Systems ecology

Systems ecology is an interdisciplinary field of ecology, a subset of Earth system science, that takes a holistic approach to the study of ecological systems, especially ecosystems.[1][2][3] Systems ecology can be seen as an application of general systems theory to ecology. Central to the systems ecology approach is the idea that an ecosystem is a complex system exhibiting emergent properties. Systems ecology focuses on interactions and transactions within and between biological and ecological systems, and is especially concerned with the way the functioning of ecosystems can be influenced by human interventions. It uses and extends concepts from thermodynamics and develops other macroscopic descriptions of complex systems.

Genomics GTL Program Payoffs
Ecological analysis of CO2 in an ecosystem

Overview

Systems ecology seeks a holistic view of the interactions and transactions within and between biological and ecological systems. Systems ecologists realise that the function of any ecosystem can be influenced by human economics in fundamental ways. They have therefore taken an additional transdisciplinary step by including economics in the consideration of ecological-economic systems. In the words of R.L. Kitching:[4]

  • Systems ecology can be defined as the approach to the study of ecology of organisms using the techniques and philosophy of systems analysis: that is, the methods and tools developed, largely in engineering, for studying, characterizing and making predictions about complex entities, that is, systems..
  • In any study of an ecological system, an essential early procedure is to draw a diagram of the system of interest ... diagrams indicate the system's boundaries by a solid line. Within these boundaries, series of components are isolated which have been chosen to represent that portion of the world in which the systems analyst is interested ... If there are no connections across the systems' boundaries with the surrounding systems environments, the systems are described as closed. Ecological work, however, deals almost exclusively with open systems.[5]

As a mode of scientific enquiry, a central feature of Systems Ecology is the general application of the principles of energetics to all systems at any scale. Perhaps the most notable proponent of this view was Howard T. Odum - sometimes considered the father of ecosystems ecology. In this approach the principles of energetics constitute ecosystem principles. Reasoning by formal analogy from one system to another enables the Systems Ecologist to see principles functioning in an analogous manner across system-scale boundaries. H.T. Odum commonly used the Energy Systems Language as a tool for making systems diagrams and flow charts.

The fourth of these principles, the principle of maximum power efficiency, takes central place in the analysis and synthesis of ecological systems. The fourth principle suggests that the most evolutionarily advantageous system function occurs when the environmental load matches the internal resistance of the system. The further the environmental load is from matching the internal resistance, the further the system is away from its sustainable steady state. Therefore, the systems ecologist engages in a task of resistance and impedance matching in ecological engineering, just as the electronic engineer would do.

Closely related fields

Deep ecology

Deep ecology is an ideology whose metaphysical underpinnings are deeply concerned with the science of ecology. The term was coined by Arne Naess, a Norwegian philosopher, Gandhian scholar, and environmental activist. He argues that the prevailing approach to environmental management is anthropocentric, and that the natural environment is not only "more complex than we imagine, it is more complex than we can imagine."[6] Naess formulated deep ecology in 1973 at an environmental conference in Budapest.

Joanna Macy, John Seed, and others developed Naess' thesis into a branch they called experiential deep ecology. Their efforts were motivated by a need they perceived for the development of an "ecological self", which views the human ego as an integrated part of a living system that encompasses the individual. They sought to transcend altruism with a deeper self-interest based on biospherical equality beyond human chauvinism.

Earth systems engineering and management

Earth systems engineering and management (ESEM) is a discipline used to analyze, design, engineer and manage complex environmental systems. It entails a wide range of subject areas including anthropology, engineering, environmental science, ethics and philosophy. At its core, ESEM looks to "rationally design and manage coupled human-natural systems in a highly integrated and ethical fashion"

Ecological economics

Ecological economics is a transdisciplinary field of academic research that addresses the dynamic and spatial interdependence between human economies and natural ecosystems. Ecological economics brings together and connects different disciplines, within the natural and social sciences but especially between these broad areas. As the name suggests, the field is made up of researchers with a background in economics and ecology. An important motivation for the emergence of ecological economics has been criticism on the assumptions and approaches of traditional (mainstream) environmental and resource economics.

Ecological energetics

Ecological energetics is the quantitative study of the flow of energy through ecological systems. It aims to uncover the principles which describe the propensity of such energy flows through the trophic, or 'energy availing' levels of ecological networks. In systems ecology the principles of ecosystem energy flows or "ecosystem laws" (i.e. principles of ecological energetics) are considered formally analogous to the principles of energetics.

Ecological humanities

Ecological humanities aims to bridge the divides between the sciences and the humanities, and between Western, Eastern and Indigenous ways of knowing nature. Like ecocentric political theory, the ecological humanities are characterised by a connectivity ontology and a commitment to two fundamental axioms relating to the need to submit to ecological laws and to see humanity as part of a larger living system.

Ecosystem ecology

Ecosystem ecology is the integrated study of biotic and abiotic components of ecosystems and their interactions within an ecosystem framework. This science examines how ecosystems work and relates this to their components such as chemicals, bedrock, soil, plants, and animals. Ecosystem ecology examines physical and biological structure and examines how these ecosystem characteristics interact.

The relationship between systems ecology and ecosystem ecology is complex. Much of systems ecology can be considered a subset of ecosystem ecology. Ecosystem ecology also utilizes methods that have little to do with the holistic approach of systems ecology. However, systems ecology more actively considers external influences such as economics that usually fall outside the bounds of ecosystem ecology. Whereas ecosystem ecology can be defined as the scientific study of ecosystems, systems ecology is more of a particular approach to the study of ecological systems and phenomena that interact with these systems.

Industrial ecology

Industrial ecology is the study of industrial processes as linear (open loop) systems, in which resource and capital investments move through the system to become waste, to a closed loop system where wastes become inputs for new processes.

See also

References

  1. ^ Shugart, Herman H., and Robert V. O'Neill. "Systems ecology". Dowden, Hutchingon & Ross, 1979.
  2. ^ Van Dyne, George M. "Ecosystems, Systems Ecology, and Systems Ecologists". ORNL- 3975. Oak Ridge National Laboratory, Oak Ridge, TN, 1966.
  3. ^ Wilkinson, David M. (2006). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press.
  4. ^ R.L. Kitching 1983, p.9.
  5. ^ (Kitching 1983, p.11)
  6. ^ A statement attributed to British biologist J.B.S. Haldane

Literature

  • Gregory Bateson, Steps to an Ecology of Mind, 2000.
  • Kenneth Edmund Ferguson, Systems Analysis in Ecology, WATT, 1966, 276 pp.
  • Efraim Halfon, Theoretical Systems Ecology: Advances and Case Studies, 1979.
  • J. W. Haefner, Modeling Biological Systems: Principles and Applications, London., UK, Chapman and Hall 1996, 473 pp.
  • Richard F Johnston, Peter W Frank, Charles Duncan Michener, Annual Review of Ecology and Systematics, 1976, 307 pp.
  • Jorgensen, Sven E., "Introduction to Systems Ecology", CRC Press, 2012.
  • R.L. Kitching, Systems ecology, University of Queensland Press, 1983.
  • Howard T. Odum, Systems Ecology: An Introduction, Wiley-Interscience, 1983.
  • Howard T. Odum, Ecological and General Systems: An Introduction to Systems Ecology. University Press of Colorado, Niwot, CO, 1994.
  • Friedrich Recknagel, Applied Systems Ecology: Approach and Case Studies in Aquatic Ecology, 1989.
  • James. Sanderson & Larry D. Harris, Landscape Ecology: A Top-down Approach, 2000, 246 pp.
  • Sheldon Smith, Human Systems Ecology: Studies in the Integration of Political Economy, 1989.
  • Shugart, H.H., O’Neil, R.V. (Eds.) Systems Ecology, Dowden, Hutchinson & Ross, Inc., 1979.
  • Van Dyne, George M., Ecosystems, Systems Ecology, and Systems Ecologists, ORNL- 3975. Oak Ridge National Laboratory, Oak Ridge, TN, pp. 1–40, 1966.
  • Patten, Bernard C. (editor), "Systems Analysis and Simulation in Ecology", Volume 1, Academic Press, 1971.
  • Patten, Bernard C. (editor), "Systems Analysis and Simulation in Ecology", Volume 2, Academic Press, 1972.
  • Patten, Bernard C. (editor), "Systems Analysis and Simulation in Ecology", Volume 3, Academic Press, 1975.
  • Patten, Bernard C. (editor), "Systems Analysis and Simulation in Ecology", Volume 4, Academic Press, 1976.

External links

Organisations
Aquatic ecosystem

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.

Biogeochemistry

Biogeochemistry is the scientific discipline that involves the study of the chemical, physical, geological, and biological processes and reactions that govern the composition of the natural environment (including the biosphere, the cryosphere, the hydrosphere, the pedosphere, the atmosphere, and the lithosphere). In particular, biogeochemistry is the study of the cycles of chemical elements, such as carbon and nitrogen, and their interactions with and incorporation into living things transported through earth scale biological systems in space through time. The field focuses on chemical cycles which are either driven by or influence biological activity. Particular emphasis is placed on the study of carbon, nitrogen, sulfur, and phosphorus cycles. Biogeochemistry is a systems science closely related to systems ecology.

Charles A. S. Hall

Charles A. S. Hall (1943) is an American systems ecologist and ESF Foundation Distinguished Professor at State University of New York in the College of Environmental Science & Forestry.

Climax community

In ecology, climax community, or climatic climax community, is a historic term for a biological community of plants, animals, and fungi which, through the process of ecological succession in the development of vegetation in an area over time, have reached a steady state. This equilibrium was thought to occur because the climax community is composed of species best adapted to average conditions in that area. The term is sometimes also applied in soil development. Nevertheless, it has been found that a "steady state" is more apparent than real, particularly if long-enough periods of time are taken into consideration. Notwithstanding, it remains a useful concept.

The idea of a single climax, which is defined in relation to regional climate, originated with Frederic Clements in the early 1900s. The first analysis of succession as leading to something like a climax was written by Henry Cowles in 1899, but it was Clements who used the term "climax" to describe the idealized endpoint of succession.

Closed ecological system

Closed ecological systems (CES) are ecosystems that do not rely on matter exchange with any part outside the system.

The term is most often used to describe small manmade ecosystems. Such systems are scientifically interesting and can potentially serve as a life support system during space flights, in space stations or space habitats.In a closed ecological system, any waste products produced by one species must be used by at least one other species. If the purpose is to maintain a life form, such as a mouse or a human, waste products such as carbon dioxide, feces and urine must eventually be converted into oxygen, food, and water.

A closed ecological system must contain at least one autotrophic organism. While both chemotrophic and phototrophic organisms are plausible, almost all closed ecological systems to date are based on a phototroph such as green algae.

Ecosystem diversity

Ecosystem diversity deals with the variations in ecosystems within a geographical location and its overall impact on human existence and the environment.

Ecosystem diversity is a type of biodiversity. It is the variation in the ecosystems found in a region or the variation in ecosystems over the whole planet. Biodiversity is important because it clears out our water, changes out climate, and provides us with food. Ecological diversity includes the variation in both terrestrial and aquatic ecosystems. Ecological diversity can also take into account the variation in the complexity of a biological community, including the number of different niches, the number of trophic levels and other ecological processes. An example of ecological diversity on a global scale would be the variation in ecosystems, such as deserts, forests, grasslands, wetlands and oceans. Ecological diversity is the largest scale of biodiversity, and within each ecosystem, there is a great deal of both species and genetic diversity.

Ecosystem engineer

An ecosystem engineer is any organism that creates, significantly modifies, maintains or destroys a habitat. These organisms can have a large impact on the species richness and landscape-level heterogeneity of an area. As a result, ecosystem engineers are important for maintaining the health and stability of the environment they are living in. Since all organisms impact the environment they live in in one way or another, it has been proposed that the term "ecosystem engineers" be used only for keystone species whose behavior very strongly affects other organisms.

Energy Systems Language

The Energy Systems Language, also referred to as Energese, Energy Circuit Language, or Generic Systems Symbols, was developed by the ecologist Howard T. Odum and colleagues in the 1950s during studies of the tropical forests funded by the United States Atomic Energy Commission. They are used to compose energy flow diagrams in the field of systems ecology.

F-ratio

In oceanic biogeochemistry, the f-ratio is the fraction of total primary production fuelled by nitrate (as opposed to that fuelled by other nitrogen compounds such as ammonium). The ratio was originally defined by Richard Eppley and Bruce Peterson in one of the first papers estimating global oceanic production. This fraction was originally believed significant because it appeared to directly relate to the sinking (export) flux of organic marine snow from the surface ocean by the biological pump. However, this interpretation relied on the assumption of a strong depth-partitioning of a parallel process, nitrification, that more recent measurements has questioned.

Food chain

A food chain is a linear network of links in a food web starting from producer organisms (such as grass or trees which use radiation from the Sun to make their food) and ending at apex predator species (like grizzly bears or killer whales), detritivores (like earthworms or woodlice), or decomposer species (such as fungi or bacteria). A food chain also shows how the organisms are related with each other by the food they eat. Each level of a food chain represents a different trophic level. A food chain differs from a food web, because the complex network of different animals' feeding relations are aggregated and the chain only follows a direct, linear pathway of one animal at a time. Natural interconnections between food chains make it a food web.

A common metric used to the quantify food web trophic structure is food chain length. In its simplest form, the length of a chain is the number of links between a trophic consumer and the base of the web and the mean chain length of an entire web is the arithmetic average of the lengths of all chains in a food web.Many food webs have a keystone species. A keystone species is a species that has a large impact on the surrounding environment and can directly affect the food chain. If this keystone species dies off it can set the entire food chain off balance. Keystone species keep herbivores from depleting all of the foliage in their environment and preventing a mass extinction.Food chains were first introduced by the Arab scientist and philosopher Al-Jahiz in the 10th century and later popularized in a book published in 1927 by Charles Elton, which also introduced the food web concept.

Freshwater ecosystem

Freshwater ecosystems are a subset of Earth's aquatic ecosystems. They include lakes and ponds, rivers, streams, springs, bogs, and wetlands. They can be contrasted with marine ecosystems, which have a larger salt content. Freshwater habitats can be classified by different factors, including temperature, light penetration, nutrients, and vegetation.

Freshwater ecosystems can be divided into lentic ecosystems (still water) and lotic ecosystems (flowing water).Limnology (and its branch freshwater biology) is a study about freshwater ecosystems. It is a part of hydrobiology.

Original attempts to understand and monitor freshwater ecosystems were spurred on by threats to human health (ex. Cholera outbreaks due to sewage contamination). Early monitoring focused on chemical indicators, then bacteria, and finally algae, fungi and protozoa. A new type of monitoring involves quantifying differing groups of organisms (macroinvertebrates, macrophytes and fish) and measuring the stream conditions associated with them.

Habitat

In ecology, a habitat is the type of natural environment in which a particular species of organism lives. It is characterized by both physical and biological features. A species' habitat is those places where it can find food, shelter, protection and mates for reproduction.

The physical factors are for example soil, moisture, range of temperature, and light intensity as well as biotic factors such as the availability of food and the presence or absence of predators. Every organism has certain habitat needs for the conditions in which it will thrive, but some are tolerant of wide variations while others are very specific in their requirements. A habitat is not necessarily a geographical area, it can be the interior of a stem, a rotten log, a rock or a clump of moss, and for a parasitic organism it is the body of its host, part of the host's body such as the digestive tract, or a single cell within the host's body.

Habitat types include polar, temperate, subtropical and tropical. The terrestrial vegetation type may be forest, steppe, grassland, semi-arid or desert. Fresh water habitats include marshes, streams, rivers, lakes, and ponds, and marine habitats include salt marshes, the coast, the intertidal zone, estuaries, reefs, bays, the open sea, the sea bed, deep water and submarine vents.

Habitats change over time. This may be due to a violent event such as the eruption of a volcano, an earthquake, a tsunami, a wildfire or a change in oceanic currents; or the change may be more gradual over millennia with alterations in the climate, as ice sheets and glaciers advance and retreat, and as different weather patterns bring changes of precipitation and solar radiation. Other changes come as a direct result of human activities; deforestation, the plowing of ancient grasslands, the diversion and damming of rivers, the draining of marshland and the dredging of the seabed. The introduction of alien species can have a devastating effect on native wildlife, through increased predation, through competition for resources or through the introduction of pests and diseases to which the native species have no immunity.

Industrial ecology

Industrial ecology (IE) is the study of material and energy flows through industrial systems. The global industrial economy can be modelled as a network of industrial processes that extract resources from the Earth and transform those resources into commodities which can be bought and sold to meet the needs of humanity. Industrial ecology seeks to quantify the material flows and document the industrial processes that make modern society function. Industrial ecologists are often concerned with the impacts that industrial activities have on the environment, with use of the planet's supply of natural resources, and with problems of waste disposal. Industrial ecology is a young but growing multidisciplinary field of research which combines aspects of engineering, economics, sociology, toxicology and the natural sciences.

Industrial ecology has been defined as a "systems-based, multidisciplinary discourse that seeks to understand emergent behaviour of complex integrated human/natural systems". The field approaches issues of sustainability by examining problems from multiple perspectives, usually involving aspects of sociology, the environment, economy and technology. The name comes from the idea that the analogy of natural systems should be used as an aid in understanding how to design sustainable industrial systems.

Liebig's law of the minimum

Liebig's law of the minimum, often simply called Liebig's law or the law of the minimum, is a principle developed in agricultural science by Carl Sprengel (1828) and later popularized by Justus von Liebig. It states that growth is dictated not by total resources available, but by the scarcest resource (limiting factor). The law has also been applied to biological populations and ecosystem models for factors such as sunlight or mineral nutrients.

List of systems sciences organizations

Systems science is the interdisciplinary field of science surrounding systems theory, cybernetics, the science of complex systems. It aims to develop interdisciplinary foundations, which are applicable in a variety of areas, such as engineering, biology, medicine and social sciences. Systems science and systemics are names for all research related to systems theory. It is defined as an emerging branch of science that studies holistic systems and tries to develop logical, mathematical, engineering and philosophical paradigms and frameworks in which physical, technological, biological, social, cognitive and metaphysical systems can be studied and developed.

This list of systems sciences organizations gives an overview of global and local organizations in the field of systems science. This list shows all kinds of organizations and institutes listed thematically.

Lithosphere

A lithosphere (Ancient Greek: λίθος [lithos] for "rocky", and σφαίρα [sphaira] for "sphere") is the rigid, outermost shell of a terrestrial-type planet, or natural satellite, that is defined by its rigid mechanical properties. On Earth, it is composed of the crust and the portion of the upper mantle that behaves elastically on time scales of thousands of years or greater. The outermost shell of a rocky planet, the crust, is defined on the basis of its chemistry and mineralogy.

Macroecology

Macroecology is the subfield of ecology that deals with the study of relationships between organisms and their environment at large spatial scales to characterise and explain statistical patterns of abundance, distribution and diversity. The term was coined by James Brown of the University of New Mexico and Brian Maurer of Michigan State University in a 1989 paper in Science.Macroecology approaches the idea of studying ecosystems using a "top down" approach. It seeks understanding through the study of the properties of the system as a whole; Kevin Gaston and Tim Blackburn make the analogy to seeing the forest for the trees.Macroecology examines how global development in climate change affect wildlife populations. Classic ecological questions amenable to study through the techniques of macroecology include questions of species richness, latitudinal gradients in species diversity, the species-area curve, range size, body size, and species abundance. For example, the relationship between abundance and range size (why species that maintain large local population sizes tend to be widely distributed, while species that are less abundant tend to have restricted ranges) has received much attention.

Marine ecosystem

Marine ecosystems are the largest of Earth's aquatic ecosystems and are distinguished by waters that have a high salt content. These systems contrast with freshwater ecosystems, which have a lower salt content. Marine waters cover more than 70% of the surface of the Earth and account for more than 97% of Earth's water supply and 90% of habitable space on Earth. Marine ecosystems include nearshore systems, such as the salt marshes, mudflats, seagrass meadows, mangroves, rocky intertidal systems and coral reefs. They also extend outwards from the coast to include offshore systems, such as the surface ocean, pelagic ocean waters, the deep sea, oceanic hydrothermal vents, and the sea floor. Marine ecosystems are characterized by the biological community of organisms that they are associated with and their physical environment.

Rapoport's rule

Rapoport's rule is an ecogeographical rule that states that latitudinal ranges of plants and animals are generally smaller at lower latitudes than at higher latitudes.

General
Producers
Consumers
Decomposers
Microorganisms
Food webs
Example webs
Processes
Defense,
counter
Ecology: Modelling ecosystems: Other components
Population
ecology
Species
Species
interaction
Spatial
ecology
Niche
Other
networks
Other
Systems types
Concepts
Theoretical fields
Systems scientists
Applications
Organizations
Main fields
Related fields
Applications
See also
Fields
Related
Applied

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.