Surface water

Surface water is water on the surface of continents such as in a river, lake, or wetland. It can be contrasted with groundwater and atmospheric water.

Non-saline surface water uses is replenished by precipitation and by recruitment from ground-water. It is lost through evaporation, seepage into the ground where it becomes ground-water, used by plants for transpiration, extracted by mankind for agriculture, living, industry etc. or discharged to the sea where it becomes saline.

AlapahaRiver2002
Image of the entire surface water flow of the Alapaha River near Jennings, Florida going into a sinkhole leading to the Floridan Aquifer groundwater.

Conjunctive use of ground and surface water

Surface and groundwater are two separate entities, so they must be regarded as such. However, there is an ever-increasing need for management of the two as they are part of an interrelated system that is paramount when the demand for water exceeds the available supply (Fetter 464). Depletion of surface and ground water sources for public consumption (including industrial, commercial, and residential) is caused by over-pumping. Aquifers near river systems that are over-pumped have been known to deplete surface water sources as well. Research supporting this has been found in numerous water budgets for a multitude of cities.

Response times for an aquifer are long (Young & Bredehoeft 1972). However, a total ban on ground water usage during water recessions would allow surface water to retain better levels required for sustainable aquatic life. By reducing ground water pumping, the surface water supplies will be able to maintain their levels, as they recharge from direct precipitation, surface runoff, etc.

See also

References

  • Applied Hydrogeology, Fourth Edition by C.W. Fetter.
  • R.A. Young and J.D. Bredehoeft Digital simulation for solving management problems with conjunctive groundwater and surface water systems from Water Resources Research 8:533-56

External links

Drainage basin

A drainage basin is any area of land where precipitation collects and drains off into a common outlet, such as into a river, bay, or other body of water. The drainage basin includes all the surface water from rain runoff, snowmelt, and nearby streams that run downslope towards the shared outlet, as well as the groundwater underneath the earth's surface. Drainage basins connect into other drainage basins at lower elevations in a hierarchical pattern, with smaller sub-drainage basins, which in turn drain into another common outlet. Other terms used interchangeably with drainage basin are catchment area, catchment basin, drainage area, river basin, and water basin, also impluvium. In North America, the term watershed is commonly used to mean a drainage basin, though in other English-speaking countries, it is used only in its original sense, that of a drainage divide.

In a closed drainage basin, or endorheic basin, the water converges to a single point inside the basin, known as a sink, which may be a permanent lake, a dry lake, or a point where surface water is lost underground.The drainage basin acts as a funnel by collecting all the water within the area covered by the basin and channelling it to a single point. Each drainage basin is separated topographically from adjacent basins by a perimeter, the drainage divide, making up a succession of higher geographical features (such as a ridge, hill or mountains) forming a barrier.

Drainage basins are similar but not identical to hydrologic units, which are drainage areas delineated so as to nest into a multi-level hierarchical drainage system. Hydrologic units are defined to allow multiple inlets, outlets, or sinks. In a strict sense, all drainage basins are hydrologic units but not all hydrologic units are drainage basins.

Groundwater

Groundwater is the water present beneath Earth's surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from and eventually flows to the surface naturally; natural discharge often occurs at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Typically, groundwater is thought of as water flowing through shallow aquifers, but, in the technical sense, it can also contain soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermal or oil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of Earth's subsurface contains some water, which may be mixed with other fluids in some instances. Groundwater may not be confined only to Earth. The formation of some of the landforms observed on Mars may have been influenced by groundwater. There is also evidence that liquid water may also exist in the subsurface of Jupiter's moon Europa.Groundwater is often cheaper, more convenient and less vulnerable to pollution than surface water. Therefore, it is commonly used for public water supplies. For example, groundwater provides the largest source of usable water storage in the United States, and California annually withdraws the largest amount of groundwater of all the states. Underground reservoirs contain far more water than the capacity of all surface reservoirs and lakes in the US, including the Great Lakes. Many municipal water supplies are derived solely from groundwater.Polluted groundwater is less visible and more difficult to clean up than pollution in rivers and lakes. Groundwater pollution most often results from improper disposal of wastes on land. Major sources include industrial and household chemicals and garbage landfills, excessive fertilizers and pesticides used in agriculture, industrial waste lagoons, tailings and process wastewater from mines, industrial fracking, oil field brine pits, leaking underground oil storage tanks and pipelines, sewage sludge and septic systems.

Groundwater pollution

Groundwater pollution (also called groundwater contamination) occurs when pollutants are released to the ground and make their way down into groundwater. This type of water pollution can also occur naturally due to the presence of a minor and unwanted constituent, contaminant or impurity in the groundwater, in which case it is more likely referred to as contamination rather than pollution.

The pollutant often creates a contaminant plume within an aquifer. Movement of water and dispersion within the aquifer spreads the pollutant over a wider area. Its advancing boundary, often called a plume edge, can intersect with groundwater wells or daylight into surface water such as seeps and springs, making the water supplies unsafe for humans and wildlife. The movement of the plume, called a plume front, may be analyzed through a hydrological transport model or groundwater model. Analysis of groundwater pollution may focus on soil characteristics and site geology, hydrogeology, hydrology, and the nature of the contaminants.

Pollution can occur from on-site sanitation systems, landfills, effluent from wastewater treatment plants, leaking sewers, petrol filling stations or from over application of fertilizers in agriculture. Pollution (or contamination) can also occur from naturally occurring contaminants, such as arsenic or fluoride. Using polluted groundwater causes hazards to public health through poisoning or the spread of disease.

Different mechanisms have influence on the transport of pollutants, e.g. diffusion, adsorption, precipitation, decay, in the groundwater. The interaction of groundwater contamination with surface waters is analyzed by use of hydrology transport models.

Hydrology

Hydrology (from Greek: ὕδωρ, "hýdōr" meaning "water"; and λόγος, "lógos" meaning "study") is the scientific study of the movement, distribution, and quality of water on Earth and other planets, including the water cycle, water resources and environmental watershed sustainability. A practitioner of hydrology is a hydrologist, working within the fields of earth or environmental science, physical geography, geology or civil and environmental engineering. Using various analytical methods and scientific techniques, they collect and analyze data to help solve water related problems such as environmental preservation, natural disasters, and water management.Hydrology subdivides into surface water hydrology, groundwater hydrology (hydrogeology), and marine hydrology. Domains of hydrology include hydrometeorology, surface hydrology, hydrogeology, drainage-basin management and water quality, where water plays the central role.

Oceanography and meteorology are not included because water is only one of many important aspects within those fields.

Hydrological research can inform environmental engineering, policy and planning.

Hyporheic zone

The hyporheic zone is the region of sediment and porous space beneath and alongside a stream bed, where there is mixing of shallow groundwater and surface water. The flow dynamics and behavior in this zone (termed hyporheic flow or underflow) is recognized to be important for surface water/groundwater interactions, as well as fish spawning, among other processes. As an innovative urban water management practice, the hyporheic zone can be designed by engineers and actively managed for improvements in both water quality and riparian habitat.The assemblage of organisms which inhabits this zone are called hyporheos.

The term hyporheic was originally coined by Traian Orghidan in 1959 by combining two Greek words: hypo (below) and rheos (flow).

List of countries and dependencies by area

This is a list of the world's countries and their dependent territories by area, ranked by total area.

Entries in this list include, but are not limited to, those in the ISO 3166-1 standard, which includes sovereign states and dependent territories. Largely unrecognised states not in ISO 3166-1 are included in the list in ranked order, but are not given a rank number. The areas of such largely unrecognised states are in most cases also included in the areas of the more widely recognised states that claim the same territory; see the notes in the "notes" column for each country for clarification.

Not included in the list are individual country claims to parts of the continent of Antarctica, entities such as the European Union that have some degree of sovereignty but do not consider themselves to be sovereign countries or dependent territories, and unrecognised micronations such as the Principality of Sealand.

This list includes three measurements of area:

Total area: the sum of land and water areas within international boundaries and coastlines.

Land area: the aggregate of all land within international boundaries and coastlines, excluding water area.

Water area: the sum of the surface areas of all inland water bodies (lakes, reservoirs, and rivers) within international boundaries and coastlines. Coastal internal waters (some small bays) may be included. Territorial waters are not included unless otherwise noted. Contiguous zones and exclusive economic zones are not included.Data is taken from the United Nations Statistics Division unless otherwise noted.

List of surface water sports

The following is a list of surface water sports; these are sports which are performed atop a body of water.

Overdrafting

Overdrafting is the process of extracting groundwater beyond the equilibrium yield of the aquifer.

There are two sets of yields, safe yield and sustainable yield. Safe yield is the amount of water that can be taken out of the ground without there being any undesirable results. Sustainable yield is extraction that takes into account both recharge rate and surface water impacts.

There are two types of aquifers: confined and unconfined. In confined aquifers, there is an overbearing layer called aquitard, which contains impermeable materials through which groundwater cannot be extracted. In unconfined aquifers, there is no aquitard, and groundwater can be freely extracted from the surface. Extracting groundwater from unconfined aquifers is like borrowing the water, it has to be recharged at a proper amount. If recharge is not done in proper amounts there can be many impacts. Recharge may happen through artificial recharge and natural recharge.Natural process of recharge is done through percolation of surface water. Artificial process of recharging the aquifer is through means of pumping reclaimed water from wastewater management projects directly into the aquifer. An example is the Orange County Water District in the State of California. This organization take waste water, treats it to a proper level, and then systematically pumps it back into the aquifers for artificial recharge.

When groundwater is extracted the water is primarily pulled from the aquifer which creates a cone depression around the well. When drafting of water continues the cone of depression increases in width. The increase in width leads to the negative impacts caused by overdrafting, such as drop of the water table, land subsidence, and loss of surface water reaching the streams. In extreme cases the supply of water to naturally recharge the aquifers is pulled directly from streams and rivers, leading to depletion of water levels in streams and rivers. The depletion of water in rivers and streams has an effect on wildlife, as well as humans who might be using the water for other purposes.Since every groundwater basin recharges at a different rate depending upon precipitation, vegetative cover and soil conservation practises, the quantity of groundwater that can be safely pumped varies greatly among regions of the world and even within provinces. Some aquifers require a very long time to recharge and thus the process of overdrafting can have consequences of effectively drying up certain sub-surface water supplies. Subsidence occurs when excessive groundwater is extracted from rocks that support more weight when saturated. This can lead to a capacity reduction in the aquifer.Groundwater is the fresh water that can be found underground; it is also one of the largest sources. Groundwater depletion can be comparable to ¨money in a bank¨, The primary cause of groundwater depletion is pumping or the excessive pulling up of groundwater from underground aquifers.

Powertrain

In a motor vehicle, the powertrain or powerplant comprises the main components that generate power and deliver it to the road surface, water, or air. This includes the engine, transmission, drive shafts, differentials, and the final drive (drive wheels, continuous track as in military tanks or caterpillar tractors, propeller, etc.). More recently in hybrid powertrains the battery, the electric motor and the control algorithm are also seen as elements of the powertrain.

A motor vehicle's driveline or drivetrain consists of the parts of the powertrain excluding the engine. It is the portion of a vehicle, after the prime mover, that changes depending on whether a vehicle is front-wheel, rear-wheel, or four-wheel drive, or less-common six-wheel or eight-wheel drive.

In a wider sense, the powertrain includes all of its components used to transform stored (chemical, solar, nuclear, kinetic, potential, etc.) energy into kinetic energy for propulsion purposes. This includes the utilization of multiple power sources and non–wheel-based vehicles.

Storm drain

A storm drain, storm sewer (U.S. and Canada), surface water drain/sewer (United Kingdom), or stormwater drain (Australia and New Zealand) is infrastructure designed to drain excess rain and ground water from impervious surfaces such as paved streets, car parks, parking lots, footpaths, sidewalks, and roofs. Storm drains vary in design from small residential dry wells to large municipal systems.

Drains receive water from street gutters on most motorways, freeways and other busy roads, as well as towns in areas with heavy rainfall that leads to flooding, and coastal towns with regular storms. Even gutters from houses and buildings can connect to the storm drain. Many storm drainage systems are gravity sewers that drain untreated storm water into rivers or streams—so it is unacceptable to pour hazardous substances into the drains.

Storm drains often cannot manage the quantity of rain that falls in heavy rains or storms. Inundated drains can cause basement and street flooding. In many areas require detention tanks inside a property that temporarily hold runoff in heavy rains and restrict outlet flow to the public sewer. This reduces the risk of overwhelming the public sewer. Some storm drains mix stormwater (rainwater) with sewage, either intentionally in the case of combined sewers, or unintentionally.

Stream

A stream is a body of water with surface water flowing within the bed and banks of a channel. The stream encompasses surface and groundwater fluxes that respond to geological, geomorphological, hydrological and biotic controls.Depending on its location or certain characteristics, a stream may be referred to by a variety of local or regional names. Long large streams are usually called rivers.

Streams are important as conduits in the water cycle, instruments in groundwater recharge, and corridors for fish and wildlife migration. The biological habitat in the immediate vicinity of a stream is called a riparian zone. Given the status of the ongoing Holocene extinction, streams play an important corridor role in connecting fragmented habitats and thus in conserving biodiversity. The study of streams and waterways in general is known as surface hydrology and is a core element of environmental geography.

Surface runoff

Surface runoff (also known as overland flow) is the flow of water that occurs when excess storm water, melt water, or other sources flows over the Earth's surface. This might occur because soil is saturated to full capacity, because rain arrives more quickly than soil can absorb it, or because impervious areas (roofs and pavement) send their runoff to surrounding soil that cannot absorb all of it. Surface runoff is a major component of the water cycle. It is the primary agent in soil erosion by water.Runoff that occurs on the ground surface before reaching a channel is also called a non point source. If a nonpoint source contains man-made contaminants, or natural forms of pollution (such as rotting leaves) the runoff is called nonpoint source pollution. A land area which produces runoff that drains to a common point is called a drainage basin. When runoff flows along the ground, it can pick up soil contaminants including petroleum, pesticides, or fertilizers that become discharge or nonpoint source pollution.In addition to causing water erosion and pollution, surface runoff in urban areas is a primary cause of urban flooding which can result in property damage, damp and mold in basements, and street flooding.

Sustainable landscape architecture

Sustainable landscape architecture is a category of sustainable design concerned with the planning and design of outdoor space.This can include ecological, politically correct, social and economic aspects of sustainability. For example, the design of a sustainable urban drainage system can: improve habitats for fauna and flora; improve recreational facilities, because people love to be beside water; save money, because building culverts is expensive and floods cause severe financial harm.

The design of a green roof or a roof garden can also contribute to the sustainability of a landscape architecture project. The roof will help manage surface water, provide for wildlife and provide for recreation.

Sustainability appears to be a new addition to the traditional Vitruvian objectives of the design process: a structure must be solid, useful, and beautiful (firmitas, utilitas, venustas). But it can be seen as an aspect of both solidity and usefulness: an outdoor space is likely to last longer and give more usefulness to its owners if it requires low inputs of energy, water, fertiliser etc., and if it produces fewer outputs of noise, pollution, surface water runoff etc.

Thermocline

A thermocline (also known as the thermal layer or the metalimnion in lakes) is a thin but distinct layer in a large body of fluid (e.g. water, as in an ocean or lake; or air, e.g. an atmosphere) in which temperature changes more rapidly with depth than it does in the layers above or below. In the ocean, the thermocline divides the upper mixed layer from the calm deep water below.

Depending largely on season, latitude, and turbulent mixing by wind, thermoclines may be a semi-permanent feature of the body of water in which they occur, or they may form temporarily in response to phenomena such as the radiative heating/cooling of surface water during the day/night. Factors that affect the depth and thickness of a thermocline include seasonal weather variations, latitude, and local environmental conditions, such as tides and currents.

Tributary

A tributary or affluent is a stream or river that flows into a larger stream or main stem (or parent) river or a lake. A tributary does not flow directly into a sea or ocean. Tributaries and the main stem river drain the surrounding drainage basin of its surface water and groundwater, leading the water out into an ocean.

A confluence, where two or more bodies of water meet together, usually refers to the joining of tributaries.

The opposite to a tributary is a distributary, a river or stream that branches off from and flows away from the main stream. Distributaries are most often found in river deltas.

Upwelling

Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water towards the ocean surface, replacing the warmer, usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. Due to the biomass of phytoplankton and presence of cool water in these regions, upwelling zones can be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll-a.The increased availability of nutrients in upwelling regions results in high levels of primary production and thus fishery production. Approximately 25% of the total global marine fish catches come from five upwellings that occupy only 5% of the total ocean area. Upwellings that are driven by coastal currents or diverging open ocean have the greatest impact on nutrient-enriched waters and global fishery yields.

Water pollution

Water pollution is the contamination of water bodies, usually as a result of human activities. Water bodies include for example lakes, rivers, oceans, aquifers and groundwater. Water pollution results when contaminants are introduced into the natural environment. For example, releasing inadequately treated wastewater into natural water bodies can lead to degradation of aquatic ecosystems. In turn, this can lead to public health problems for people living downstream. They may use the same polluted river water for drinking or bathing or irrigation. Water pollution is the leading worldwide cause of death and disease, e.g. due to water-borne diseases.Water pollution can be grouped into surface water pollution. Marine pollution and nutrient pollution are subsets of water pollution. Sources of water pollution are either point sources and non-point sources. Point sources have one identifiable cause of the pollution, such as a storm drain, wastewater treatment plant or stream. Non-point sources are more diffuse, such as agricultural runoff. Pollution is the result of the cumulative effect over time. All plants and organisms living in or being exposed to polluted water bodies can be impacted. The effects can damage individual species and impact the natural biological communities they are part of.

The causes of water pollution include a wide range of chemicals and pathogens as well as physical parameters. Contaminants may include organic and inorganic substances. Elevated temperatures can also lead to polluted water. A common cause of thermal pollution is the use of water as a coolant by power plants and industrial manufacturers. Elevated water temperatures decrease oxygen levels, which can kill fish and alter food chain composition, reduce species biodiversity, and foster invasion by new thermophilic species.Water pollution is measured by analysing water samples. Physical, chemical and biological tests can be done. Control of water pollution requires appropriate infrastructure and management plans. The infrastructure may include wastewater treatment plants. Sewage treatment plants and industrial wastewater treatment plants are usually required to protect water bodies from untreated wastewater. Agricultural wastewater treatment for farms, and erosion control from construction sites can also help prevent water pollution. Nature-based solutions are another approach to prevent water pollution. Effective control of urban runoff includes reducing speed and quantity of flow. In the United States, best management practices for water pollution include approaches to reduce the quantity of water and improve water quality.

Water resources

Water resources are natural resources of water that are potentially useful. Uses of water include agricultural, industrial, household, recreational and environmental activities. All living things require water to grow and reproduce.

97% of the water on the Earth is salt water and only three percent is fresh water; slightly over two thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air.Fresh water is a renewable resource, yet the world's supply of groundwater is steadily decreasing, with depletion occurring most prominently in Asia, South America and North America, although it is still unclear how much natural renewal balances this usage, and whether ecosystems are threatened. The framework for allocating water resources to water users (where such a framework exists) is known as water rights.

Zungenbecken

A Zungenbecken, also called a tongue basin or tongue-basin, is part of a succession of ice age geological landforms, known as a glacial series. It is a hollow that is left behind by the ice mass, as the snout of the glacier (German: Gletscherzunge) recedes, which initially fills with meltwater, forming a proglacial lake, and later may be filled with surface water from streams or precipitation. When the glacier has more fully retreated this produces a finger lake or glacial piedmont lake (German: Zungenbeckensee, known as a Gletscherendsee of the glacial series in the Alpine Foreland). The term Zungenbecken is of German origin, but used in English language sources.Examples are the Tegernsee, Ammersee, Starnberger See, Lake Constance, Chiemsee, Tollensesee and the Baltic Sea.

Air
Energy
Land
Life
Water
Related

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.