skeletal Evidence Shows Abrupt Worldwide Increase In Birth Rate During Neolithic Period". ScienceDaily. Retrieved 7 November 2016.
  35. ^ Sussman, Robert W.; Hall, Roberta L. (April 1972). "Child Transport, Family Size, and Increase in Human Population During the Neolithic". Current Anthropology. 13 (2): 258–67. doi:10.1086/201274. JSTOR 2740977.
  36. ^ Ferraro, Gary P. (2006). Cultural Anthropology: An Applied Perspective. The Thomson Corporation. ISBN 978-0-495-03039-3. Retrieved 17 May 2008.
  37. ^ Patterson, Gordon M. (1992). The ESSENTIALS of Ancient History. Research & Education Association. ISBN 978-0-87891-704-4. Retrieved 17 May 2008.
  38. ^ Cramb, Alan W (1964). "A Short History of Metals". Nature. 203 (4943): 337. Bibcode:1964Natur.203Q.337T. doi:10.1038/203337a0. Archived from the original on 8 January 2007. Retrieved 8 January 2007.
  39. ^ Chisholm, Hugh (1910). The Encyclopædia Britannica: A dictionary of arts, sciences, literature and general information. Encyclopædia Britannica. p. 708. Retrieved 17 May 2008.
  40. ^ "The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman-Kalehöyük, Turkey". Anatolian Archaeological Studies. Tokyo: Japanese Institute of Anatolian Archaeology. 14.
  41. ^ "Ironware piece unearthed from Turkey found to be oldest steel". The Hindu. 26 March 2009. Archived from the original on 29 March 2009. Retrieved 8 November 2016.
  42. ^ "The oldest representation of a Nile boat". Antiquity. 81.
  43. ^ Crawford, Harriet (2013). The Sumerian World. New York City, New York and London, England: Routledge. pp. 34–43. ISBN 978-0-203-09660-4.
  44. ^ Potts, D.T. (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
  45. ^ Childe, V. Gordon (1928). New Light on the Most Ancient East. p. 110.
  46. ^ Anthony, David A. (2007). The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. Princeton: Princeton University Press. p. 67. ISBN 978-0-691-05887-0.
  47. ^ Gasser, Aleksander (March 2003). "World's Oldest Wheel Found in Slovenia". Republic of Slovenia Government Communication Office. Retrieved 8 November 2016.
  48. ^ Kramer, Samuel Noah (1963). The Sumerians: Their History, Culture, and Character. Chicago, Illinois: University of Chicago Press. p. 290. ISBN 978-0-226-45238-8.
  49. ^ a b Moorey, Peter Roger Stuart (1999) [1994]. Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Winona Lake, Indiana: Eisenbrauns. p. 146. ISBN 978-1-57506-042-2.
  50. ^ a b Lay, M G (1992). Ways of the World. Sydney, Australia: Primavera Press. p. 28. ISBN 978-1-875368-05-1.
  51. ^ a b c d e f g Gregersen, Erik (2012). The Complete History of Wheeled Transportation: From Cars and Trucks to Buses and Bikes. New York City, New York: Britannica Educational Publishing. p. 130. ISBN 978-1-61530-728-9.
  52. ^ a b c d e f g Aicher, Peter J. (1995). Guide to the Aqueducts of Ancient Rome. Wauconda, Illinois: Bolchazy-Carducci Publishers, Inc. p. 6. ISBN 978-0-86516-282-2.
  53. ^ a b c Eslamian, Saeid (2014). Handbook of Engineering Hydrology: Environmental Hydrology and Water Management. Boca Raton, Florida: CRC Press. pp. 171–75. ISBN 978-1-4665-5250-0.
  54. ^ a b c d e Lechner, Norbert (2012). Plumbing, Electricity, Acoustics: Sustainable Design Methods for Architecture. Hoboken, New Jersey: John Wiley & Sons, Inc. p. 106. ISBN 978-1-118-01475-2.
  55. ^ Breslin, Gerry, ed. (2011). "technicism". Collins English Dictionary. HarperCollins. ISBN 978-0-00-743786-3.
  56. ^ "Philosophical and Ethical Problems of Technicism and Genetic Engineering". Society for Philosophy and Technology. 3.
  57. ^ Monsma, Stephen V. (1986). Responsible Technology. Grand Rapids: W.B. Eerdmans Pub. Co. ISBN 978-0-8028-0175-3.
  58. ^ Muehlhauser, Luke (10 November 2015). "Intelligence Explosion FAQ". Machine Intelligence Research Institute. Retrieved 11 November 2016.
  59. ^ Kurzweil, Ray (2005). "The Six Epochs". The Singularity is Near: When Humans Transcend Biology. Penguin. ISBN 978-1-101-21888-4.
  60. ^ Hughes, James. "Democratic Transhumanism 2.0". Changesurfer. Retrieved 10 November 2016.
  61. ^ Lovitt, William (1977). "The Question Concerning Technology". The Question Concerning Technology and Other Essays. Harper Torchbooks. pp. 3–35. ISBN 978-0-613-91314-0. Retrieved 21 November 2007.
  62. ^ Heidegger, Martin (1977). "The Question Concerning Technology". The Question Concerning Technology and Other Essays. Translated by Lovitt, W. New York: HarperCollins. pp. 25–26.
  63. ^ Dreyfus, Hubert; Spinosa, Charles (2006). "Further Reflections on Heidegger, Technology, and the Everyday". In Kompridis, Nikolas. Philosophical Romanticism. New York: Routledge. pp. 265–81.
  64. ^ Postman, Neil (1993). Technopoly: The Surrender of Culture to Technology. New York: Vintage.
  65. ^ Barney, Darin (2007). One Nation Under Google. Toronto: House of Anansi Press.
  66. ^ "Technology's Challenge to Democracy". Parrhesia. 8.
  67. ^ Vannini, Phillip, and Jonathan Taggart. "Voluntary simplicity, involuntary complexities, and the pull of remove: The radical ruralities of off-grid lifestyles." Environment and Planning A 45.2 (2013): 295-311.
  68. ^ "Jared Bernstein". Center for Budget and Policy Priorities. 2013-09-13. Retrieved 11 November 2016.
  69. ^ a b "It's Not a Skills Gap That's Holding Wages Down: It's the Weak Economy, Among Other Things". The American Prospect. 25.
  70. ^ 7.Kim JH 2010 ~Kim JH, Lau C, Cheuk K-K, Kan P, Hui HL, Griffiths SM. Brief report:predictorsofheavyinternetuseandassociationswithhealthpromoting and health risk behaviors among Hong Kong university students. J Adolesc. 2010;33(1):215–20.
  71. ^ 1. Rideout VJ 2010 ~ Rideout VJ, Foehr UG, Roberts DF. Generation M2: Media in the livesof8-to18-year-olds.HenryJKaiserFamilyFoundation.2010.
  72. ^ Kim JH 2010 ~Kim JH, Lau C, Cheuk K-K, Kan P, Hui HL, Griffiths SM. Brief report:predictors of heavy internet use and associations with health promoting and health risk behaviors among Hong Kong university students. J Adolesc. 2010;33(1):215–20.
  73. ^ a b Hughes, Thomas P. (2004). Human-Built World: How to Think About Technology and Culture. Chicago: University of Chicago Press. pp. 1–11. ISBN 978-0-226-35933-5.
  74. ^ Hughes, Thomas P. (2004) "Introduction: Complex Technology" (1–11) in "Human-Built World: How to Think About Technology and Culture"
  75. ^ Morozov, Evgeny (2013). To Save Everything, Click Here: The Folly of Technological Solutionism. New York: PublicAffairs. ISBN 978-1-61039-139-9.
  76. ^ Madrigal, Alexis C. (13 March 2013). "Toward a Complex, Realistic, and Moral Tech Criticism". The Atlantic. Retrieved 11 November 2016.
  77. ^ Cohen, Benjamin; Ottinger, Gwen (2011). "Introduction: Environmental Justice and the Transformation of Science and Engineering". In Ottinger, Gwen; Cohen, Benjamin. Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement. MIT Press. pp. 1–18. ISBN 978-0-262-01579-0.
  78. ^ Ottinger, Gwen (2011). "Rupturing Engineering Education: Opportunities for Transforming Expert Identities Through Community-Based Projects". In Ottinger, Gwen; Cohen, Benjamin. Technoscience and Environmental Justice: Expert Cultures in a Grassroots Movement. MIT Press. pp. 229–48. ISBN 978-0-262-01579-0.
  79. ^ Sagan, Carl; Druyan, Ann; Leakey, Richard. "Chimpanzee Tool Use". Archived from the original on 21 September 2006. Retrieved 13 February 2007.
  80. ^ Rincon, Paul (7 June 2005). "Sponging dolphins learn from mum". BBC News. Retrieved 11 November 2016.
  81. ^ Schmid, Randolph E. (4 October 2007). "Crows use tools to find food". NBC News. Retrieved 11 November 2016.
  82. ^ Rutz, C.; Bluff, L.A.; Weir, A.A.S.; Kacelnik, A. (4 October 2007). "Video cameras on wild birds". Science. 318 (5851): 765. Bibcode:2007Sci...318..765R. doi:10.1126/science.1146788. PMID 17916693.
  83. ^ Oakley, K. P. (1976). Man the Tool-Maker. Nature. 199. pp. 1042–43. Bibcode:1963Natur.199U1042.. doi:10.1038/1991042e0. ISBN 978-0-226-61270-6.
  84. ^ McGrew, W. C (1992). Chimpanzee Material Culture. Cambridge u.a.: Cambridge Univ. Press. ISBN 978-0-521-42371-7.
  85. ^ Boesch, Christophe; Boesch, Hedwige (1984). "Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking". Primates. 25 (2): 160–70. doi:10.1007/BF02382388.
  86. ^ Brahic, Catherine (15 January 2009). "Nut-cracking monkeys find the right tool for the job". New Scientist. Retrieved 11 November 2016.
  87. ^ Kurzweil, Ray (2005). "GNR: Three Overlapping Revolutions". The Singularity is Near. Penguin. ISBN 978-1-101-21888-4.

Further reading

Anna University

Anna University is a state technical university in Tamil Nadu, India. The main campus is in Guindy, Chennai and the satellite campus is in Chromepet, Chennai. It was established on 4 September 1978. It is ranked the tenth institution in India overall by the National Institutional Ranking Framework, ranked fourth among universities, and ranked eighth in engineering. The main campus houses the College of Engineering, Guindy; Alagappa College of Technology, School of Architecture and Planning, and three technical departments of the University of Madras. The Madras Institute of Technology is located in the Chromepet campus.

Blockchain

A blockchain, originally block chain, is a growing list of records, called blocks, which are linked using cryptography. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data (generally represented as a merkle tree root hash).

By design, a blockchain is resistant to modification of the data. It is "an open, distributed ledger that can record transactions between two parties efficiently and in a verifiable and permanent way". For use as a distributed ledger, a blockchain is typically managed by a peer-to-peer network collectively adhering to a protocol for inter-node communication and validating new blocks. Once recorded, the data in any given block cannot be altered retroactively without alteration of all subsequent blocks, which requires consensus of the network majority. Although blockchain records are not unalterable, blockchains may be considered secure by design and exemplify a distributed computing system with high Byzantine fault tolerance. Decentralized consensus has therefore been claimed with a blockchain.Blockchain was invented by a person using the name Satoshi Nakamoto in 2008 to serve as the public transaction ledger of the cryptocurrency bitcoin. The identity of Satoshi Nakamoto is unknown. The invention of the blockchain for bitcoin made it the first digital currency to solve the double-spending problem without the need of a trusted authority or central server. The bitcoin design has inspired other applications, and blockchains which are readable by the public are widely used by cryptocurrencies. Blockchain is considered a type of payment rail. Private blockchains have been proposed for business use. Sources such as Computerworld called the marketing of such blockchains without a proper security model "snake oil".

Bluetooth

Bluetooth is a wireless technology standard for exchanging data between fixed and mobile devices over short distances using short-wavelength UHF radio waves in the industrial, scientific and medical radio bands, from 2.400 to 2.485 GHz, and building personal area networks (PANs). It was originally conceived as a wireless alternative to RS-232 data cables.

Bluetooth is managed by the Bluetooth Special Interest Group (SIG), which has more than 30,000 member companies in the areas of telecommunication, computing, networking, and consumer electronics. The IEEE standardized Bluetooth as IEEE 802.15.1, but no longer maintains the standard. The Bluetooth SIG oversees development of the specification, manages the qualification program, and protects the trademarks. A manufacturer must meet Bluetooth SIG standards to market it as a Bluetooth device. A network of patents apply to the technology, which are licensed to individual qualifying devices.

Computer network

A computer network is a digital telecommunications network which allows nodes to share resources. In computer networks, computing devices exchange data with each other using connections (data links) between nodes. These data links are established over cable media such as wires or optic cables, or wireless media such as Wi-Fi.

Network computer devices that originate, route and terminate the data are called network nodes. Nodes are generally identified by network addresses, and can include hosts such as personal computers, phones, and servers, as well as networking hardware such as routers and switches. Two such devices can be said to be networked together when one device is able to exchange information with the other device, whether or not they have a direct connection to each other. In most cases, application-specific communications protocols are layered (i.e. carried as payload) over other more general communications protocols. This formidable collection of information technology requires skilled network management to keep it all running reliably.

Computer networks support an enormous number of applications and services such as access to the World Wide Web, digital video, digital audio, shared use of application and storage servers, printers, and fax machines, and use of email and instant messaging applications as well as many others. Computer networks differ in the transmission medium used to carry their signals, communications protocols to organize network traffic, the network's size, topology, traffic control mechanism and organizational intent. The best-known computer network is the Internet.

Computer science

Computer science is the study of processes that interact with data and that can be represented as data in the form of programs. It enables the use of algorithms to manipulate, store, and communicate digital information. A computer scientist studies the theory of computation and the practice of designing software systems.Its fields can be divided into theoretical and practical disciplines. Computational complexity theory is highly abstract, while computer graphics emphasizes real-world applications. Programming language theory considers approaches to the description of computational processes, while computer programming itself involves the use of programming languages and complex systems. Human–computer interaction considers the challenges in making computers useful, usable, and accessible.

Educational technology

Educational technology is "the study and ethical practice of facilitating learning and improving performance by creating, using, and managing appropriate technological processes and resources".Educational technology is the use of both physical hardware and educational theoretic. It encompasses several domains including learning theory, computer-based training, online learning, and where mobile technologies are used, m-learning. Accordingly, there are several discrete aspects to describing the intellectual and technical development of educational technology:

Educational technology as the theory and practice of educational approaches to learning.

Educational technology as technological tools and media, for instance massive online courses, that assist in the communication of knowledge, and its development and exchange. This is usually what people are referring to when they use the term "EdTech".

Educational technology for learning management systems (LMS), such as tools for student and curriculum management, and education management information systems (EMIS).

Educational technology as back-office management, such as training management systems for logistics and budget management, and Learning Record Store (LRS) for learning data storage and analysis.

Educational technology itself as an educational subject; such courses may be called "Computer Studies" or "Information and communications technology (ICT)".

Genetic engineering

Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

An organism that is generated through genetic engineering is considered to be genetically modified (GM) and the resulting entity is a genetically modified organism (GMO). The first GMO was a bacterium generated by Herbert Boyer and Stanley Cohen in 1973. Rudolf Jaenisch created the first GM animal when he inserted foreign DNA into a mouse in 1974. The first company to focus on genetic engineering, Genentech, was founded in 1976 and started the production of human proteins. Genetically engineered human insulin was produced in 1978 and insulin-producing bacteria were commercialised in 1982. Genetically modified food has been sold since 1994, with the release of the Flavr Savr tomato. The Flavr Savr was engineered to have a longer shelf life, but most current GM crops are modified to increase resistance to insects and herbicides. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. In 2016 salmon modified with a growth hormone were sold.

Genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. In research GMOs are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. By knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. As well as producing hormones, vaccines and other drugs genetic engineering has the potential to cure genetic diseases through gene therapy. The same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products.

The rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. This has been present since its early use; the first field trials were destroyed by anti-GM activists. Although there is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, GM food safety is a leading concern with critics. Gene flow, impact on non-target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. These concerns have led to the development of a regulatory framework, which started in 1975. It has led to an international treaty, the Cartagena Protocol on Biosafety, that was adopted in 2000. Individual countries have developed their own regulatory systems regarding GMOs, with the most marked differences occurring between the US and Europe.

Georgia Institute of Technology

The Georgia Institute of Technology, commonly referred to as Georgia Tech, is a public research university and institute of technology in Atlanta, Georgia. It is part of the University System of Georgia and has satellite campuses in Savannah, Georgia; Metz, France; Athlone, Ireland; Shenzhen, China; and Singapore.

The school was founded in 1885 as the Georgia School of Technology as part of Reconstruction plans to build an industrial economy in the post-Civil War Southern United States. Initially, it offered only a degree in mechanical engineering. By 1901, its curriculum had expanded to include electrical, civil, and chemical engineering. In 1948, the school changed its name to reflect its evolution from a trade school to a larger and more capable technical institute and research university.

Today, Georgia Tech is organized into six colleges and contains about 31 departments/units, with emphasis on science and technology. It is well recognized for its degree programs in engineering, computing, business administration, the sciences and design. Georgia Tech is ranked 8th among all public national universities in the United States, 7th in the Best Engineering Schools ranking, 35th among all colleges and universities in the United States by U.S. News & World Report rankings, and 34th among global universities in the world by Times Higher Education rankings. Georgia Tech has been ranked as the "smartest" public college in America (based on average standardized test scores).Student athletics, both organized and intramural, are a part of student and alumni life. The school's intercollegiate competitive sports teams, the four-time football national champion Yellow Jackets, and the nationally recognized fight song "Ramblin' Wreck from Georgia Tech", have helped keep Georgia Tech in the national spotlight. Georgia Tech fields eight men's and seven women's teams that compete in the NCAA Division I athletics and the Football Bowl Subdivision. Georgia Tech is a member of the Coastal Division in the Atlantic Coast Conference.

IBM

International Business Machines Corporation (IBM) is an American multinational information technology company headquartered in Armonk, New York, with operations in over 170 countries. The company began in 1911, founded in Endicott, New York, as the Computing-Tabulating-Recording Company (CTR) and was renamed "International Business Machines" in 1924.

IBM produces and sells computer hardware, middleware and software, and provides hosting and consulting services in areas ranging from mainframe computers to nanotechnology. IBM is also a major research organization, holding the record for most U.S. patents generated by a business (as of 2019) for 26 consecutive years. Inventions by IBM include the automated teller machine (ATM), the floppy disk, the hard disk drive, the magnetic stripe card, the relational database, the SQL programming language, the UPC barcode, and dynamic random-access memory (DRAM). The IBM mainframe, exemplified by the System/360, was the dominant computing platform during the 1960s and 1970s.

IBM has continually shifted business operations by focusing on higher-value, more profitable markets. This includes spinning off printer manufacturer Lexmark in 1991 and the sale of personal computer (ThinkPad/ThinkCentre) and x86-based server businesses to Lenovo (in 2005 and 2014, respectively), and acquiring companies such as PwC Consulting (2002), SPSS (2009), The Weather Company (2016), and Red Hat (agreement announced in October 2018, actual acquisition to be in the second half of 2019). Also in 2014, IBM announced that it would go "fabless", continuing to design semiconductors, but offloading manufacturing to GlobalFoundries.

Nicknamed Big Blue, IBM is one of 30 companies included in the Dow Jones Industrial Average and one of the world's largest employers, with (as of 2017) over 380,000 employees, known as "IBMers". At least 70% of IBMers are based outside the United States, and the country with the largest number of IBMers is India. IBM employees have been awarded five Nobel Prizes, six Turing Awards, ten National Medals of Technology (USA) and five National Medals of Science (USA).

Information and communications technology

Information and communication technology (ICT) is

extensional term for information technology (IT) that stresses the role of unified communications and the integration of telecommunications (telephone lines and wireless signals) and computers, as well as necessary enterprise software, middleware, storage, and audiovisual systems, that enable users to access, store, transmit, and manipulate information.The term ICT is also used to refer to the convergence of audiovisual and telephone networks with computer networks through a single cabling or link system. There are large economic incentives (huge cost savings due to the elimination of the telephone network) to merge the telephone network with the computer network system using a single unified system of cabling, signal distribution, and management.

ICT is a broad subject and the concepts are evolving. It covers any product that will store, retrieve, manipulate, transmit, or receive information electronically in a digital form (e.g., personal computers, digital television, email, or robots). For clarity, Zuppo provided an ICT hierarchy where all levels of the hierarchy "contain some degree of commonality in that they are related to technologies that facilitate the transfer of information and various types of electronically mediated communications". Theoretical differences between interpersonal-communication technologies and mass-communication technologies have been identified by the philosopher Piyush Mathur. Skills Framework for the Information Age is one of many models for describing and managing competencies for ICT professionals for the 21st century.

Information technology

Information technology (IT) is the use of computers to store, retrieve, transmit, and manipulate data, or information, often in the context of a business or other enterprise. IT is considered to be a subset of information and communications technology (ICT). An information technology system (IT system) is generally an information system, a communications system or, more specifically speaking, a computer system – including all hardware, software and peripheral equipment – operated by a limited group of users.

Humans have been storing, retrieving, manipulating, and communicating information since the Sumerians in Mesopotamia developed writing in about 3000 BC, but the term information technology in its modern sense first appeared in a 1958 article published in the Harvard Business Review; authors Harold J. Leavitt and Thomas L. Whisler commented that "the new technology does not yet have a single established name. We shall call it information technology (IT)." Their definition consists of three categories: techniques for processing, the application of statistical and mathematical methods to decision-making, and the simulation of higher-order thinking through computer programs.The term is commonly used as a synonym for computers and computer networks, but it also encompasses other information distribution technologies such as television and telephones. Several products or services within an economy are associated with information technology, including computer hardware, software, electronics, semiconductors, internet, telecom equipment, and e-commerce.Based on the storage and processing technologies employed, it is possible to distinguish four distinct phases of IT development: pre-mechanical (3000 BC – 1450 AD), mechanical (1450–1840), electromechanical (1840–1940), and electronic (1940–present). This article focuses on the most recent period (electronic), which began in about 1940.

Internet of things

The Internet of things (IoT) refers to the concept of extending Internet connectivity beyond conventional computing platforms such as personal computers and mobile devices, and into any range of traditionally "dumb" or non-internet-enabled physical devices and everyday objects. Embedded with electronics, Internet connectivity, and other forms of hardware (such as sensors), these devices can communicate and interact with others over the Internet, and they can be remotely monitored and controlled.The definition of the Internet of things has evolved due to convergence of multiple technologies, real-time analytics, machine learning, commodity sensors, and embedded systems. Traditional fields of embedded systems, wireless sensor networks, control systems, automation (including home and building automation), and others all contribute to enabling the Internet of things. In the consumer market, IoT technology is most synonymous with products pertaining to the concept of the "smart home", covering devices and appliances (such as lighting fixtures, thermostats, home security systems and cameras, and other home appliances) that support one or more common ecosystems, and can be controlled via devices associated with that ecosystem, such as smartphones and smart speakers.

The IoT concept has faced prominent criticism, especially in regards to privacy and security concerns related to these devices and their intention of pervasive presence.

Massachusetts Institute of Technology

The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts. Founded in 1861 in response to the increasing industrialization of the United States, MIT adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. The institute is a land-grant, sea-grant and space-grant university with campus extends more than a mile along side the Charles river. The institute is traditionally known for its research and education in the physical sciences, engineering and architecture, but more recently in biology, economics, linguistics, management, and social science and art as well. MIT is often ranked among the world's top five universities.As of October 2018, 93 Nobel laureates, 25 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 73 Marshall Scholars, 45 Rhodes Scholars, 41 astronauts and 16 Chief Scientists of the U.S. Air Force have been affiliated with MIT. The school also has a strong entrepreneurial culture and the aggregated annual revenues of companies founded by MIT alumni ($1.9 trillion) would rank roughly as the tenth-largest economy in the world (2014). MIT is a member of the Association of American Universities (AAU).

Samsung

Samsung (Hangul: 삼성; Hanja: 三星; Korean pronunciation: [samsʌŋ]; means "tristar" in English) is a South Korean multinational conglomerate headquartered in Samsung Town, Seoul. It comprises numerous affiliated businesses, most of them united under the Samsung brand, and is the largest South Korean chaebol (business conglomerate).

Samsung was founded by Lee Byung-chul in 1938 as a trading company. Over the next three decades, the group diversified into areas including food processing, textiles, insurance, securities, and retail. Samsung entered the electronics industry in the late 1960s and the construction and shipbuilding industries in the mid-1970s; these areas would drive its subsequent growth. Following Lee's death in 1987, Samsung was separated into four business groups – Samsung Group, Shinsegae Group, CJ Group and Hansol Group. Since 1990, Samsung has increasingly globalised its activities and electronics; in particular, its mobile phones and semiconductors have become its most important source of income. As of 2017, Samsung has the 6th highest global brand value.Notable Samsung industrial affiliates include Samsung Electronics (the world's largest information technology company, consumer electronics maker and chipmaker measured by 2017 revenues), Samsung Heavy Industries (the world's 2nd largest shipbuilder measured by 2010 revenues), and Samsung Engineering and Samsung C&T (respectively the world's 13th and 36th largest construction companies). Other notable subsidiaries include Samsung Life Insurance (the world's 14th largest life insurance company), Samsung Everland (operator of Everland Resort, the oldest theme park in South Korea) and Cheil Worldwide (the world's 15th largest advertising agency measured by 2012 revenues).Samsung has a powerful influence on South Korea's economic development, politics, media and culture and has been a major driving force behind the "Miracle on the Han River". Its affiliate companies produce around a fifth of South Korea's total exports. Samsung's revenue was equal to 17% of South Korea's $1,082 billion GDP.

Silicon Valley

Silicon Valley is a region in the southern part of the San Francisco Bay Area in Northern California that serves as a global center for high technology, innovation and social media. It corresponds roughly to the geographical Santa Clara Valley. San Jose is the Valley's largest city, the third largest in California, and the tenth largest in the United States. Other major Silicon Valley cities include Palo Alto, Menlo Park, Cupertino, Santa Clara, Mountain View, and Sunnyvale. The San Jose Metropolitan Area has the third highest GDP per capita in the world (after Zurich, Switzerland and Oslo, Norway), according to the Brookings Institution.The word "silicon" in the name originally referred to the large number of silicon chip innovators and manufacturers in the region, but the area is now the home to many of the world's largest high-tech corporations, including the headquarters of 39 businesses in the Fortune 1000, and thousands of startup companies. Silicon Valley also accounts for one-third of all of the venture capital investment in the United States, which has helped it to become a leading hub and startup ecosystem for high-tech innovation and scientific development. It was in the Valley that the silicon-based integrated circuit, the microprocessor, and the microcomputer, among other technologies, were developed. As of 2013, the region employed about a quarter of a million information technology workers.As more high-tech companies were established across San Jose and the Santa Clara Valley, and then north towards the Bay Area's two other major cities, San Francisco and Oakland, the "Silicon Valley" has come to have two definitions: a geographic one, referring to Santa Clara County, and a metonymical one, referring to all high-tech businesses in the Bay Area. The term is now generally used as a synecdoche for the American high-technology economic sector. The name also became a global synonym for leading high-tech research and enterprises, and thus inspired similar named locations, as well as research parks and technology centers with a comparable structure all around the world.

Software

Computer software, or simply software, is a collection of data or computer instructions that tell the computer how to work. This is in contrast to physical hardware, from which the system is built and actually performs the work. In computer science and software engineering, computer software is all information processed by computer systems, programs and data. Computer software includes computer programs, libraries and related non-executable data, such as online documentation or digital media. Computer hardware and software require each other and neither can be realistically used on its own.

At the lowest programming level, executable code consists of machine language instructions supported by an individual processor—typically a central processing unit (CPU) or a graphics processing unit (GPU). A machine language consists of groups of binary values signifying processor instructions that change the state of the computer from its preceding state. For example, an instruction may change the value stored in a particular storage location in the computer—an effect that is not directly observable to the user. An instruction may also invoke one of many input or output operations, for example displaying some text on a computer screen; causing state changes which should be visible to the user. The processor executes the instructions in the order they are provided, unless it is instructed to "jump" to a different instruction, or is interrupted by the operating system. As of 2015, most personal computers, smartphone devices and servers have processors with multiple execution units or multiple processors performing computation together, and computing has become a much more concurrent activity than in the past.

The majority of software is written in high-level programming languages. They are easier and more efficient for programmers because they are closer to natural languages than machine languages. High-level languages are translated into machine language using a compiler or an interpreter or a combination of the two. Software may also be written in a low-level assembly language, which has strong correspondence to the computer's machine language instructions and is translated into machine language using an assembler.

Software release life cycle

A software release life cycle is the sum of the stages of development and maturity for a piece of computer software: ranging from its initial development to its eventual release, and including updated versions of the released version to help improve software or fix software bugs still present in the software.

Sport

Sport includes all forms of competitive physical activity or games which, through casual or organised participation, aim to use, maintain or improve physical ability and skills while providing enjoyment to participants, and in some cases, entertainment for spectators. Hundreds of sports exist, from those between single contestants, through to those with hundreds of simultaneous participants, either in teams or competing as individuals. In certain sports such as racing, many contestants may compete, simultaneously or consecutively, with one winner; in others, the contest (a match) is between two sides, each attempting to exceed the other. Some sports allow a "tie" or "draw", in which there is no single winner; others provide tie-breaking methods to ensure one winner and one loser. A number of contests may be arranged in a tournament producing a champion. Many sports leagues make an annual champion by arranging games in a regular sports season, followed in some cases by playoffs.

Sport is generally recognised as system of activities which are based in physical athleticism or physical dexterity, with the largest major competitions such as the Olympic Games admitting only sports meeting this definition, and other organisations such as the Council of Europe using definitions precluding activities without a physical element from classification as sports. However, a number of competitive, but non-physical, activities claim recognition as mind sports. The International Olympic Committee (through ARISF) recognises both chess and bridge as bona fide sports, and SportAccord, the international sports federation association, recognises five non-physical sports: bridge, chess, draughts (checkers), Go and xiangqi, and limits the number of mind games which can be admitted as sports.Sport is usually governed by a set of rules or customs, which serve to ensure fair competition, and allow consistent adjudication of the winner. Winning can be determined by physical events such as scoring goals or crossing a line first. It can also be determined by judges who are scoring elements of the sporting performance, including objective or subjective measures such as technical performance or artistic impression.

Records of performance are often kept, and for popular sports, this information may be widely announced or reported in sport news. Sport is also a major source of entertainment for non-participants, with spectator sport drawing large crowds to sport venues, and reaching wider audiences through broadcasting. Sport betting is in some cases severely regulated, and in some cases is central to the sport.

According to A.T. Kearney, a consultancy, the global sporting industry is worth up to $620 billion as of 2013. The world's most accessible and practised sport is running, while association football is its most popular spectator sport.

Wi-Fi

Wi-Fi () is technology for radio wireless local area networking of devices based on the IEEE 802.11 standards. Wi‑Fi is a trademark of the Wi-Fi Alliance, which restricts the use of the term Wi-Fi Certified to products that successfully complete interoperability certification testing.Devices that can use Wi-Fi technologies include, among others, desktops and laptops, video game consoles, smartphones and tablets, smart TVs, printers, digital audio players, digital cameras, cars and drones. Wi-Fi compatible devices can connect to the Internet via a WLAN and a wireless access point. Such an access point (or hotspot) has a range of about 20 meters (66 feet) indoors and a greater range outdoors. Hotspot coverage can be as small as a single room with walls that block radio waves, or as large as many square kilometres achieved by using multiple overlapping access points.

Different versions of Wi-Fi exist, with different ranges, radio bands and speeds. Wi-Fi most commonly uses the 2.4 gigahertz (12 cm) UHF and 5 gigahertz (6 cm) SHF ISM radio bands; these bands are subdivided into multiple channels. Each channel can be time-shared by multiple networks. These wavelengths work best for line-of-sight. Many common materials absorb or reflect them, which further restricts range, but can tend to help minimise interference between different networks in crowded environments. At close range, some versions of Wi-Fi, running on suitable hardware, can achieve speeds of over 1 Gbit/s.

Anyone within range with a wireless network interface controller can attempt to access a network; because of this, Wi-Fi is more vulnerable to attack (called eavesdropping) than wired networks. Wi-Fi Protected Access (WPA) is a family of technologies created to protect information moving across Wi-Fi networks and includes solutions for personal and enterprise networks. Security features of WPA have included stronger protections and new security practices as the security landscape has changed over time.

Fields
Topics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.