Star formation

Star formation is the process by which dense regions within molecular clouds in interstellar space, sometimes referred to as "stellar nurseries" or "star-forming regions", collapse and form stars.[1] As a branch of astronomy, star formation includes the study of the interstellar medium (ISM) and giant molecular clouds (GMC) as precursors to the star formation process, and the study of protostars and young stellar objects as its immediate products. It is closely related to planet formation, another branch of astronomy. Star formation theory, as well as accounting for the formation of a single star, must also account for the statistics of binary stars and the initial mass function. Most stars do not form in isolation but as part of a group of stars referred as star clusters or stellar associations.[2]

Stellar nurseries

Eagle nebula pillars
Hubble telescope image known as Pillars of Creation, where stars are forming in the Eagle Nebula

Interstellar clouds

A spiral galaxy like the Milky Way contains stars, stellar remnants, and a diffuse interstellar medium (ISM) of gas and dust. The interstellar medium consists of 10−4 to 106 particles per cm3 and is typically composed of roughly 70% hydrogen by mass, with most of the remaining gas consisting of helium. This medium has been chemically enriched by trace amounts of heavier elements that were ejected from stars as they passed beyond the end of their main sequence lifetime. Higher density regions of the interstellar medium form clouds, or diffuse nebulae,[3] where star formation takes place.[4] In contrast to spirals, an elliptical galaxy loses the cold component of its interstellar medium within roughly a billion years, which hinders the galaxy from forming diffuse nebulae except through mergers with other galaxies.[5]

In the dense nebulae where stars are produced, much of the hydrogen is in the molecular (H2) form, so these nebulae are called molecular clouds.[4] Observations indicate that the coldest clouds tend to form low-mass stars, observed first in the infrared inside the clouds, then in visible light at their surface when the clouds dissipate, while giant molecular clouds, which are generally warmer, produce stars of all masses.[6] These giant molecular clouds have typical densities of 100 particles per cm3, diameters of 100 light-years (9.5×1014 km), masses of up to 6 million solar masses (M),[7] and an average interior temperature of 10 K. About half the total mass of the galactic ISM is found in molecular clouds[8] and in the Milky Way there are an estimated 6,000 molecular clouds, each with more than 100,000 M.[9] The nearest nebula to the Sun where massive stars are being formed is the Orion Nebula, 1,300 ly (1.2×1016 km) away.[10] However, lower mass star formation is occurring about 400–450 light years distant in the ρ Ophiuchi cloud complex.[11]

A more compact site of star formation is the opaque clouds of dense gas and dust known as Bok globules, so named after the astronomer Bart Bok. These can form in association with collapsing molecular clouds or possibly independently.[12] The Bok globules are typically up to a light year across and contain a few solar masses.[13] They can be observed as dark clouds silhouetted against bright emission nebulae or background stars. Over half the known Bok globules have been found to contain newly forming stars.[14]

ALMA witnesses assembly of galaxy in early Universe (annotated)
Assembly of galaxy in early Universe.[15]

Cloud collapse

An interstellar cloud of gas will remain in hydrostatic equilibrium as long as the kinetic energy of the gas pressure is in balance with the potential energy of the internal gravitational force. Mathematically this is expressed using the virial theorem, which states that, to maintain equilibrium, the gravitational potential energy must equal twice the internal thermal energy.[16] If a cloud is massive enough that the gas pressure is insufficient to support it, the cloud will undergo gravitational collapse. The mass above which a cloud will undergo such collapse is called the Jeans mass. The Jeans mass depends on the temperature and density of the cloud, but is typically thousands to tens of thousands of solar masses.[4] During cloud collapse dozens to ten thousands of stars form more or less simultaneously which is observable in so-called embedded clusters. The end product of a core collapse is an open cluster of stars.[17]

ALMA views a stellar explosion in Orion
ALMA observations of the Orion Nebula complex provide insights into explosions at star birth.[18]

In triggered star formation, one of several events might occur to compress a molecular cloud and initiate its gravitational collapse. Molecular clouds may collide with each other, or a nearby supernova explosion can be a trigger, sending shocked matter into the cloud at very high speeds.[4] (The resulting new stars may themselves soon produce supernovae, producing self-propagating star formation.) Alternatively, galactic collisions can trigger massive starbursts of star formation as the gas clouds in each galaxy are compressed and agitated by tidal forces.[19] The latter mechanism may be responsible for the formation of globular clusters.[20]

A supermassive black hole at the core of a galaxy may serve to regulate the rate of star formation in a galactic nucleus. A black hole that is accreting infalling matter can become active, emitting a strong wind through a collimated relativistic jet. This can limit further star formation. Massive black holes ejecting radio-frequency-emitting particles at near-light speed can also block the formation of new stars in aging galaxies.[21] However, the radio emissions around the jets may also trigger star formation. Likewise, a weaker jet may trigger star formation when it collides with a cloud.[22]

Size can be deceptive ESO 553-46
Dwarf galaxy ESO 553-46 has one of the highest rates of star formation of the 1000 or so galaxies nearest to the Milky Way.[23]

As it collapses, a molecular cloud breaks into smaller and smaller pieces in a hierarchical manner, until the fragments reach stellar mass. In each of these fragments, the collapsing gas radiates away the energy gained by the release of gravitational potential energy. As the density increases, the fragments become opaque and are thus less efficient at radiating away their energy. This raises the temperature of the cloud and inhibits further fragmentation. The fragments now condense into rotating spheres of gas that serve as stellar embryos.[24]

Complicating this picture of a collapsing cloud are the effects of turbulence, macroscopic flows, rotation, magnetic fields and the cloud geometry. Both rotation and magnetic fields can hinder the collapse of a cloud.[25][26] Turbulence is instrumental in causing fragmentation of the cloud, and on the smallest scales it promotes collapse.[27]


LH 95
LH 95 stellar nursery in Large Magellanic Cloud.

A protostellar cloud will continue to collapse as long as the gravitational binding energy can be eliminated. This excess energy is primarily lost through radiation. However, the collapsing cloud will eventually become opaque to its own radiation, and the energy must be removed through some other means. The dust within the cloud becomes heated to temperatures of 60–100 K, and these particles radiate at wavelengths in the far infrared where the cloud is transparent. Thus the dust mediates the further collapse of the cloud.[28]

During the collapse, the density of the cloud increases towards the center and thus the middle region becomes optically opaque first. This occurs when the density is about 10−13 g / cm3. A core region, called the First Hydrostatic Core, forms where the collapse is essentially halted. It continues to increase in temperature as determined by the virial theorem. The gas falling toward this opaque region collides with it and creates shock waves that further heat the core.[29]

Cepheus B
Composite image showing young stars in and around molecular cloud Cepheus B.

When the core temperature reaches about 2000 K, the thermal energy dissociates the H2 molecules.[29] This is followed by the ionization of the hydrogen and helium atoms. These processes absorb the energy of the contraction, allowing it to continue on timescales comparable to the period of collapse at free fall velocities.[30] After the density of infalling material has reached about 10−8 g / cm3, that material is sufficiently transparent to allow energy radiated by the protostar to escape. The combination of convection within the protostar and radiation from its exterior allow the star to contract further.[29] This continues until the gas is hot enough for the internal pressure to support the protostar against further gravitational collapse—a state called hydrostatic equilibrium. When this accretion phase is nearly complete, the resulting object is known as a protostar.[4]

N11 (Hubble)
N11, part of a complex network of gas clouds and star clusters within our neighbouring galaxy, the Large Magellanic Cloud.

Accretion of material onto the protostar continues partially from the newly formed circumstellar disc. When the density and temperature are high enough, deuterium fusion begins, and the outward pressure of the resultant radiation slows (but does not stop) the collapse. Material comprising the cloud continues to "rain" onto the protostar. In this stage bipolar jets are produced called Herbig–Haro objects. This is probably the means by which excess angular momentum of the infalling material is expelled, allowing the star to continue to form.

Star formation region Lupus 3
Star formation region Lupus 3.[31]

When the surrounding gas and dust envelope disperses and accretion process stops, the star is considered a pre-main-sequence star (PMS star). The energy source of these objects is gravitational contraction, as opposed to hydrogen burning in main sequence stars. The PMS star follows a Hayashi track on the Hertzsprung–Russell (H–R) diagram.[32] The contraction will proceed until the Hayashi limit is reached, and thereafter contraction will continue on a Kelvin–Helmholtz timescale with the temperature remaining stable. Stars with less than 0.5 M thereafter join the main sequence. For more massive PMS stars, at the end of the Hayashi track they will slowly collapse in near hydrostatic equilibrium, following the Henyey track.[33]

Finally, hydrogen begins to fuse in the core of the star, and the rest of the enveloping material is cleared away. This ends the protostellar phase and begins the star's main sequence phase on the H–R diagram.

The stages of the process are well defined in stars with masses around 1 M or less. In high mass stars, the length of the star formation process is comparable to the other timescales of their evolution, much shorter, and the process is not so well defined. The later evolution of stars are studied in stellar evolution.

Protostar outburst - HOPS 383 (2015).


Orion Nebula - Hubble 2006 mosaic 18000
The Orion Nebula is an archetypical example of star formation, from the massive, young stars that are shaping the nebula to the pillars of dense gas that may be the homes of budding stars.

Key elements of star formation are only available by observing in wavelengths other than the optical. The protostellar stage of stellar existence is almost invariably hidden away deep inside dense clouds of gas and dust left over from the GMC. Often, these star-forming cocoons known as Bok globules, can be seen in silhouette against bright emission from surrounding gas.[34] Early stages of a star's life can be seen in infrared light, which penetrates the dust more easily than visible light.[35] Observations from the Wide-field Infrared Survey Explorer (WISE) have thus been especially important for unveiling numerous Galactic protostars and their parent star clusters.[36][37] Examples of such embedded star clusters are FSR 1184, FSR 1190, Camargo 14, Camargo 74, Majaess 64, and Majaess 98.[38]

Star-forming region S106 (captured by the Hubble Space Telescope)
Star-forming region S106.

The structure of the molecular cloud and the effects of the protostar can be observed in near-IR extinction maps (where the number of stars are counted per unit area and compared to a nearby zero extinction area of sky), continuum dust emission and rotational transitions of CO and other molecules; these last two are observed in the millimeter and submillimeter range. The radiation from the protostar and early star has to be observed in infrared astronomy wavelengths, as the extinction caused by the rest of the cloud in which the star is forming is usually too big to allow us to observe it in the visual part of the spectrum. This presents considerable difficulties as the Earth's atmosphere is almost entirely opaque from 20μm to 850μm, with narrow windows at 200μm and 450μm. Even outside this range, atmospheric subtraction techniques must be used.

Young stars (purple) revealed by X-ray inside the NGC 2024 star-forming region.[39]

X-ray observations have proven useful for studying young stars, since X-ray emission from these objects is about 100–100,000 times stronger than X-ray emission from main-sequence stars.[40] The earliest detections of X-rays from T Tauri stars were made by the Einstein X-ray Observatory.[41][42] For low-mass stars X-rays are generated by the heating of the stellar corona through magnetic reconnection, while for high-mass O and early B-type stars X-rays are generated through supersonic shocks in the stellar winds. Photons in the soft X-ray energy range covered by the Chandra X-ray Observatory and XMM Newton may penetrate the interstellar medium with only moderate absorption due to gas, making the X-ray a useful wavelength for seeing the stellar populations within molecular clouds. X-ray emission as evidence of stellar youth makes this band particularly useful for performing censuses of stars in star-forming regions, given that not all young stars have infrared excesses.[43] X-ray observations have provided near-complete censuses of all stellar-mass objects in the Orion Nebula Cluster and Taurus Molecular Cloud.[44][45]

The formation of individual stars can only be directly observed in the Milky Way Galaxy, but in distant galaxies star formation has been detected through its unique spectral signature.

Initial research indicates star-forming clumps start as giant, dense areas in turbulent gas-rich matter in young galaxies, live about 500 million years, and may migrate to the center of a galaxy, creating the central bulge of a galaxy.[46]

On February 21, 2014, NASA announced a greatly upgraded database for tracking polycyclic aromatic hydrocarbons (PAHs) in the universe. According to scientists, more than 20% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and exoplanets.[47]

In February 2018, astronomers reported, for the first time, a signal of the reionization epoch, an indirect detection of light from the earliest stars formed - about 180 million years after the Big Bang.[48]

Notable pathfinder objects

  • MWC 349 was first discovered in 1978, and is estimated to be only 1,000 years old.
  • VLA 1623 – The first exemplar Class 0 protostar, a type of embedded protostar that has yet to accrete the majority of its mass. Found in 1993, is possibly younger than 10,000 years.[49]
  • L1014 – An extremely faint embedded object representative of a new class of sources that are only now being detected with the newest telescopes. Their status is still undetermined, they could be the youngest low-mass Class 0 protostars yet seen or even very low-mass evolved objects (like brown dwarfs or even rogue planets).[50]
  • IRS 8* – The youngest known main sequence star in the Galactic Center region, discovered in August 2006. It is estimated to be 3.5 million years old.[51]

Low mass and high mass star formation

Infrared Image of Dark Cloud in Aquila
Star-forming region Westerhout 40 and the Serpens-Aquila Rift- cloud filaments containing new stars fill the region.[52][53]

Stars of different masses are thought to form by slightly different mechanisms. The theory of low-mass star formation, which is well-supported by a plethora of observations, suggests that low-mass stars form by the gravitational collapse of rotating density enhancements within molecular clouds. As described above, the collapse of a rotating cloud of gas and dust leads to the formation of an accretion disk through which matter is channeled onto a central protostar. For stars with masses higher than about 8 M, however, the mechanism of star formation is not well understood.

Massive stars emit copious quantities of radiation which pushes against infalling material. In the past, it was thought that this radiation pressure might be substantial enough to halt accretion onto the massive protostar and prevent the formation of stars with masses more than a few tens of solar masses.[54] Recent theoretical work has shown that the production of a jet and outflow clears a cavity through which much of the radiation from a massive protostar can escape without hindering accretion through the disk and onto the protostar.[55][56] Present thinking is that massive stars may therefore be able to form by a mechanism similar to that by which low mass stars form.

There is mounting evidence that at least some massive protostars are indeed surrounded by accretion disks. Several other theories of massive star formation remain to be tested observationally. Of these, perhaps the most prominent is the theory of competitive accretion, which suggests that massive protostars are "seeded" by low-mass protostars which compete with other protostars to draw in matter from the entire parent molecular cloud, instead of simply from a small local region.[57][58]

Another theory of massive star formation suggests that massive stars may form by the coalescence of two or more stars of lower mass.[59]

See also


  1. ^ Stahler, S. W. & Palla, F. (2004). The Formation of Stars. Weinheim: Wiley-VCH. ISBN 3-527-40559-3.
  2. ^ Lada, Charles J.; Lada, Elizabeth A. (2003-09-01). "Embedded Clusters in Molecular Clouds". Annual Review of Astronomy and Astrophysics. 41 (1): 57–115. arXiv:astro-ph/0301540. doi:10.1146/annurev.astro.41.011802.094844. ISSN 0066-4146.
  3. ^ O'Dell, C. R. "Nebula". World Book at NASA. World Book, Inc. Archived from the original on 2005-04-29. Retrieved 2009-05-18.
  4. ^ a b c d e Prialnik, Dina (2000). An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. 195–212. ISBN 0-521-65065-8.
  5. ^ Dupraz, C.; Casoli, F. (June 4–9, 1990). "The Fate of the Molecular Gas from Mergers to Ellipticals". Dynamics of Galaxies and Their Molecular Cloud Distributions: Proceedings of the 146th Symposium of the International Astronomical Union. Paris, France: Kluwer Academic Publishers. Bibcode:1991IAUS..146..373D.
  6. ^ Lequeux, James (2013). Birth, Evolution and Death of Stars. World Scientific. ISBN 978-981-4508-77-3.
  7. ^ Williams, J. P.; Blitz, L.; McKee, C. F. (2000). "The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF". Protostars and Planets IV. p. 97. arXiv:astro-ph/9902246. Bibcode:2000prpl.conf...97W.
  8. ^ Alves, J.; Lada, C.; Lada, E. (2001). Tracing H2 Via Infrared Dust Extinction. Cambridge University Press. p. 217. ISBN 0-521-78224-4.
  9. ^ Sanders, D. B.; Scoville, N. Z.; Solomon, P. M. (1985-02-01). "Giant molecular clouds in the Galaxy. II – Characteristics of discrete features". Astrophysical Journal, Part 1. 289: 373–387. Bibcode:1985ApJ...289..373S. doi:10.1086/162897.
  10. ^ Sandstrom, Karin M.; Peek, J. E. G.; Bower, Geoffrey C.; Bolatto, Alberto D.; Plambeck, Richard L. (2007). "A Parallactic Distance of Parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations". The Astrophysical Journal. 667 (2): 1161. arXiv:0706.2361. Bibcode:2007ApJ...667.1161S. doi:10.1086/520922.
  11. ^ Wilking, B. A.; Gagné, M.; Allen, L. E. "Star Formation in the ρ Ophiuchi Molecular Cloud". In Bo Reipurth (ed.). Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications. arXiv:0811.0005.
  12. ^ Khanzadyan, T.; Smith, M. D.; Gredel, R.; Stanke, T.; Davis, C. J. (February 2002). "Active star formation in the large Bok globule CB 34". Astronomy and Astrophysics. 383 (2): 502–518. Bibcode:2002A&A...383..502K. doi:10.1051/0004-6361:20011531.
  13. ^ Hartmann, Lee (2000). Accretion Processes in Star Formation. Cambridge University Press. p. 4. ISBN 0-521-78520-0.
  14. ^ Smith, Michael David (2004). The Origin of Stars. Imperial College Press. pp. 43–44. ISBN 1-86094-501-5.
  15. ^ "ALMA Witnesses Assembly of Galaxies in the Early Universe for the First Time". Retrieved 23 July 2015.
  16. ^ Kwok, Sun (2006). Physics and chemistry of the interstellar medium. University Science Books. pp. 435–437. ISBN 1-891389-46-7.
  17. ^ Battaner, E. (1996). Astrophysical Fluid Dynamics. Cambridge University Press. pp. 166–167. ISBN 0-521-43747-4.
  18. ^ "ALMA Captures Dramatic Stellar Fireworks". Retrieved 10 April 2017.
  19. ^ Jog, C. J. (August 26–30, 1997). "Starbursts Triggered by Cloud Compression in Interacting Galaxies". In Barnes, J. E.; Sanders, D. B. (eds.). Proceedings of IAU Symposium #186, Galaxy Interactions at Low and High Redshift. Kyoto, Japan. Bibcode:1999IAUS..186..235J.
  20. ^ Keto, Eric; Ho, Luis C.; Lo, K.-Y. (December 2005). "M82, Starbursts, Star Clusters, and the Formation of Globular Clusters". The Astrophysical Journal. 635 (2): 1062–1076. arXiv:astro-ph/0508519. Bibcode:2005ApJ...635.1062K. doi:10.1086/497575.
  21. ^ Gralla, Meg; et al. (September 29, 2014). "A measurement of the millimetre emission and the Sunyaev–Zel'dovich effect associated with low-frequency radio sources". Monthly Notices of the Royal Astronomical Society. Oxford University Press. 445 (1): 460–478. arXiv:1310.8281. Bibcode:2014MNRAS.445..460G. doi:10.1093/mnras/stu1592.
  22. ^ van Breugel, Wil; et al. (November 2004). T. Storchi-Bergmann; L.C. Ho; Henrique R. Schmitt (eds.). The Interplay among Black Holes, Stars and ISM in Galactic Nuclei. Cambridge University Press. pp. 485–488. arXiv:astro-ph/0406668. Bibcode:2004IAUS..222..485V. doi:10.1017/S1743921304002996.
  23. ^ "Size can be deceptive". Retrieved 9 October 2017.
  24. ^ Prialnik, Dina (2000). An Introduction to the Theory of Stellar Structure and Evolution. Cambridge University Press. pp. 198–199. ISBN 0-521-65937-X.
  25. ^ Hartmann, Lee (2000). Accretion Processes in Star Formation. Cambridge University Press. p. 22. ISBN 0-521-78520-0.
  26. ^ Li, Hua-bai; Dowell, C. Darren; Goodman, Alyssa; Hildebrand, Roger; Novak, Giles (2009-08-11). "Anchoring Magnetic Field in Turbulent Molecular Clouds". The Astrophysical Journal. 704 (2): 891. arXiv:0908.1549. Bibcode:2009ApJ...704..891L. doi:10.1088/0004-637X/704/2/891.
  27. ^ Ballesteros-Paredes, J.; Klessen, R. S.; Mac Low, M.-M.; Vazquez-Semadeni, E. "Molecular Cloud Turbulence and Star Formation". In Reipurth, B.; Jewitt, D.; Keil, K. (eds.). Protostars and Planets V. pp. 63–80. ISBN 0-8165-2654-0.
  28. ^ Longair, M. S. (2008). Galaxy Formation (2nd ed.). Springer. p. 478. ISBN 3-540-73477-5.
  29. ^ a b c Larson, Richard B. (1969). "Numerical calculations of the dynamics of collapsing proto-star". Monthly Notices of the Royal Astronomical Society. 145 (3): 271. Bibcode:1969MNRAS.145..271L. doi:10.1093/mnras/145.3.271.
  30. ^ Salaris, Maurizio (2005). Cassisi, Santi (ed.). Evolution of stars and stellar populations. John Wiley and Sons. pp. 108–109. ISBN 0-470-09220-3.
  31. ^ "Glory From Gloom". Retrieved 2 February 2018.
  32. ^ C. Hayashi (1961). "Stellar evolution in early phases of gravitational contraction". Publications of the Astronomical Society of Japan. 13: 450–452. Bibcode:1961PASJ...13..450H.
  33. ^ L. G. Henyey; R. Lelevier; R. D. Levée (1955). "The Early Phases of Stellar Evolution". Publications of the Astronomical Society of the Pacific. 67 (396): 154. Bibcode:1955PASP...67..154H. doi:10.1086/126791.
  34. ^ B. J. Bok & E. F. Reilly (1947). "Small Dark Nebulae". Astrophysical Journal. 105: 255. Bibcode:1947ApJ...105..255B. doi:10.1086/144901.
    Yun, Joao Lin; Clemens, Dan P. (1990). "Star formation in small globules – Bart BOK was correct". The Astrophysical Journal. 365: L73. Bibcode:1990ApJ...365L..73Y. doi:10.1086/185891.
  35. ^ Benjamin, Robert A.; Churchwell, E.; Babler, Brian L.; Bania, T. M.; Clemens, Dan P.; Cohen, Martin; Dickey, John M.; Indebetouw, Rémy; et al. (2003). "GLIMPSE. I. An SIRTF Legacy Project to Map the Inner Galaxy". Publications of the Astronomical Society of the Pacific. 115 (810): 953–964. arXiv:astro-ph/0306274. Bibcode:2003PASP..115..953B. doi:10.1086/376696.
  36. ^ "Wide-field Infrared Survey Explorer Mission". NASA.
  37. ^ Majaess, D. (2013). Discovering protostars and their host clusters via WISE, ApSS, 344, 1 (VizieR catalog)
  38. ^ Camargo et al. (2015). New Galactic embedded clusters and candidates from a WISE Survey, New Astronomy, 34
  39. ^ Getman, K.; et al. (2014). "Core-Halo Age Gradients and Star Formation in the Orion Nebula and NGC 2024 Young Stellar Clusters". Astrophysical Journal Supplement. 787 (2): 109. arXiv:1403.2742. Bibcode:2014ApJ...787..109G. doi:10.1088/0004-637X/787/2/109.
  40. ^ Preibisch, T.; et al. (2005). "The Origin of T Tauri X-Ray Emission: New Insights from the Chandra Orion Ultradeep Project". Astrophysical Journal Supplement. 160 (2): 401–422. arXiv:astro-ph/0506526. Bibcode:2005ApJS..160..401P. doi:10.1086/432891.
  41. ^ Feigelson, E. D.; Decampli, W. M. (1981). "Observations of X-ray emission from T-Tauri stars". Astrophysical Journal Letters. 243: L89–L93. Bibcode:1981ApJ...243L..89F. doi:10.1086/183449.
  42. ^ Montmerle, T.; et al. (1983). "Einstein observations of the Rho Ophiuchi dark cloud - an X-ray Christmas tree". Astrophysical Journal, Part 1. 269: 182–201. Bibcode:1983ApJ...269..182M. doi:10.1086/161029.
  43. ^ Feigelson, E. D.; et al. (2013). "Overview of the Massive Young Star-Forming Complex Study in Infrared and X-Ray (MYStIX) Project". Astrophysical Journal Supplement. 209 (2): 26. arXiv:1309.4483. Bibcode:2013ApJS..209...26F. doi:10.1088/0067-0049/209/2/26.
  44. ^ Getman, K. V.; et al. (2005). "Chandra Orion Ultradeep Project: Observations and Source Lists". Astrophysical Journal Supplement. 160 (2): 319–352. arXiv:astro-ph/0410136. Bibcode:2005ApJS..160..319G. doi:10.1086/432092.
  45. ^ Güdel, M.; et al. (2007). "The XMM-Newton extended survey of the Taurus molecular cloud (XEST)". Astronomy and Astrophysics. 468 (2): 353–377. arXiv:astro-ph/0609160. Bibcode:2007A&A...468..353G. doi:10.1051/0004-6361:20065724.
  46. ^ "Young Star-Forming Clump in Deep Space Spotted for First Time". Retrieved 2015-05-11.
  47. ^ Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA. Retrieved February 22, 2014.
  48. ^ Gibney, Elizabeth (February 28, 2018). "Astronomers detect light from the Universe's first stars - Surprises in signal from cosmic dawn also hint at presence of dark matter". Nature. Retrieved February 28, 2018.
  49. ^ Andre, Philippe; Ward-Thompson, Derek; Barsony, Mary (1993). "Submillimeter continuum observations of Rho Ophiuchi A - The candidate protostar VLA 1623 and prestellar clumps". The Astrophysical Journal. 406: 122–141. Bibcode:1993ApJ...406..122A. doi:10.1086/172425. ISSN 0004-637X.
  50. ^ Bourke, Tyler L.; Crapsi, Antonio; Myers, Philip C.; et al. (2005). "Discovery of a Low-Mass Bipolar Molecular Outflow from L1014-IRS with the Submillimeter Array". The Astrophysical Journal. 633 (2): L129. arXiv:astro-ph/0509865. Bibcode:2005ApJ...633L.129B. doi:10.1086/498449.
  51. ^ Geballe, T. R.; Najarro, F.; Rigaut, F.; Roy, J.‐R. (2006). "TheK‐Band Spectrum of the Hot Star in IRS 8: An Outsider in the Galactic Center?". The Astrophysical Journal. 652 (1): 370–375. arXiv:astro-ph/0607550. Bibcode:2006ApJ...652..370G. doi:10.1086/507764. ISSN 0004-637X.
  52. ^ Kuhn, M. A.; et al. (2010). "A Chandra Observation of the Obscured Star-forming Complex W40". Astrophysical Journal. 725 (2): 2485–2506. arXiv:1010.5434. Bibcode:2010ApJ...725.2485K. doi:10.1088/0004-637X/725/2/2485.
  53. ^ André, Ph.; et al. (2010). "From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey". Astronomy & Astrophysics. 518: L102. arXiv:1005.2618. Bibcode:2010A&A...518L.102A. doi:10.1051/0004-6361/201014666.
  54. ^ M. G. Wolfire; J. P. Cassinelli (1987). "Conditions for the formation of massive stars". Astrophysical Journal. 319 (1): 850–867. Bibcode:1987ApJ...319..850W. doi:10.1086/165503.
  55. ^ C. F. McKee; J. C. Tan (2002). "Massive star formation in 100,000 years from turbulent and pressurized molecular clouds". Nature. 416 (6876): 59–61. arXiv:astro-ph/0203071. Bibcode:2002Natur.416...59M. doi:10.1038/416059a. PMID 11882889.
  56. ^ R. Banerjee; R. E. Pudritz (2007). "Massive star formation via high accretion rates and early disk-driven outflows". Astrophysical Journal. 660 (1): 479–488. arXiv:astro-ph/0612674. Bibcode:2007ApJ...660..479B. doi:10.1086/512010.
  57. ^ I. A. Bonnell; M. R. Bate; C. J. Clarke; J. E. Pringle (1997). "Accretion and the stellar mass spectrum in small clusters". Monthly Notices of the Royal Astronomical Society. 285 (1): 201–208. Bibcode:1997MNRAS.285..201B. doi:10.1093/mnras/285.1.201.
  58. ^ I. A. Bonnell; M. R. Bate (2006). "Star formation through gravitational collapse and competitive accretion". Monthly Notices of the Royal Astronomical Society. 370 (1): 488–494. arXiv:astro-ph/0604615. Bibcode:2006MNRAS.370..488B. doi:10.1111/j.1365-2966.2006.10495.x.
  59. ^ I. A. Bonnell; M. R. Bate; H. Zinnecker (1998). "On the formation of massive stars". Monthly Notices of the Royal Astronomical Society. 298 (1): 93–102. arXiv:astro-ph/9802332. Bibcode:1998MNRAS.298...93B. doi:10.1046/j.1365-8711.1998.01590.x.
Anemic galaxy

An anemic galaxy is a type of spiral galaxy characterized by a low contrast between its spiral arms and its disk.

Elliptical galaxy

An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the three main classes of galaxy described by Edwin Hubble in his Hubble sequence and 1936 work The Realm of the Nebulae, along with spiral and lenticular galaxies.

Elliptical (E) galaxies are, together with lenticular galaxies (S0) with their large-scale disks, and ES galaxies with their intermediate scale disks, a subset of the "early-type" galaxy population.

Most elliptical galaxies are composed of older, low-mass stars, with a sparse interstellar medium and minimal star formation activity, and they tend to be surrounded by large numbers of globular clusters. Elliptical galaxies are believed to make up approximately 10%–15% of galaxies in the Virgo Supercluster, and they are not the dominant type of galaxy in the universe overall. They are preferentially found close to the centers of galaxy clusters.Elliptical galaxies range in size from tens of millions to over one hundred trillion stars. Originally, Edwin Hubble hypothesized that elliptical galaxies evolved into spiral galaxies, which was later discovered to be false, although the accretion of gas and smaller galaxies may build a disk around a pre-existing ellipsoidal structure.

Stars found inside of elliptical galaxies are on average much older than stars found in spiral galaxies.

Galaxy merger

Galaxy mergers can occur when two (or more) galaxies collide. They are the most violent type of galaxy interaction. The gravitational interactions between galaxies and the friction between the gas and dust have major effects on the galaxies involved. The exact effects of such mergers depend on a wide variety of parameters such as collision angles, speeds, and relative size/composition, and are currently an extremely active area of research. Galaxy mergers are important because the merger rate is fundamental measurement of galaxy evolution. The merger rate also provides astronomers with clues about how galaxies bulked up over time.

Herbig Ae/Be star

A Herbig Ae/Be star (HAeBe) is a pre-main-sequence star – a young (<10Myr) star of spectral types A or B. These stars are still embedded in gas-dust envelopes and are sometimes accompanied by circumstellar disks. Hydrogen and calcium emission lines are observed in their spectra. They are 2-8 Solar mass (M☉) objects, still existing in the star formation (gravitational contraction) stage and approaching the main sequence (i.e. they are not burning hydrogen in their center). In the Hertzsprung–Russell diagram these stars are located to the right of the main sequence. They are named after the American astronomer George Herbig, who first distinguished them from other stars in 1960.

The original Herbig criteria were:

Spectral type earlier than F0 (in order to exclude T Tauri stars),

Balmer emission lines in the stellar spectrum (in order to be similar to T Tauri stars),

Projected location within the boundaries of a dark interstellar cloud (in order to select really young stars near their birthplaces),

Illumination of a nearby bright reflection nebula (in order to guarantee physical link with star formation region).There are now several known isolated Herbig Ae/Be stars (i.e. not connected with dark clouds or nebulae). Thus the most reliable criteria now can be:

Spectral type earlier than F0,

Balmer emission lines in the stellar spectrum,

Infrared radiation excess (in comparison with normal stars) due to circumstellar dust (in order to distinguish from classical Be stars, which have infrared excess due to free-free emission).Sometimes Herbig Ae/Be stars show significant brightness variability. They are believed to be due to clumps (protoplanets and planetesimals) in the circumstellar disk. In the lowest brightness stage the radiation from the star becomes bluer and linearly polarized (when the clump obscures direct star light, scattered from disk light relatively increases – it is the same effect as the blue color of our sky).

Analogs of Herbig Ae/Be stars in the smaller mass range (<2 M☉) – F, G, K, M spectral type pre-main-sequence stars – are called T Tauri stars. More massive (>8 M☉) stars in pre-main-sequence stage are not observed, because they evolve very quickly: when they become visible (i.e. disperses surrounding circumstellar gas and dust cloud), the hydrogen in the center is already burning and they are main-sequence objects.

IC 2944

IC 2944, also known as the Running Chicken Nebula or the λ Centauri Nebula, is an open cluster with an associated emission nebula found in the constellation Centaurus, near the star λ Centauri. It features Bok globules, which are frequently a site of active star formation. However, no evidence for star formation has been found in any of the globules in IC 2944.The ESO Very Large Telescope image on the right is a close up of a set of Bok globules discovered in IC 2944 by South African astronomer A. David Thackeray in 1950. These globules are now known as Thackeray's Globules. In 2MASS images, 6 stars are visible within the largest globule.

The region of nebulosity visible in modern images includes both IC 2944 and IC 2948, as well as the fainter IC 2872 nearby. IC 2948 is the brightest emission and reflection nebulae towards the southeast, while IC 2944 is the cluster of stars and surrounding nebulosity stretching towards λ Centauri.

Infrared dark cloud

An infrared dark cloud (IRDC) is a cold, dense region of a giant molecular cloud. They can be seen in silhouette against the bright diffuse mid-infrared emission from the galactic plane.

Low-ionization nuclear emission-line region

A low-ionization nuclear emission-line region (LINER) is a type of galactic nucleus that is defined by its spectral line emission. The spectra typically include line emission from weakly ionized or neutral atoms, such as O, O+, N+, and S+. Conversely, the spectral line emission from strongly ionized atoms, such as O++, Ne++, and He+, is relatively weak. The class of galactic nuclei was first identified by Timothy Heckman in the third of a series of papers on the spectra of galactic nuclei that were published in 1980.

Messier 100

Messier 100 (also known as NGC 4321) is an example of a grand design intermediate spiral galaxy located within the southern part of constellation Coma Berenices. It is one of the brightest and largest galaxies in the Virgo Cluster, located approximately 55 million light-years distant from Earth and has a diameter of 167,000 light years and contains 1 trillion stars, roughly the size of the Milky Way. It was discovered by Pierre Méchain on March 15, 1781 and was subsequently entered in Messier's catalogue of nebulae and star clusters after Charles Messier made observations of his own on April 13, 1781. The galaxy was one of the first spiral galaxies to be discovered, and was listed as one of fourteen spiral nebulae by Lord William Parsons of Rosse in 1850. Two satellite galaxies named NGC 4323--connected with M100 by a bridge of luminous matter--and NGC 4328 surround M100.

Molecular cloud

A molecular cloud, sometimes called a stellar nursery (if star formation is occurring within), is a type of interstellar cloud, the density and size of which permit the formation of molecules, most commonly molecular hydrogen (H2). This is in contrast to other areas of the interstellar medium that contain predominantly ionized gas.

Molecular hydrogen is difficult to detect by infrared and radio observations, so the molecule most often used to determine the presence of H2 is carbon monoxide (CO). The ratio between CO luminosity and H2 mass is thought to be constant, although there are reasons to doubt this assumption in observations of some other galaxies.Within molecular clouds are regions with higher density, where lots of dust and gas cores reside, called clumps. These clumps are the beginning of star formation, if gravity can overcome the high density and force the dust and gas to collapse.

NGC 1266

NGC 1266 is a lenticular galaxy in the constellation Eridanus. Although not currently starbursting, it has undergone a period of intense star formation in the recent past, ceasing only ≈500 Myr ago. The galaxy is host to an obscured AGN.

A massive molecular outflow, with 2.4 × 107 M ⊙ {\displaystyle _{\odot }} of hydrogen, is present from the nucleus of the galaxy, at a rate of 110 M yr−1. Less than 2% of the gas (2 M yr−1) is escaping the galaxy. Momentum coupling to the jet of the AGN is likely driving the outflow.

The current observed star-formation rate (SFR) of ~0.87 M yr−1 is significantly lower than expected for a galaxy of its properties, suppressed by a factor of 50 to 150. Authors have put forth several hypotheses to explain these observations. The most likely scenario is that the AGN-driven molecular outflow is injecting turbulence into the nuclear regions, preventing gravitational collapse of molecular clouds. NGC 1266 is the first known intermediate-mass galaxy to show AGN-driven suppression of star formation.

Two hypotheses exist to explain NGC 1266's nuclear activity and excessive far-IR emission. Either a heavily obscured ultracompact starburst is present in the nuclear regions, or a powerful buried AGN is present, beyond what has been inferred from other observations. Neither scenario is without problems. The black hole at the center of the galaxy is likely growing according to the M–sigma relation, and eventually the outflow will result in the removal of the majority of the gas from the nucleus.

NGC 185

NGC 185 (also known as Caldwell 18) is a dwarf spheroidal galaxy located 2.08 million light-years from Earth, appearing in the constellation Cassiopeia. It is a member of the Local Group, and is a satellite of the Andromeda Galaxy (M31). NGC 185 was discovered by William Herschel on November 30, 1787, and he cataloged it "H II.707". John Herschel observed the object again in 1833 when he cataloged it as "h 35", and then in 1864 when he cataloged it as "GC 90" within his General Catalogue of Nebulae and Clusters. NGC 185 was first photographed between 1898 and 1900 by James Edward Keeler with the Crossley Reflector of Lick Observatory. Unlike most dwarf elliptical galaxies, NGC 185 contains young stellar clusters, and star formation proceeded at a low rate until the recent past. NGC 185 has an active galactic nucleus (AGN) and is usually classified as a type 2 Seyfert galaxy, though its status as a Seyfert is questioned. It is possibly the closest Seyfert galaxy to Earth, and is the only known Seyfert in the Local Group.

NGC 4145

NGC 4145 is a barred spiral galaxy located in the Ursa Major galaxy cluster, 68 million light years from the Earth. The galaxy has little star formation, except on its outer edges. Due to the loss of energy that occurs without star formation, some astronomers predict that the galaxy will degenerate into a lenticular galaxy in the near future. However, the galaxy's interaction with NGC 4151 may "maintain [its] star formation".


In physical cosmology, a protogalaxy, which could also be called a "primeval galaxy", is a cloud of gas which is forming into a galaxy. It is believed that the rate of star formation during this period of galactic evolution will determine whether a galaxy is a spiral or elliptical galaxy; a slower star formation tends to produce a spiral galaxy. The smaller clumps of gas in a protogalaxy form into stars.

The term "protogalaxy" itself is generally accepted to mean "Progenitors of the present day (normal) galaxies, in the early stages of formation." However, the "early stages of formation" is not a clearly defined phrase. It could be defined as: "The first major burst of star formation in a progenitor of a present day elliptical galaxy"; "The peak merging epoch of dark halos of the fragments which assemble to produce an average galaxy today"; "A still gaseous body before any star formation has taken place."; or " an over-dense region of dark matter in the very early universe, destined to become gravitationally bound and to collapse."


A protostar is a very young star that is still gathering mass from its parent molecular cloud. The protostellar phase is the earliest one in the process of stellar evolution. For a low mass star (i.e. that of the Sun or lower), it lasts about 500,000 years The phase begins when a molecular cloud fragment first collapses under the force of self-gravity and an opaque, pressure supported core forms inside the collapsing fragment. It ends when the infalling gas is depleted, leaving a pre-main-sequence star, which contracts to later become a main-sequence star at the onset of Hydrogen fusion.

Ring galaxy

A ring galaxy is a galaxy with a circle-like appearance. Hoag's Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. The ring contains many massive, relatively young blue stars, which are extremely bright. The central region contains relatively little luminous matter. Some astronomers believe that ring galaxies are formed when a smaller galaxy passes through the center of a larger galaxy. Because most of a galaxy consists of empty space, this "collision" rarely results in any actual collisions between stars. However, the gravitational disruptions caused by such an event could cause a wave of star formation to move through the larger galaxy. Other astronomers think that rings are formed around some galaxies when external accretion takes place. Star formation would then take place in the accreted material because of the shocks and compressions of the accreted material.

Spiral galaxy

Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work The Realm of the Nebulae and, as such, form part of the Hubble sequence. Most spiral galaxies consist of a flat, rotating disk containing stars, gas and dust, and a central concentration of stars known as the bulge. These are often surrounded by a much fainter halo of stars, many of which reside in globular clusters.

Spiral galaxies are named by their spiral structures that extend from the center into the galactic disc. The spiral arms are sites of ongoing star formation and are brighter than the surrounding disc because of the young, hot OB stars that inhabit them.

Roughly two-thirds of all spirals are observed to have an additional component in the form of a bar-like structure, extending from the central bulge, at the ends of which the spiral arms begin. The proportion of barred spirals relative to their barless cousins has likely changed over the history of the Universe, with only about 10% containing bars about 8 billion years ago, to roughly a quarter 2.5 billion years ago, until present, where over two-thirds of the galaxies in the visible universe (Hubble volume) have bars.Our own Milky Way is a barred spiral, although the bar itself is difficult to observe from the Earth's current position within the galactic disc. The most convincing evidence for the stars forming a bar in the galactic center comes from several recent surveys, including the Spitzer Space Telescope.Together with irregular galaxies, spiral galaxies make up approximately 60% of galaxies in today's universe. They are mostly found in low-density regions and are rare in the centers of galaxy clusters.

Starburst galaxy

A starburst galaxy is a galaxy undergoing an exceptionally high rate of star formation, as compared to the long-term average rate of star formation in the galaxy or the star formation rate observed in most other galaxies. For example, the star formation rate of the Milky Way galaxy is approximately 3 M☉/yr, however, starburst galaxies can experience star formation rates that are more than a factor of 100 times greater. In a starburst galaxy, the rate of star formation is so large that the galaxy will consume all of its gas reservoir, from which the stars are forming, on a timescale much shorter than the age of the galaxy. As such, the starburst nature of a galaxy is a phase, and one that typically occupies a brief period of a galaxy's evolution. The majority of starburst galaxies are in the midst of a merger or close encounter with another galaxy. Starburst galaxies include M82, NGC 4038/NGC 4039 (the Antennae Galaxies), and IC 10.

Super star cluster

A super star cluster (SSC) is a very massive young open cluster that is thought to be the precursor of a globular cluster. These clusters are referred to as "super" due to the fact that they are relatively more luminous and contain more mass than other young star clusters. The SSC, however, does not have to physically be larger than other clusters of lower mass and luminosity. They typically contain a very large number of young, massive stars that ionize a surrounding HII region or a so-called "Ultra dense HII regions (UDHIIs)" in the Milky Way Galaxy as well as in other galaxies (however, SSCs do not always have to be inside an HII region). An SSC's HII region is in turn surrounded by a cocoon of dust. In many cases, the stars and the HII regions will be invisible to observations in certain wavelengths of light, such as the visible spectrum, due to high levels of extinction. As a result, the youngest SSCs are best observed and photographed in radio and infrared. SSCs, such as Westerlund 1 (Wd1), have been found in the Milky Way Galaxy. However, most have been observed in farther regions of the universe. In the galaxy M82 alone, 197 young SSCs have been observed and identified using the Hubble Space Telescope.

Generally, SSCs have been seen to form in the interactions between galaxies and in regions of high amounts of star formation with high enough pressures to satisfy the properties needed for the formation of a star cluster. These regions can include newer galaxies with a lot of new star formation, dwarf starburst galaxies, arms of a spiral galaxy that have a high star formation rate, and in the merging of galaxies. In an Astronomical Journal published in 1996, using pictures taken in the ultraviolet (UV) spectrum by the Hubble Space Telescope of star-forming rings in five different barred galaxies, numerous star clusters were found in clumps within the rings which had high rates of star formation. It was found that these clusters had masses of about M to M, ages of about 100 Myr, and radii of about 5 pc, and are thought to evolve into globular clusters later in their lifetimes. These properties match those found in SSCs.

Young stellar object

Young stellar object (YSO) denotes a star in its early stage of evolution. This class consists of two groups of objects: protostars and pre-main-sequence stars.

Luminosity class
Star systems
Related articles
Star formation
Object classes
Theoretical concepts

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.