# Statvolt

The statvolt is a unit of voltage and electrical potential used in the esu-cgs and gaussian system of units. The conversion to the SI system is exactly

1 statvolt = 299.792458 volts.
(The conversion factor 299.792458 is simply the numerical value of the speed of light in m/s divided by 106)[1]
The statvolt is also defined in the cgs system as 1 erg / esu.[1]

It is a useful unit for electromagnetism because, in a vacuum, an electric field of one statvolt/cm has the same energy density as a magnetic field of one gauss. Likewise, a plane wave propagating in a vacuum has perpendicular electric and magnetic fields such that for every gauss of magnetic field intensity there is one statvolt/cm of electric field intensity.[1]

The abvolt is another option for a unit of voltage in the cgs system.

Statvolt
Unit systemesu-cgs and gaussian
Unit ofvoltage and electrical potential
SymbolstatV
Conversions
1 statV in ...... is equal to ...
SI derived units   299.792458 volt
cgs   1 erg / esu

## References

1. ^ a b c Purcell, Edward (2011). Electricity and Magnetism (Second ed.). Cambridge: Cambridge University Press. pp. 474–475. ISBN 9781107013605.
Abvolt

The abvolt (abV) is one option for the unit of potential difference in the EMU-CGS system of units, and is equal to 10−8 volts in the SI system.

A potential difference of 1 abV will drive a current of one abampere through a resistance of one abohm.

In most practical applications, the volt and its multiples are preferred. The national standard in the United States deprecates the use of the abvolt, suggesting the use of volts instead.

The other option in the cgs system is the statvolt.

Centimetre–gram–second system of units

The centimetre–gram–second system of units (abbreviated CGS or cgs) is a variant of the metric system based on the centimetre as the unit of length, the gram as the unit of mass, and the second as the unit of time. All CGS mechanical units are unambiguously derived from these three base units, but there are several different ways of extending the CGS system to cover electromagnetism.The CGS system has been largely supplanted by the MKS system based on the metre, kilogram, and second, which was in turn extended and replaced by the International System of Units (SI). In many fields of science and engineering, SI is the only system of units in use but there remain certain subfields where CGS is prevalent.

In measurements of purely mechanical systems (involving units of length, mass, force, energy, pressure, and so on), the differences between CGS and SI are straightforward and rather trivial; the unit-conversion factors are all powers of 10 as 100 cm = 1 m and 1000 g = 1 kg. For example, the CGS unit of force is the dyne which is defined as 1 g⋅cm/s2, so the SI unit of force, the newton (1 kg⋅m/s2), is equal to 100,000 dynes.

On the other hand, in measurements of electromagnetic phenomena (involving units of charge, electric and magnetic fields, voltage, and so on), converting between CGS and SI is more subtle. Formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on which system of units one uses. This is because there is no one-to-one correspondence between electromagnetic units in SI and those in CGS, as is the case for mechanical units. Furthermore, within CGS, there are several plausible choices of electromagnetic units, leading to different unit "sub-systems", including Gaussian units, "ESU", "EMU", and Lorentz–Heaviside units. Among these choices, Gaussian units are the most common today, and "CGS units" often used specifically refers to CGS-Gaussian units.

Conversion of units

Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors.

Electric potential

An electric potential (also called the electric field potential, potential drop or the electrostatic potential) is the amount of work needed to move a unit of positive charge from a reference point to a specific point inside the field without producing an acceleration. Typically, the reference point is the Earth or a point at infinity, although any point beyond the influence of the electric field charge can be used.

According to classical electrostatics, electric potential is a scalar quantity denoted by V or occasionally φ, equal to the electric potential energy of any charged particle at any location (measured in joules) divided by the charge of that particle (measured in coulombs). By dividing out the charge on the particle a quotient is obtained that is a property of the electric field itself.

This value can be calculated in either a static (time-invariant) or a dynamic (varying with time) electric field at a specific time in units of joules per coulomb (J C−1), or volts (V). The electric potential at infinity is assumed to be zero.

In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only in terms of a scalar potential. Instead, the electric field can be expressed in terms of both the scalar electric potential and the magnetic vector potential. The electric potential and the magnetic vector potential together form a four vector, so that the two kinds of potential are mixed under Lorentz transformations.

Electromotive force

Electromotive force, abbreviated emf (denoted ${\displaystyle {\mathcal {E}}}$ and measured in volts), is the electrical intensity or "pressure" developed by a source of electrical energy such as a battery or generator. A device that converts other forms of energy into electrical energy (a "transducer") provides an emf as its output. (The word "force" in this case is not used to mean mechanical force, as may be measured in pounds or newtons.)

In electromagnetic induction, emf can be defined around a closed loop of conductor as the electromagnetic work that would be done on an electric charge (an electron in this instance) if it travels once around the loop. For a time-varying magnetic flux linking a loop, the electric potential scalar field is not defined due to a circulating electric vector field, but an emf nevertheless does work that can be measured as a virtual electric potential around the loop. (While electrical charges travel around the loop, their energy is typically converted into thermal energy due to the resistance of the conductor comprising the loop.)

In the case of a two-terminal device (such as an electrochemical cell) which is modeled as a Thévenin's equivalent circuit, the equivalent emf can be measured as the open-circuit potential difference or "voltage" between the two terminals. This potential difference can drive an electric current if an external circuit is attached to the terminals.

Electrostatic units

The electrostatic system of units (ESU) is a system of units used to measure quantities of electric charge, electric current, and voltage within the centimeter-gram-second (or "CGS") system of metric units. In electrostatic units, electrical charge is defined by the force that it exerts on other charges.Although the CGS units have mostly been supplanted by the MKSA (meter-kilogram-second-ampere) or International System of Units (SI) units, the electrostatic units are still in occasional use in some applications, most notably in certain fields of physics such as in particle physics and astrophysics.

The main electrostatic units are:

The statcoulomb, called the Franklin or the "esu" for electric charge.

The statvolt for voltage.

The gauss for magnetic induction.

The farad (symbol: F) is the SI derived unit of electrical capacitance, the ability of a body to store an electrical charge. It is named after the English physicist Michael Faraday.

History of the metric system

The history of the metric system began in the Age of Enlightenment with simple notions of length and weight taken from natural ones, and decimal multiples and fractions of them. The system was so useful it became the standard of France and Europe in half a century. Other dimensions with unity ratios were added, and it went on to be adopted by the world.

The first practical realisation of the metric system came in 1799, during the French Revolution, when the existing system of measures, which had become impractical for trade, was replaced by a decimal system based on the kilogram and the metre. In the pre-scientific era, the basic units were taken from the natural world: the unit of length, the metre, was based on the dimensions of the Earth, and the unit of mass, the kilogram, was based on the mass of water having a volume of one litre or a cubic decimetre. Reference copies for both units were manufactured in platinum and remained the standards of measure for the next 90 years. After a period of reversion to the mesures usuelles due to unpopularity of the metric system, the metrication of France as well as much of Europe was complete by mid-century.

In the middle of the 19th century, James Clerk Maxwell put forward the concept of a coherent system where a small number of units of measure were defined as base units, and all other units of measure, called derived units, were defined in terms of the base units. Maxwell proposed three base units: length, mass and time. Advances in electromagnetism in the 19th century necessitated new units to be defined, and multiple incompatible systems of such units came into usage; none could be reconciled with the existing system of mechanical units. This impasse was resolved by Giovanni Giorgi, who in 1901 proved that a coherent system that incorporated electromagnetic units had to have an electromagnetic unit as a fourth base unit.

The seminal 1875 Treaty of the Metre resulted in the fashioning and distribution of metre and kilogram artefacts, the standards of the future coherent system that became the SI, and the creation of an international body Conférence générale des poids et mesures or CGPM to oversee systems of weights and measures based on them.

In 1960, the CGPM launched the International System of Units (in French the Système international d'unités or SI) which had six "base units": the metre, kilogram, second, ampere, degree Kelvin (subsequently renamed the "kelvin") and candela; as well as 16 further units derived from the base units. A seventh base unit, the mole, and six additional derived units were added in succeeding years through the close of the twentieth century. During this period, the metre was redefined in terms of the speed of light, and the second was redefined in terms of the microwave frequency of a cesium atomic clock. Since the end of the 20th century, an effort has been undertaken to redefine the ampere, kilogram, mole and kelvin in terms of invariant constants of physics.

Metric system

The metric system is an internationally recognised decimalised system of measurement. It is in widespread use, and where it is adopted, it is the only or most common system of weights and measures (see metrication). It is now known as the International System of Units (SI). It is used to measure everyday things such as the mass of a sack of flour, the height of a person, the speed of a car, and the volume of fuel in its tank. It is also used in science, industry and trade.

In its modern form, it consists of a set of base units including metre for length, kilogram for mass, second for time and ampere for electrical current, and a few others, which together with their derived units, can measure any physical quantity. Metric system may also refer to other systems of related base and derived units defined before the middle of the 20th century, some of which are still in limited use today.

The metric system was designed to have properties that make it easy to use and widely applicable, including units based on the natural world, decimal ratios, prefixes for multiples and sub-multiples, and a structure of base and derived units. It is also a coherent system, which means that its units do not introduce conversion factors not already present in equations relating quantities. It has a property called rationalisation that eliminates certain constants of proportionality in equations of physics.

The units of the metric system, originally taken from observable features of nature, are now defined by phenomena such as the microwave frequency of a caesium atomic clock which accurately measures seconds. One unit, the kilogram, remains defined in terms of a man-made artefact, but scientists recently voted to change the definition to one based on Planck's constant via a Kibble balance. The new definition is expected to be formally propagated on 20 May 2019.

While there are numerous named derived units of the metric system, such as watt and lumen, other common quantities such as velocity and acceleration do not have their own unit, but are defined in terms of existing base and derived units such as metres per second for velocity.

Though other currently or formerly widespread systems of weights and measures continue to exist, such as the British imperial system and the US customary system of weights and measures, in those systems most or all of the units are now defined in terms of the metric system, such as the US foot which is now a defined decimal fraction of a metre.

The metric system is also extensible, and new base and derived units are defined as needed in fields such as radiology and chemistry. The most recent derived unit, the katal, for catalytic activity, was added in 1999. Recent changes are directed toward defining base units in terms of invariant constants of physics to provide more precise realisations of units for advances in science and industry.

Outline of the metric system

The following outline is provided as an overview of and topical guide to the metric system:

Metric system – various loosely related systems of measurement that trace their origin to the decimal system of measurement introduced in France during the French Revolution.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.