Suspended load

The suspended load of a flow of fluid, such as a river, is the portion of its sediment uplifted by the fluid's flow in the process of sediment transportation. It is kept suspended by the fluid's turbulence. The suspended load generally consists of smaller particles, like clay, silt, and fine sands.

Sediment transportation

Blšanka Suspended Load
Sediment Transportation

The suspended load is one of the three layers of the fluvial sediment transportation system. The bed load consists of the larger sediment which is transported by saltation, rolling, and dragging on the riverbed. The suspended load is the middle layer that consists of the smaller sediment that's suspended. The wash load is uppermost layer which consist of the smallest sediment that can be seen with the naked eye; however, the wash load gets easily mixed with suspended load during transportation due to the very similar process. The wash load never touches the bed even outside of a current.


The boundary between bed load and suspended load is not straightforward because whether a particle is in suspension or not depends on the flow velocity – it is easy to imagine a particle moving between bed load, part-suspension and full suspension in a fluid with variable flow. Suspended load generally consists of fine sand, silt and clay size particles although larger particles (coarser sands) may be carried in the lower water column in more intense flows.

Suspended load vs suspended sediment

Suspended load and suspended sediment are very similar, but are not the same. Suspended Sediment contains sediment uplifted in Fluvial zones, but unlike suspended load no turbulence is required to keep it uplifted. Suspended loads required the Velocity to keep the sediment transporting above the bed. With low velocity the sediment will deposit.


The suspended load is carried within the lower to middle part of the water column and moves at a large fraction of the mean flow velocity of the stream, with a Rouse number between 0.8 and 1.2. The rates within the Rouse number reveal how at which the sediment will transport at the current velocity. It is the ratio of the fall velocity and uplift velocity on a grain.

Mode of Transport Rouse Number
Bed Load >2.5
Suspended Load 50% >1.2, <2.5
Suspended Load 100% >0.8, <1.2
Wash Load <0.8


My own hjulstrum

Suspended load is often visualised using two diagrams. The Hjulström curve uses velocity and sediment size to compare the rate of erosion, transportation, and deposition. While the diagram shows the rate, one flaw about the Hjulström Diagram is that it doesn't show the depth of the creek giving an estimated rate.

The second diagram used is the Shields Diagram. The Shields Diagram uses the critical shield stress and Reynolds number to estimate transportation rate. Shields Diagram is considered a more precise chart to estimate suspended load.

[1] [2]

Measuring suspended load

Shear stress

To find the Stream power for sediment Transportation. Shear stress helps determine the force required to allow sediment transportation.

Critical shear stress

The point at which the sediment is transported within a stream

Suspended load transport rate

See also


  1. ^ Shields, A.. (1936). Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung [Application of similarity mechanics and turbulence research on shear flow] (PDF). Mitteilungen der Preußischen Versuchsanstalt für Wasserbau (in German). 26. Berlin: Preußische Versuchsanstalt für Wasserbau. Archived from the original on 2011-07-18.
  2. ^ Shields, A. (1936). Application of similarity principles and turbulence research to bed-load movement (translated version). Mitteilungen der Preußischen Versuchsanstalt für Wasserbau. 26. Berlin: Preußische Versuchsanstalt für Wasserbau.

Further reading

  • "Sediment Transport and Deposition". Fondriest Environmental Learning Center. Fondriest Environmental, Inc. Retrieved 23 March 2019.
  • Lemke, Karen A. (12 September 2017). "Stream Sediment". Geography/Geology 312: Geomorphology. University of Wisconsin-Stevens Point. Retrieved 23 March 2019.
Abrasion (geology)

Abrasion is a process of erosion which occurs when material being transported wears away at a surface over time. It is the process of friction caused by scuffing, scratching, wearing down, marring, and rubbing away of materials. The intensity of abrasion depends on the hardness, concentration, velocity and mass of the moving particles. Abrasion generally occurs four ways. Glaciation slowly grinds rocks picked up by ice against rock surfaces. Solid objects transported in river channels make abrasive surface contact with the bed and walls. Objects transported in waves breaking on coastlines cause abrasion. And, finally, abrasion can be caused by wind transporting sand or small stones against surface rocks.

Abrasion, under its strictest definition, is commonly confused with attrition. Both abrasion and attrition refer to the wearing down of an object. Abrasion occurs as a result of two surfaces rubbing against each other resulting in the wearing down of one or both of the surfaces. However, attrition refers to the breaking off of particles (erosion) which occurs as a result of objects hitting against each other. Abrasion leads to surface-level destruction over time, whereas attrition results in more change at a faster rate. Today, the geomorphology community uses the term "abrasion" in a looser way, often interchangeably with the term "wear".

Bed load

The term bed load or bedload describes particles in a flowing fluid (usually water) that are transported along the bed. Bed load is complementary to suspended load and wash load.

Bed load moves by rolling, sliding, and/or saltating (hopping).

Generally, bed load downstream will be smaller and more rounded than bed load upstream (a process known as downstream fining). This is due in part to attrition and abrasion which results from the stones colliding with each other and against the river channel, thus removing the rough texture (rounding) and reducing the size of the particles. However, selective transport of sediments also plays a role in relation to downstream fining: smaller-than average particles are more easily entrained than larger-than average particles, since the shear stress required to entrain a grain is linearly proportional to the diameter of the grain. However, the degree of size selectivity is restricted by the hiding effect described by Parker and Klingeman (1982), wherein larger particles protrude from the bed whereas small particles are shielded and hidden by larger particles, with the result that nearly all grain sizes become entrained at nearly the same shear stress.

Experimental observations suggest that a uniform free-surface flow over a cohesion-less plane bed is unable to entrain sediments below a critical value of the ratio between measures of hydrodynamic(destabilizing) and gravitational(stabilizing) forces acting on sediment particles, the so-called Shields stress . This quantity reads as:


where is the friction velocity, s is the relative particle density, d is an effective particle diameter which is entrained by the flow, and g is gravity. Meyer-Peter-Müller formula for the bed load capacity under equilibrium and uniform flow conditions states that the magnitude of the bed load flux for unit width is proportional to the excess of shear stress with respect to a critical one . Specifically, is a monotonically increasing nonlinear function of the excess Shields stress , typically expressed in the form of a power law. .

Bed material load

Three components that are included in the load of a river system are the following: dissolved load, wash load and bed material load. The bed material load is the portion of the sediment that is transported by a stream that contains material derived from the bed. Bed material load typically consists of all of the bed load, and the proportion of the suspended load that is represented in the bed sediments. It generally consists of grains coarser than 0.062 mm with the principal source being the channel bed. Its importance lies in that its composition is that of the bed, and the material in transport can therefore be actively interchanged with the bed. For this reason, bed material load exerts a control on river channel morphology. Bed load and wash load (the sediment that rides high in the flow and does not extract non-negligible momentum from it) together constitute the total load of sediment in a stream. The order in which the three components of load have been considered – dissolved, wash, bed material – can be thought of as progression: of increasingly slower transport velocities, so that the load peak lags further and further behind the flow peak during any event.

Bedrock river

A bedrock river is a river that has little to no alluvium mantling the bedrock over which it flows. However, most bedrock rivers are not pure forms; they are a combination of a bedrock channel and an alluvial channel. The way one can distinguish between bedrock rivers and alluvial rivers is through the extent of sediment cover.

The extent of sediment coverage is based upon the sediment flux supplied to the channel and the channel transport capacity. Bedrock rivers are typically found in upland or mountainous regions. Their formation can have several erosional factors.

Bedrock rivers are also one of the only ways to study incision into bedrock that is not related to glaciers.


A davit is any of various crane-like devices used on a ship for supporting, raising, and lowering equipment such as boats and anchors. The term sometimes refers to structural arms in other applications where a suspended load is supported in similar fashion to the naval application.

Davit systems are most often used to lower an emergency lifeboat to the embarkation level to be boarded. Davits can also be used as man-overboard safety devices to retrieve personnel from the water.

The lifeboat davit has falls (now made of wire, historically of manila rope) that are used to lower the lifeboat into the water. "Davit" can also refer to a single mechanical arm with a winch for lowering and raising spare parts onto a vessel and for lowering any other equipment from the deck of a vessel or a pontoon to the water.

The maintaining and operation of davits is all under jurisdiction of the International Maritime Organization. The regulations are enforced by the country's own Coast Guard.


In geology, denudation involves the processes that cause the wearing away of the Earth's surface by moving water, by ice, by wind and by waves, leading to a reduction in elevation and in relief of landforms and of landscapes. Endogenous processes such as volcanoes, earthquakes, and plate tectonics uplift and expose continental crust to the exogenous processes of weathering, of erosion, and of mass wasting.

Deposition (geology)

Deposition is the geological process in which sediments, soil and rocks are added to a landform or land mass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.

Deposition occurs when the forces responsible for sediment transportation are no longer sufficient to overcome the forces of gravity and friction, creating a resistance to motion; this is known as the null-point hypothesis. Deposition can also refer to the buildup of sediment from organically derived matter or chemical processes. For example, chalk is made up partly of the microscopic calcium carbonate skeletons of marine plankton, the deposition of which has induced chemical processes (diagenesis) to deposit further calcium carbonate. Similarly, the formation of coal begins with deposition of organic material, mainly from plants, in anaerobic conditions.

Dissolved load

Dissolved load is the portion of a stream's total sediment load that is carried in solution, especially ions from chemical weathering. It is a major contributor to the total amount of material removed from a river's drainage basin, along with suspended load and bed load. The amount of material carried as dissolved load is typically much smaller than the suspended load, though this is not always the case, particularly when the available river flow is mostly harnessed for purposes such as irrigation or industrial uses. Dissolved load comprises a significant portion of the total material flux out of a landscape, and its composition is important in regulating the chemistry and biology of the stream water.

The dissolved load is primarily controlled by the rate of chemical weathering, which depends on climate and weather conditions such as moisture and temperature. Dissolved load has many useful applications within the field of geology, including erosion, denudation, and reconstructing climate in the past.

FV180 Combat Engineer Tractor

The FV180 Combat Engineer Tractor or C.E.T. is an amphibious specialist armoured vehicle of the British Army and has been in general service since 1976. A tracked, lightly armoured vehicle, with amphibious capability, the CET is used by Royal Engineers in ground preparation for bridge construction and towing activities in the front line of battle, such as digging vehicle fighting pits, constructing earthen barriers, repairing roads, recovery of disabled vehicles from water and other obstacles, preparing riverbanks for vehicle crossings and clearing obstacles.

Fluvial processes

In geography and geology, fluvial processes are associated with rivers and streams and the deposits and landforms created by them. When the stream or rivers are associated with glaciers, ice sheets, or ice caps, the term glaciofluvial or fluvioglacial is used.

Glaciolacustrine deposits

Sediments deposited into lakes that have come from glaciers are called glaciolacustrine deposits. These lakes include ice margin lakes or other types formed from glacial erosion or deposition. Sediments in the bedload and suspended load are carried into lakes and deposited. The bedload is deposited at the lake margin while the suspended load is deposited all over the lake bed.

ISO 7010

ISO 7010 is an International Organization for Standardization technical standard for graphical hazard symbols on hazard and safety signs, including those indicating emergency exits. It uses colours and principles set out in ISO 3864 for these symbols, and is intended to provide "safety information that relies as little as possible on the use of words to achieve understanding." It is distinct from the Globally Harmonized System of Classification and Labelling of Chemicals specified by the United Nations to standardise hazardous material classification and labelling.

As of August 2019, the latest version is ISO 7010:2019. This revision incorporates all previous corrigenda, as well as incorporates water safety signs and beach safety flags previously specified in (the now-withdrawn) ISO 20712.

Rouse number

The Rouse number (P or Z) is a non-dimensional number in fluid dynamics which is used to define a concentration profile of suspended sediment and which also determines how sediment will be transported in a flowing fluid. It is a ratio between the sediment fall velocity and the upwards velocity on the grain as a product of the von Kármán constant and the shear velocity .

Occasionally the factor β is included before the von Kármán constant in the equation, which is a constant which correlates eddy viscosity to eddy diffusivity. This is generally taken to be equal to 1, and therefore is ignored in actual calculation. However, it should not be ignored when considering the full equation.

It is named after the American fluid dynamicist Hunter Rouse. It is a characteristic scale parameter in the Rouse Profile of suspended sediment concentration with depth in a flowing fluid. The concentration of suspended sediment with depth goes as the power of the negative Rouse number. It also is used to determine how the particles will move in the fluid. The required Rouse numbers for transport as bed load, suspended load, and wash load, are given below.


Sediment is a naturally occurring material that is broken down by processes of weathering and erosion, and is subsequently transported by the action of wind, water, or ice or by the force of gravity acting on the particles. For example, sand and silt can be carried in suspension in river water and on reaching the sea bed deposited by sedimentation. If buried, they may eventually become sandstone and siltstone (sedimentary rocks) through lithification.

Sediments are most often transported by water (fluvial processes), but also wind (aeolian processes) and glaciers. Beach sands and river channel deposits are examples of fluvial transport and deposition, though sediment also often settles out of slow-moving or standing water in lakes and oceans. Desert sand dunes and loess are examples of aeolian transport and deposition. Glacial moraine deposits and till are ice-transported sediments.

Sediment transport

Sediment transport is the movement of solid particles (sediment), typically due to a combination of gravity acting on the sediment, and/or the movement of the fluid in which the sediment is entrained. Sediment transport occurs in natural systems where the particles are clastic rocks (sand, gravel, boulders, etc.), mud, or clay; the fluid is air, water, or ice; and the force of gravity acts to move the particles along the sloping surface on which they are resting. Sediment transport due to fluid motion occurs in rivers, oceans, lakes, seas, and other bodies of water due to currents and tides. Transport is also caused by glaciers as they flow, and on terrestrial surfaces under the influence of wind. Sediment transport due only to gravity can occur on sloping surfaces in general, including hillslopes, scarps, cliffs, and the continental shelf—continental slope boundary.

Sediment transport is important in the fields of sedimentary geology, geomorphology, civil engineering and environmental engineering (see applications, below). Knowledge of sediment transport is most often used to determine whether erosion or deposition will occur, the magnitude of this erosion or deposition, and the time and distance over which it will occur.


Sedimentation is the tendency for particles in suspension to settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to the forces acting on them: these forces can be due to gravity, centrifugal acceleration, or electromagnetism. In geology, sedimentation is often used as the opposite of erosion, i.e., the terminal end of sediment transport. In that sense, it includes the termination of transport by saltation or true bedload transport. Settling is the falling of suspended particles through the liquid, whereas sedimentation is the termination of the settling process. In estuarine environments, settling can be influenced by the presence or absence of vegetation. Trees such as mangroves are crucial to the attenuation of waves or currents, promoting the settlement of suspended particles.Sedimentation may pertain to objects of various sizes, ranging from large rocks in flowing water to suspensions of dust and pollen particles to cellular suspensions to solutions of single molecules such as proteins and peptides. Even small molecules supply a sufficiently strong force to produce significant sedimentation.

The term is typically used in geology to describe the deposition of sediment which results in the formation of sedimentary rock, but it is also used in various chemical and environmental fields to describe the motion of often-smaller particles and molecules. This process is also used in the biotech industry to separate cells from the culture media.


Silt is granular material of a size between sand and clay, whose mineral origin is quartz and feldspar. Silt may occur as a soil (often mixed with sand or clay) or as sediment mixed in suspension with water (also known as a suspended load) and soil in a body of water such as a river. It may also exist as soil deposited at the bottom of a water body, like mudflows from landslides. Silt has a moderate specific area with a typically non-sticky, plastic feel. Silt usually has a floury feel when dry, and a slippery feel when wet. Silt can be visually observed with a hand lens, exhibiting a sparkly appearance. It also can be felt by the tongue as granular when placed on the front teeth (even when mixed with clay particles).

Stream load

Stream load is a geologic term referring to the solid matter carried by a stream (Strahler and Strahler, 2006). Erosion and bed shear stress continually remove mineral material from the bed and banks of the stream channel, adding this material to the regular flow of water. The amount of solid load that a stream can carry, or stream capacity, is measured in metric tons per day, passing a given location. Stream capacity is dependent upon the stream's velocity, the amount of water flow, and the gradation (because streams that occur on steeper slopes tend to have greater flow and velocity) (Strahler and Strahler, 2006).


A turbidite is the geologic deposit of a turbidity current, which is a type of sediment gravity flow responsible for distributing vast amounts of clastic sediment into the deep ocean.



This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.