Subsidence is the sudden sinking or gradual downward settling of the ground's surface with little or no horizontal motion. The definition of subsidence is not restricted by the rate, magnitude, or area involved in the downward movement. It may be caused by natural processes or by human activities. The former include various karst phenomena, thawing of permafrost, consolidation, oxidation of organic soils, slow crustal warping (isostatic adjustment), normal faulting, caldera subsidence, or withdrawal of fluid lava from beneath a solid crust. The human activities include sub-surface mining or extraction of underground fluids, e. g. petroleum, natural gas, or groundwater.[1][2] Ground subsidence is of global concern to geologists, geotechnical engineers, surveyors, engineers, urban planners, landowners, and the public in general.[3]

Crooked house dudley
Subsided house, called The Crooked House, the result of 19th-century mining subsidence.
Mam Tor road destroyed by subsidence and shear, near Castleton, Derbyshire.

Dissolution of limestone

Subsidence frequently causes major problems in karst terrains, where dissolution of limestone by fluid flow in the subsurface creates voids (i.e., caves). If the roof of a void becomes too weak, it can collapse and the overlying rock and earth will fall into the space, causing subsidence at the surface. This type of subsidence can cause sinkholes which can be many hundreds of meters deep.


Several types of sub-surface mining, and specifically methods which intentionally cause the extracted void to collapse (such as pillar extraction, longwall mining and any metalliferous mining method which uses "caving" such as "block caving" or "sub-level caving") will result in surface subsidence. Mining-induced subsidence is relatively predictable in its magnitude, manifestation and extent, except where a sudden pillar or near-surface tunnel collapse occurs (usually very old workings[4]). Mining-induced subsidence is nearly always very localized to the surface above the mined area, plus a margin around the outside.[5] The vertical magnitude of the subsidence itself typically does not cause problems, except in the case of drainage (including natural drainage)–rather, it is the associated surface compressive and tensile strains, curvature, tilts and horizontal displacement that are the cause of the worst damage to the natural environment, buildings and infrastructure.[6]

Where mining activity is planned, mining-induced subsidence can be successfully managed if there is co-operation from all of the stakeholders. This is accomplished through a combination of careful mine planning, the taking of preventive measures, and the carrying out of repairs post-mining.

Wiki Image Rev1
Types of ground subsidence

Extraction of natural gas

If natural gas is extracted from a natural gas field the initial pressure (up to 60 MPa (600 bar)) in the field will drop over the years. The pressure helps support the soil layers above the field. If the gas is extracted, the overburden pressure sediment compacts and may lead to earthquakes and subsidence at the ground level.

Since exploitation of the Slochteren (Netherlands) gas field started in the late 1960s the ground level over a 250 km² area has dropped by a current maximum of 30 cm.[7]


Land subsidence can occur in various ways during an earthquake. Large areas of land can subside drastically during an earthquake because of offset along fault lines. Land subsidence can also occur as a result of settling and compacting of unconsolidated sediment from the shaking of an earthquake.[8]

The Geospatial Information Authority of Japan reported immediate subsidence caused by the 2011 Tōhoku earthquake.[9] In Northern Japan, subsidence of 0.50 m (1.64 ft) was observed on the coast of the Pacific Ocean in Miyako, Tōhoku, while Rikuzentakata, Iwate measured 0.84 m (2.75 ft). In the south at Sōma, Fukushima, 0.29 m (0.95 ft) was observed. The maximum amount of subsidence was 1.2 m (3.93 ft), coupled with horizontal diastrophism of up to 5.3 m (17.3 ft) on the Oshika Peninsula in Miyagi Prefecture.[10]

Groundwater-related subsidence

Groundwater-related subsidence is the subsidence (or the sinking) of land resulting from groundwater extraction. It is a growing problem in the developing world as cities increase in population and water use, without adequate pumping regulation and enforcement. One estimate has 80% of serious land subsidence problems associated with the excessive extraction of groundwater,[11] making it a growing problem throughout the world.

Groundwater fluctuations can also indirectly affect the decay of organic material. The habitation of lowlands, such as coastal or delta plains, requires drainage. The resulting aeration of the soil leads to the oxidation of its organic components, such as peat, and this decomposition process may cause significant land subsidence. This applies especially when groundwater levels are periodically adapted to subsidence, in order to maintain desired unsaturated zone depths, exposing more and more peat to oxygen. In addition to this, drained soils consolidate as a result of increased effective stress.[12][13] In this way, land subsidence has the potential of becoming self-perpetuating, having rates up to 5 cm/yr. Water management used to be tuned primarily to factors such as crop optimization but, to varying extents, avoiding subsidence has come to be taken into account as well.

Faulting induced

When differential stresses exist in the Earth, these can be accommodated either by geological faulting in the brittle crust, or by ductile flow in the hotter and more fluid mantle. Where faults occur, absolute subsidence may occur in the hanging wall of normal faults. In reverse, or thrust, faults, relative subsidence may be measured in the footwall.

Isostatic subsidence

The crust floats buoyantly in the asthenosphere, with a ratio of mass below the "surface" in proportion to its own density and the density of the asthenosphere. If mass is added to a local area of the crust (e.g., through deposition), the crust subsides to compensate and maintain isostatic balance.

The opposite of isostatic subsidence is known as isostatic rebound—the action of the crust returning (sometimes over periods of thousands of years) to a state of isostacy, such as after the melting of large ice sheets or the drying-up of large lakes after the last ice age. Lake Bonneville is a famous example of isostatic rebound. Due to the weight of the water once held in the lake, the earth's crust subsided nearly 200 feet (61 m) to maintain equilibrium. When the lake dried up, the crust rebounded. Today at Lake Bonneville, the center of the former lake is about 200 feet (61 m) higher than the former lake edges.

Seasonal effects

Many soils contain significant proportions of clay. Because of the very small particle size, they are affected by changes in soil moisture content. Seasonal drying of the soil results in a lowering of both the volume and the surface of the soil. If building foundations are above the level reached by seasonal drying, they move, possibly resulting in damage to the building in the form of tapering cracks.

Trees and other vegetation can have a significant local effect on seasonal drying of soils. Over a number of years, a cumulative drying occurs as the tree grows. That can lead to the opposite of subsidence, known as heave or swelling of the soil, when the tree declines or is felled. As the cumulative moisture deficit is reversed, which can last up to 25 years, the surface level around the tree will rise and expand laterally. That often damages buildings unless the foundations have been strengthened or designed to cope with the effect.

See also


  1. ^ Neuendorf, K. K. E., J. P. Mehl, Jr., and J. A. Jackson, eds. (205) Glossary of Geology (5th ed.) Alexandria, Virginia, American Geological Institute. 779 pp. ISBN 0-922152-76-4
  2. ^ Galloway, D.L., Jones, D. R. and Ingebritsen, S. E., 1999. Land subsidence in the United States. Circular 1182. US Department of the Interior, US Geological Survey, Reston, Virginia. 177 pp.
  3. ^ National Research Council, 1991. Mitigating losses from land subsidence in the United States. National Academies Press. 58 p.
  4. ^ Herrera, G.; Tomás, R.; López-Sánchez, J.M.; Delgado, J.; Mallorquí, J.; Duque, S.; Mulas, J. Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain). Engineering Geology, 90, 148-159, 2007.
  5. ^ "Graduated Guidelines for Residential Construction (New South Wales) Volume 1" (PDF). Retrieved 2012-11-19.
  6. ^ G. Herrera, M.I. Álvarez Fernández, R. Tomás, C. González-Nicieza, J. M. Lopez-Sanchez, A.E. Álvarez Vigil. Forensic analysis of buildings affected by mining subsidence based on Differential Interferometry (Part III). Engineering Failure Analysis 24, 67-76, 2012.
  7. ^ Subsidence lecture Archived 2004-10-30 at the Wayback Machine
  8. ^ "Earthquake Induced Land Subsidence". Retrieved 2018-06-25.
  9. ^ 平成23年(2011年)東北地方太平洋沖地震に伴う地盤沈下調査 [Land subsidence caused by 2011 Tōhoku earthquake and tsunami] (in Japanese). Geospatial Information Authority of Japan. 2011-04-14. Retrieved 2011-04-17.
  10. ^ Report date on 19 March 2011, [1] Diastrophism in Oshika Peninsula on 2011 Tōhoku earthquake and tsunami, Diastrophism in vertical 2011-03-11 M9.0, Diastrophism in horizontal 2011-03-11 M9.0 Geospatial Information Authority of Japan
  11. ^ USGS Fact Sheet-165-00 December 2000
  12. ^ Tomás, R.; Márquez, Y.; Lopez-Sanchez, J.M.; Delgado, J.; Blanco, P.; Mallorquí, J.J.; Martínez, M.; Herrera, M.; Mulas, J. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR interferometry: Vega Media of the Segura river (SE Spain) case study. Remote Sensing of Environment, 98, 269-283, 2005
  13. ^ R. Tomás, G. Herrera, J.M. Lopez-Sanchez, F. Vicente, A. Cuenca, J.J. Mallorquí. Study of the land subsidence in the Orihuela city (SE Spain) using PSI data: distribution, evolution, and correlation with conditioning and triggering factors. Engineering Geology, 115, 105-121, 2010.

An atoll ( ), sometimes called a coral atoll, is a ring-shaped coral reef including a coral rim that encircles a lagoon partially or completely. There may be coral islands or cays on the rim. The coral of the atoll often sits atop the rim of an extinct seamount or volcano which has eroded or subsided partially beneath the water. The lagoon forms over the volcanic crater or caldera while the higher rim remains above water or at shallow depths that permit the coral to grow and form the reefs. For the atoll to persist, continued erosion or subsidence must be at a rate slow enough to permit reef growth upward and outward to replace the lost height.

Bidyadhari River

Bidyadhari River (also spelt Bidyadhari or simply called Bidya), is a river in the Indian state of West Bengal. It originates near Haringhata in Nadia district and then flows through Deganga, Habra and Barasat areas of North 24 Parganas before joining the Raimangal River in the Sundarbans.The river has formed a major navigation route for earlier civilisations. The river port of Chandraketugarh in the third century BC was on the banks of this river. This river has been the major drainage system of North 24 Parganas and Kolkata.The Sundarbans area has a network of interconnecting waterways. The larger channels are often a mile wide running in a north-south direction. The Bidyadhari and other such channels now carry little freshwater as they are mostly cut off from the Ganges, the main source of fresh water. As a result of the subsidence of the Bengal Basin and a gradual eastward tilting of the overlying crust the Hooghly-Bhagirathi channels have progressively shifted eastwards since the seventeenth century.

Crater depth

The depth of any crater in a solid planet or moon - whether it is an impact crater, a volcanic crater, or a subsidence crater - may be measured from the local surface to the bottom of the crater, or from the rim of the crater to the bottom.

The diagram above shows the full (side) view of a typical crater. Depth "A" measures from the surface to the bottom of the crater. Depth "B" measures from the mean height of the rim to the bottom of the crater.

Escalante Desert

The Escalante Desert is a geographic Great Basin region and arid desert ecoregion, in the deserts and xeric shrublands biome, located in southwestern Utah.

Goose Creek Oil Field

The Goose Creek Oil Field is a large oil field in Baytown, Texas, on Galveston Bay. Discovered in 1903, and reaching maximum production in 1918 after a series of spectacular gushers, it was one of the fields that contributed to the Texas Oil Boom of the early 20th century. The field was also the location of the first offshore wells in Texas, and the second group of offshore wells in the United States. Consequences of the development of the Goose Creek field included an economic boom and associated influx of workers, the founding and fast growth of Baytown, and the building of the adjacent Baytown Refinery, which is now the 2nd largest oil refinery in the United States with a capacity of 584,000 barrels per day. The field remains active, having produced over 150 million barrels (24,000,000 m3) of oil in its 100-year history.The Goose Creek field is also the first place where subsidence of overlying terrain was attributed to the removal of oil from underneath. On the Goose Creek field, subsidence has damaged houses, roads, and businesses, and much of the oil field that was on land in the early years of its development is now submerged in Tabbs Bay. Subsidence-induced motion along faults on the field also caused the only earthquake of local origin ever felt in the Houston area.


Groundwater is the water present beneath Earth's surface in soil pore spaces and in the fractures of rock formations. A unit of rock or an unconsolidated deposit is called an aquifer when it can yield a usable quantity of water. The depth at which soil pore spaces or fractures and voids in rock become completely saturated with water is called the water table. Groundwater is recharged from the surface; it may discharge from the surface naturally at springs and seeps, and can form oases or wetlands. Groundwater is also often withdrawn for agricultural, municipal, and industrial use by constructing and operating extraction wells. The study of the distribution and movement of groundwater is hydrogeology, also called groundwater hydrology.

Typically, groundwater is thought of as water flowing through shallow aquifers, but, in the technical sense, it can also contain soil moisture, permafrost (frozen soil), immobile water in very low permeability bedrock, and deep geothermal or oil formation water. Groundwater is hypothesized to provide lubrication that can possibly influence the movement of faults. It is likely that much of Earth's subsurface contains some water, which may be mixed with other fluids in some instances. Groundwater may not be confined only to Earth. The formation of some of the landforms observed on Mars may have been influenced by groundwater. There is also evidence that liquid water may also exist in the subsurface of Jupiter's moon Europa.Groundwater is often cheaper, more convenient and less vulnerable to pollution than surface water. Therefore, it is commonly used for public water supplies. For example, groundwater provides the largest source of usable water storage in the United States, and California annually withdraws the largest amount of groundwater of all the states. Underground reservoirs contain far more water than the capacity of all surface reservoirs and lakes in the US, including the Great Lakes. Many municipal water supplies are derived solely from groundwater.Polluted groundwater is less visible and more difficult to clean up than pollution in rivers and lakes. Groundwater pollution most often results from improper disposal of wastes on land. Major sources include industrial and household chemicals and garbage landfills, excessive fertilizers and pesticides used in agriculture, industrial waste lagoons, tailings and process wastewater from mines, industrial fracking, oil field brine pits, leaking underground oil storage tanks and pipelines, sewage sludge and septic systems.

Inversion (meteorology)

In meteorology, an inversion, also known as a temperature inversion, is a deviation from the normal change of an atmospheric property with altitude. It almost always refers to an inversion of the thermal lapse rate. Normally, air temperature decreases with an increase in altitude. During an inversion, warmer air is held above cooler air; the normal temperature profile with altitude is inverted. An inversion traps air pollution, such as smog, close to the ground. An inversion can also suppress convection by acting as a "cap". If this cap is broken for any of several reasons, convection of any moisture present can then erupt into violent thunderstorms. Temperature inversion can notoriously result in freezing rain in cold climates.

Los Angeles Basin

The Los Angeles Basin is a sedimentary basin located in southern California, in a region known as the Peninsular Ranges. The basin is also connected to an anomalous group of east-west trending chains of mountains collectively known as the California Transverse Ranges. The present basin is a coastal lowland area, whose floor is marked by elongate low ridges and groups of hills that is located on the edge of the Pacific plate. The Los Angeles Basin, along with the Santa Barbara Channel, the Ventura Basin, the San Fernando Valley, and the San Gabriel Basin, lies within the greater southern California region. On the north, northeast, and east, the lowland basin is bound by the Santa Monica Mountains and Puente, Elysian, Repetto hills. To the southeast, the basin is bordered by the Santa Ana mountains and the San Joaquin Hills. The western boundary of the basin is marked by the Continental Borderland and is part of the onshore portion. The California borderland is characterized by north-west trending offshore ridges and basins. The Los Angeles Basin is notable for its great structural relief and complexity in relation to its geologic youth and small size for its prolific oil production. Yerkes et al. identify five major stages of the basin's evolution, which began in the Upper Cretaceous and ended in the Pleistocene. This basin can be classified as an irregular pull-apart basin accompanied by rotational tectonics during the post-early Miocene.


Ohаi is a town in the Southland region of New Zealand's South Island, 65 kilometres northwest of Invercargill and 25 kilometres west of Winton. The 2013 New Zealand census gave its population as 303, a decline of 54 people since the 2006 census.


Overdrafting is the process of extracting groundwater beyond the equilibrium yield of the aquifer.

There are two sets of yields, safe yield and sustainable yield. Safe yield is the amount of water that can be taken out of the ground without there being any undesirable results. Sustainable yield is extraction that takes into account both recharge rate and surface water impacts.

There are two types of aquifers: confined and unconfined. In confined aquifers, there is an overbearing layer called aquitard, which contains impermeable materials through which groundwater cannot be extracted. In unconfined aquifers, there is no aquitard, and groundwater can be freely extracted from the surface. Extracting groundwater from unconfined aquifers is like borrowing the water, it has to be recharged at a proper amount. If recharge is not done in proper amounts there can be many impacts. Recharge may happen through artificial recharge and natural recharge.Natural process of recharge is done through percolation of surface water. Artificial process of recharging the aquifer is through means of pumping reclaimed water from wastewater management projects directly into the aquifer. An example is the Orange County Water District in the State of California. This organization take waste water, treats it to a proper level, and then systematically pumps it back into the aquifers for artificial recharge.

When groundwater is extracted the water is primarily pulled from the aquifer which creates a cone depression around the well. When drafting of water continues the cone of depression increases in width. The increase in width leads to the negative impacts caused by overdrafting, such as drop of the water table, land subsidence, and loss of surface water reaching the streams. In extreme cases the supply of water to naturally recharge the aquifers is pulled directly from streams and rivers, leading to depletion of water levels in streams and rivers. The depletion of water in rivers and streams has an effect on wildlife, as well as humans who might be using the water for other purposes.Since every groundwater basin recharges at a different rate depending upon precipitation, vegetative cover and soil conservation practises, the quantity of groundwater that can be safely pumped varies greatly among regions of the world and even within provinces. Some aquifers require a very long time to recharge and thus the process of overdrafting can have consequences of effectively drying up certain sub-surface water supplies. Subsidence occurs when excessive groundwater is extracted from rocks that support more weight when saturated. This can lead to a capacity reduction in the aquifer.Groundwater is the fresh water that can be found underground; it is also one of the largest sources. Groundwater depletion can be comparable to ¨money in a bank¨, The primary cause of groundwater depletion is pumping or the excessive pulling up of groundwater from underground aquifers.

Passive margin

A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting creates new ocean basins. Eventually the continental rift forms a mid-ocean ridge and the locus of extension moves away from the continent-ocean boundary. The transition between the continental and oceanic lithosphere that was originally created by rifting is known as a passive margin.


In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics.Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-graben with normal faulting and rift-flank uplifts mainly on one side. Where rifts remain above sea level they form a rift valley, which may be filled by water forming a rift lake. The axis of the rift area may contain volcanic rocks, and active volcanism is a part of many, but not all active rift systems.

Major rifts occur along the central axis of most mid-ocean ridges, where new oceanic crust and lithosphere is created along a divergent boundary between two tectonic plates.

Failed rifts are the result of continental rifting that failed to continue to the point of break-up. Typically the transition from rifting to spreading develops at a triple junction where three converging rifts meet over a hotspot. Two of these evolve to the point of seafloor spreading, while the third ultimately fails, becoming an aulacogen.

Sedimentary basin

Sedimentary basins are regions of Earth of long-term subsidence creating accommodation space for infilling by sediments. The subsidence can result from a variety of causes that include: the thinning of underlying crust, sedimentary, volcanic, and tectonic loading, and changes in the thickness or density of adjacent lithosphere. Sedimentary basins occur in diverse geological settings usually associated with plate tectonic activity. Basins are classified structurally in various ways, with a primary classifications distinguishing among basins formed in various plate tectonic regime (divergent, convergent, transform, intraplate), the proximity of the basin to the active plate margins, and whether oceanic, continental or transitional crust underlies the basin. Basins formed in different plate tectonic regimes vary in their preservation potential. On oceanic crust, basins are likely to be subducted, while marginal continental basins may be partially preserved, and intracratonic basins have a high probability of preservation. As the sediments are buried, they are subjected to increasing pressure and begin the process of lithification. A number of basins formed in extensional settings can undergo inversion which has accounted for a number of the economically viable oil reserves on earth which were formerly basins.


A sinkhole, also known as a cenote, sink, sink-hole, swallet, swallow hole, or doline (the different terms for sinkholes are often used interchangeably), is a depression or hole in the ground caused by some form of collapse of the surface layer. Most are caused by karst processes – the chemical dissolution of carbonate rocks or suffosion processes. Sinkholes vary in size from 1 to 600 m (3.3 to 2,000 ft) both in diameter and depth, and vary in form from soil-lined bowls to bedrock-edged chasms. Sinkholes may form gradually or suddenly, and are found worldwide.

Subsidence (atmosphere)

Subsidence, in the Earth's atmosphere, is most commonly caused by a low temperature. As the air cools, it becomes denser and moves towards the ground, as warm air becomes less dense and moves upwards (Atmospheric convection). Subsiding air is cold and dry and rises atmospheric pressure forming a high-pressure or anticyclonic area

Subsidence generally causes high barometric pressure as more air moves into the same space: the polar highs are areas of almost constant subsidence, as are the horse latitudes, and the areas of subsidence are the sources of much of the world's prevailing winds.

Subsidence also causes many smaller-scale weather phenomena, such as morning fog. An extreme form of subsidence is a downburst, which can result in damage similar to that produced by a tornado. A milder form of subsidence is referred to as downdraft.

Subsidence crater

A subsidence crater is a hole or depression left on the surface of an area which has had an underground (usually nuclear) explosion. Many such craters are present at the Nevada Test Site, which is no longer in use for nuclear testing.

Subsidence craters are created as the roof of the cavity caused by the explosion collapses. This causes the surface to depress into a sink (which subsidence craters are sometimes called, see more: sink hole). It is possible for further collapse to occur from the sink into the explosion chamber. When this collapse reaches the surface, and the chamber is exposed atmospherically to the surface, it is referred to as a chimney.

It is at the point that a chimney is formed through which radioactive fallout may reach the surface. At the Nevada Test Site, depths of 100 to 500 meters (330 to 1,640 ft) were used for tests.

When the material above the explosion is solid rock, then a mound may be formed by broken rock that has a greater volume. This type of mound has been called "retarc", "crater" spelled backwards.When a drilling oil well encounters high-pressured gas which cannot be contained either by the weight of the drilling mud or by blow-out preventers, the resulting violent eruption can create a large crater which can swallow a drilling rig. This phenomenon is called "cratering" in oil field slang. An example is the Darvaza gas crater near Darvaza, Turkmenistan.

Subsurface currents

A subsurface current is an oceanic current that runs beneath surface currents. Examples include the Equatorial Undercurrents of the Pacific, Atlantic, and Indian Oceans, the California Undercurrent, and the Agulhas Undercurrent, the deep thermohaline circulation in the Atlantic, and bottom gravity currents near Antarctica. The forcing mechanisms vary for these different types of subsurface currents.

Tectonic subsidence

Tectonic subsidence is the sinking of the Earth's crust on a large scale, relative to crustal-scale features or the geoid. The movement of crustal plates and accommodation spaces created by faulting create subsidence on a large scale in a variety of environments, including passive margins, aulacogens, fore-arc basins, foreland basins, intercontinental basins and pull-apart basins. Three mechanisms are common in the tectonic environments in which subsidence occurs: extension, cooling and loading.

Thermal subsidence

In geology and geophysics, thermal subsidence is a mechanism of subsidence in which conductive cooling of the mantle thickens the lithosphere and causes it to decrease in elevation. This is because of thermal contraction: as mantle material cools and becomes part of the mechanically rigid lithosphere, it becomes more dense than the surrounding material. Additional material added to the lithosphere thickens it and further causes a buoyant decrease in the elevation of the lithosphere. This creates accommodation space into which sediments can deposit, forming a sedimentary basin.

Geologic principles and processes
Stratigraphic principles
Petrologic principles
Geomorphologic processes
Sediment transport


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.