Standard state

In chemistry, the standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions. In principle, the choice of standard state is arbitrary, although the International Union of Pure and Applied Chemistry (IUPAC) recommends a conventional set of standard states for general use.[1] IUPAC recommends using a standard pressure p = 105 Pa.[2] Strictly speaking, temperature is not part of the definition of a standard state. For example, as discussed below, the standard state of a gas is conventionally chosen to be unit pressure (usually in bar) ideal gas, regardless of the temperature. However, most tables of thermodynamic quantities are compiled at specific temperatures, most commonly 298.15 K (25.00 °C; 77.00 °F) or, somewhat less commonly, 273.15 K (0.00 °C; 32.00 °F).

The standard state should not be confused with standard temperature and pressure (STP) for gases,[3] nor with the standard solutions used in analytical chemistry.[4]

For a given material or substance, the standard state is the reference state for the material's thermodynamic state properties such as enthalpy, entropy, Gibbs free energy, and for many other material standards. The standard enthalpy change of formation for an element in its standard state is zero, and this convention allows a wide range of other thermodynamic quantities to be calculated and tabulated. The standard state of a substance does not have to exist in nature: for example, it is possible to calculate values for steam at 298.15 K and 105 Pa, although steam does not exist (as a gas) under these conditions. The advantage of this practice is that tables of thermodynamic properties prepared in this way are self-consistent.

Conventional standard states

Many standard states are non-physical states, often referred to as "hypothetical states". Nevertheless, their thermodynamic properties are well-defined, usually by an extrapolation from some limiting condition, such as zero pressure or zero concentration, to a specified condition (usually unit concentration or pressure) using an ideal extrapolating function, such as ideal solution or ideal gas behavior, or by empirical measurements.

Gases

The standard state for a gas is the hypothetical state it would have as a pure substance obeying the ideal gas equation at standard pressure (105 Pa, or 1 bar). No real gas has perfectly ideal behavior, but this definition of the standard state allows corrections for non-ideality to be made consistently for all the different gases.

Liquids and solids

The standard state for liquids and solids is simply the state of the pure substance subjected to a total pressure of 105 Pa. For most elements, the reference point of ΔHf = 0 is defined for the most stable allotrope of the element, such as graphite in the case of carbon, and the β-phase (white tin) in the case of tin. An exception is white phosphorus, the most common allotrope of phosphorus, which is defined as the standard state despite the fact that it is only metastable.[5]

Solutes

For a substance in solution (solute), the standard state is the hypothetical state it would have at the standard state molality or amount concentration but exhibiting infinite-dilution behavior. The reason for this unusual definition is that the behavior of a solute at the limit of infinite dilution is described by equations which are very similar to the equations for ideal gases. Hence taking infinite-dilution behavior to be the standard state allows corrections for non-ideality to be made consistently for all the different solutes. Standard state molality is 1 mol kg−1, while standard state amount concentration is 1 mol dm−3.

Typesetting

At the time of development in the nineteenth century, the superscript Plimsoll symbol () was adopted to indicate the non-zero nature of the standard state.[6] IUPAC recommends in the 3rd edition of Quantities, Units and Symbols in Physical Chemistry a symbol which seems to be a degree sign (°) as a substitute for the plimsoll mark. In the very same publication the plimsoll mark appears to be constructed by combining a horizontal stroke with a degree sign.[7] A range of similar symbols are used in the literature: a stroked lowercase letter O (o),[8] a superscript zero (0)[9] or a circle with a horizontal bar either where the bar extends beyond the boundaries of the circle (U+29B5 CIRCLE WITH HORIZONTAL BAR) or is enclosed by the circle, dividing the circle in half (U+2296 CIRCLED MINUS).[10][11] When compared to the plimsoll symbol used on vessels, the horizontal bar should extend beyond the boundaries of the circle; care should be taken not to confuse the symbol with the Greek letter theta (uppercase Θ or ϴ, lowercase θ ).

See also

References

  • International Union of Pure and Applied Chemistry (1982). "Notation for states and processes, significance of the word standard in chemical thermodynamics, and remarks on commonly tabulated forms of thermodynamic functions" (PDF). Pure Appl. Chem. 54 (6): 1239–50. doi:10.1351/pac198254061239. Italic or bold markup not allowed in: |journal= (help)
  • IUPAC–IUB–IUPAB Interunion Commission of Biothermodynamics (1976). "Recommendations for measurement and presentation of biochemical equilibrium data" (PDF). J. Biol. Chem. 251 (22): 6879–85. Italic or bold markup not allowed in: |journal= (help)
  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "standard state". doi:10.1351/goldbook.S05925
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "standard pressure". doi:10.1351/goldbook.S05921
  3. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "standard conditions for gases". doi:10.1351/goldbook.S05910
  4. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "standard solution". doi:10.1351/goldbook.S05924
  5. ^ Housecroft C.E. and Sharpe A.G., Inorganic Chemistry (2nd ed., Pearson Prentice-Hall 2005) p.392
  6. ^ Prigogine, I. & Defay, R. (1954) Chemical thermodynamics, p. xxiv
  7. ^ E.R. Cohen, T. Cvitas, J.G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H.L. Strauss, M. Takami, and A.J. Thor, "Quantities, Units and Symbols in Physical Chemistry", IUPAC Green Book, 3rd Edition, 2nd Printing, IUPAC & RSC Publishing, Cambridge (2008), p. 60
  8. ^ IUPAC (1993) Quantities, units and symbols in physical chemistry (also known as The Green Book) (2nd ed.), p. 51
  9. ^ Narayanan, K. V. (2001) A Textbook of Chemical Engineering Thermodynamics (8th printing, 2006), p. 63
  10. ^ "Miscellaneous Mathematical Symbols-B" (PDF). Unicode. 2013. Retrieved 2013-12-19.
  11. ^ Mills, I. M. (1989) "The choice of names and symbols for quantities in chemistry". Journal of Chemical Education (vol. 66, number 11, November 1989 p. 887–889) [Note that Mills (who was involved in producing a revision of Quantities, units and symbols in physical chemistry) refers to the symbol ⊖ (Unicode 2296 "Circled minus" as displayed in https://www.unicode.org/charts/PDF/U2980.pdf) as a plimsoll symbol although it lacks an extending bar in the printed article. Mills also says that a superscript zero is an equal alternative to indicate "standard state", though a degree symbol (°) is used in the same article]
Cloranolol

Cloranolol (Tobanum) is a beta blocker.

Cooperativity

Cooperativity is a phenomenon displayed by systems involving identical or near-identical elements, which act dependently of each other, relative to a hypothetical standard non-interacting system in which the individual elements are acting independently. One manifestation of this is enzymes or receptors that have multiple binding sites where the affinity of the binding sites for a ligand is apparently increased, positive cooperativity, or decreased, negative cooperativity, upon the binding of a ligand to a binding site. For example, when an oxygen atom binds to one of hemoglobin's four binding sites, the affinity to oxygen of the three remaining available binding sites increases; i.e. oxygen is more likely to bind to a hemoglobin bound to one oxygen than to an unbound hemoglobin. This is referred to as cooperative binding.We also see cooperativity in large chain molecules made of many identical (or nearly identical) subunits (such as DNA, proteins, and phospholipids), when such molecules undergo phase transitions such as melting, unfolding or unwinding. This is referred to as subunit cooperativity. However, the definition of cooperativity based on apparent increase or decrease in affinity to successive ligand binding steps is problematic, as the concept of "energy" must always be defined relative to a standard state. When we say that the affinity is increased upon binding of one ligand, it is empirically unclear what we mean since a non-cooperative binding curve is required to rigorously define binding energy and hence also affinity. A much more general and useful definition of positive cooperativity is: A process involving multiple identical incremental steps, in which intermediate states are statistically underrepresented relative to a hypothetical standard system (null hypothesis) where the steps occur independently of each other.

Likewise, a definition of negative cooperativity would be a process involving multiple identical incremental steps, in which the intermediate states are overrepresented relative to a hypothetical standard state in which individual steps occur independently. These latter definitions for positive and negative cooperativity easily encompass all processes which we call "cooperative", including conformational transitions in large molecules (such as proteins) and even psychological phenomena of large numbers of people (which can act independently of each other, or in a co-operative fashion).

Dimethoxyamphetamine

Dimethoxyamphetamine (DMA) is a series of six lesser-known psychedelic drugs similar in structure to the three isomers of methoxyamphetamine and six isomers of trimethoxyamphetamine. The isomers are 2,3-DMA, 2,4-DMA, 2,5-DMA, 2,6-DMA, 3,4-DMA, and 3,5-DMA. Three of the isomers were characterized by Alexander Shulgin in his book PiHKAL. Little is known about their dangers or toxicity.

Domesticine

Domesticine is an alpha-1D-adrenoceptor antagonist.

Enthalpy

Enthalpy (listen), a property of a thermodynamic system, is equal to the system's internal energy plus the product of its pressure and volume. In a system enclosed so as to prevent mass transfer, for processes at constant pressure, the heat absorbed or released equals the change in enthalpy.

The unit of measurement for enthalpy in the International System of Units (SI) is the joule. Other historical conventional units still in use include the British thermal unit (BTU) and the calorie.

Enthalpy comprises a system's internal energy, which is the energy required to create the system, plus the amount of work required to make room for it by displacing its environment and establishing its volume and pressure.Enthalpy is defined as a state function that depends only on the prevailing equilibrium state identified by the system's internal energy, pressure, and volume. It is an extensive quantity.

Change in enthalpy (ΔH) is the preferred expression of system energy change in many chemical, biological, and physical measurements at constant pressure, because it simplifies the description of energy transfer. In a system enclosed so as to prevent matter transfer, at constant pressure, the enthalpy change equals the energy transferred from the environment through heat transfer or work other than expansion work.

The total enthalpy, H, of a system cannot be measured directly. The same situation exists in classical mechanics: only a change or difference in energy carries physical meaning. Enthalpy itself is a thermodynamic potential, so in order to measure the enthalpy of a system, we must refer to a defined reference point; therefore what we measure is the change in enthalpy, ΔH. The ΔH is a positive change in endothermic reactions, and negative in heat-releasing exothermic processes.

For processes under constant pressure, ΔH is equal to the change in the internal energy of the system, plus the pressure-volume work p ΔV done by the system on its surroundings (which is > 0 for an expansion and < 0 for a contraction). This means that the change in enthalpy under such conditions is the heat absorbed or released by the system through a chemical reaction or by external heat transfer. Enthalpies for chemical substances at constant pressure usually refer to standard state: most commonly 1 bar pressure. Standard state does not, strictly speaking, specify a temperature (see standard state), but expressions for enthalpy generally reference the standard heat of formation at 25 °C.

Enthalpy of ideal gases and incompressible solids and liquids does not depend on pressure, unlike entropy and Gibbs energy. Real materials at common temperatures and pressures usually closely approximate this behavior, which greatly simplifies enthalpy calculation and use in practical designs and analyses.

Federal Information Processing Standard state code

FIPS state codes were numeric and two-letter alphabetic codes defined in U.S. Federal Information Processing Standard Publication ("FIPS PUB") 5-2 to identify U.S. states and certain other associated areas. The standard superseded FIPS PUB 5-1 on May 28, 1987, and was superseded on September 2, 2008, by ANSI standard INCITS 38:2009.The codes are used in Geographic Names Information System, overseen by the U.S. Board on Geographic Names. The codes were assigned by NIST and each uniquely identified a state, the District of Columbia, or an outlying area of the U.S.. These codes were used by the U.S. Census Bureau, the Department of Agriculture to form milk-processing plant numbers, some cash registers during check approval, and in the Emergency Alert System (EAS).

The FCC assigned additional numeric codes used with the EAS for territorial waters of the U.S., but these were not part of the FIPS standard.

The FIPS state alpha code for each U.S. states and the District of Columbia are identical to the postal abbreviations by the United States Postal Service. From September 3, 1987, the same was true of the alpha code for each of the outlying areas, with the exception of U.S. Minor Outlying Islands (UM) as the USPS routes mail for these islands indirectly.

Each of the various minor outlying islands that fell within alpha code UM had an individual numeric code, but no individual alpha code.

On September 2, 2008, FIPS 5-2 was one of ten standards withdrawn by NIST as a Federal Information Processing Standard.

Galanolactone

Galanolactone is a diterpenoid lactone first isolated from ginger. It is known to be present in acetone extracts of ginger, and appears to be an antagonist at 5-HT3 receptors.

Normetanephrine

Normetanephrine is a metabolite of norepinephrine created by action of catechol-O-methyl transferase on norepinephrine. It is excreted in the urine and found in certain tissues. It is a marker for catecholamine-secreting tumors such as pheochromocytoma.

PH

In chemistry, pH () is a scale used to specify how acidic or basic a water-based solution is. Acidic solutions have a lower pH, while basic solutions have a higher pH. At room temperature (25 °C), pure water is neither acidic nor basic and has a pH of 7.

The pH scale is logarithmic and approximates the negative of the base 10 logarithm of the molar concentration (measured in units of moles per liter) of hydrogen ions in a solution. More precisely it is the negative of the base 10 logarithm of the activity of the hydrogen ion. At 25 °C, solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic. The neutral value of the pH depends on the temperature, being lower than 7 if the temperature increases. The pH value can be less than 0 for very strong acids, or greater than 14 for very strong bases.The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. Primary pH standard values are determined using a concentration cell with transference, by measuring the potential difference between a hydrogen electrode and a standard electrode such as the silver chloride electrode. The pH of aqueous solutions can be measured with a glass electrode and a pH meter, or a color-changing indicator. Measurements of pH are important in chemistry, agronomy, medicine, water treatment, and many other applications.

Standard conditions for temperature and pressure

Standard conditions for temperature and pressure are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of Standards and Technology (NIST), although these are not universally accepted standards. Other organizations have established a variety of alternative definitions for their standard reference conditions.

In chemistry, IUPAC changed the definition of standard temperature and pressure (STP) in 1982:

Until 1982, STP was defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of exactly 1 atm (101.325 kPa).

Since 1982, STP is defined as a temperature of 273.15 K (0 °C, 32 °F) and an absolute pressure of exactly 105 Pa (100 kPa, 1 bar).STP should not be confused with the standard state commonly used in thermodynamic evaluations of the Gibbs energy of a reaction.

NIST uses a temperature of 20 °C (293.15 K, 68 °F) and an absolute pressure of 1 atm (14.696 psi, 101.325 kPa). This standard is also called normal temperature and pressure (abbreviated as NTP).

The International Standard Metric Conditions for natural gas and similar fluids are 288.15 K (15.00 °C; 59.00 °F) and 101.325 kPa.In industry and commerce, standard conditions for temperature and pressure are often necessary to define the standard reference conditions to express the volumes of gases and liquids and related quantities such as the rate of volumetric flow (the volumes of gases vary significantly with temperature and pressure) – standard cubic meters per second (sm3/s), and normal cubic meters per second (nm3/s).

However, many technical publications (books, journals, advertisements for equipment and machinery) simply state "standard conditions" without specifying them; often substituting the term with older "normal conditions", or "NC". In special cases this can lead to confusion and errors. Good practice always incorporates the reference conditions of temperature and pressure. If not stated, some room environment conditions are supposed, close to 1 atm pressure, 293 К (20 °C), and 0% humidity.

Standard electrode potential

In electrochemistry, standard electrode potential is defined as the measure of the individual potential of reversible electrode at standard state with ions at an effective concentration of 1mol dm-3 at the pressure of 1 atm.The basis for an electrochemical cell, such as the galvanic cell, is always a redox reaction which can be broken down into two half-reactions: oxidation at anode (loss of electron) and reduction at cathode (gain of electron). Electricity is generated due to electric potential difference between two electrodes. This potential difference is created as a result of the difference between individual potentials of the two metal electrodes with respect to the electrolyte. (Reversible electrode is an electrode that owes its potential to changes of a reversible nature, in contrast to electrodes used in electroplating which are destroyed during their use.) It is the measure of reducing power of any element or compound

Although the overall potential of a cell can be measured, there is no simple way to accurately measure the electrode/electrolyte potentials in isolation. The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

Standard enthalpy of formation

The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states. The standard pressure value p⦵ = 105 Pa (= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is ΔfH⦵. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are as follows:

For a gas: the hypothetical state it would have assuming it obeyed the ideal gas equation at a pressure of 1 bar

For a solute present in an ideal solution: a concentration of exactly one mole per liter (1 M) at a pressure of 1 bar

For a pure substance or a solvent in a condensed state (a liquid or a solid): the standard state is the pure liquid or solid under a pressure of 1 bar

For an element: the form in which the element is most stable under 1 bar of pressure. One exception is phosphorus, for which the most stable form at 1 bar is black phosphorus, but white phosphorus is chosen as the standard reference state for zero enthalpy of formation.For example, the standard enthalpy of formation of carbon dioxide would be the enthalpy of the following reaction under the above conditions:

C(s, graphite) + O2(g) → CO2(g)All elements are written in their standard states, and one mole of product is formed. This is true for all enthalpies of formation.

The standard enthalpy of formation is measured in units of energy per amount of substance, usually stated in kilojoule per mole (kJ mol−1), but also in kilocalorie per mole, joule per mole or kilocalorie per gram (any combination of these units conforming to the energy per mass or amount guideline).

All elements in their standard states (oxygen gas, solid carbon in the form of graphite, etc.) have a standard enthalpy of formation of zero, as there is no change involved in their formation.

The formation reaction is a constant pressure and constant temperature process. Since the pressure of the standard formation reaction is fixed at 1 bar, the standard formation enthalpy or reaction heat is a function of temperature. For tabulation purposes, standard formation enthalpies are all given at a single temperature: 298 K, represented by the symbol ΔfH⦵298 K.

Standard molar entropy

In chemistry, the standard molar entropy is the entropy content of one mole of substance under a standard state (not STP).

The standard molar entropy is usually given the symbol S°, and has units of joules per mole kelvin (J mol−1 K−1). Unlike standard enthalpies of formation, the value of S° is absolute. That is, an element in its standard state has a definite, nonzero value of S at room temperature. The entropy of a pure crystalline structure can be 0 J mol−1 K−1 only at 0 K, according to the third law of thermodynamics. However, this presupposes that the material forms a 'perfect crystal' without any frozen in entropy (defects, dislocations), which is never completely true because crystals always grow at a finite temperature. However this residual entropy is often quite negligible.

Subdivision (land)

Subdivision is the act of dividing land into pieces that are easier to sell or otherwise develop, usually via a plat. The former single piece as a whole is then known in the United States as a subdivision. If it is used for housing it is typically known as a housing subdivision or housing development, although some developers tend to call these areas communities.

Subdivisions may also be for the purpose of commercial or industrial development, and the results vary from retail shopping malls with independently owned out parcels, to industrial parks.

TME (psychedelics)

TME, or thiometaescaline, is a series of lesser-known psychedelic drugs similar in structure to mescaline. Their structures are based on that of metaescaline. They were first synthesized by Alexander Shulgin and recorded in his book PiHKAL (Phenethylamines i Have Known And Loved). Very little is known about their dangers or toxicity.

Thermodynamic activity

In chemical thermodynamics, activity (symbol a) is a measure of the "effective concentration" of a species in a mixture, in the sense that the species' chemical potential depends on the activity of a real solution in the same way that it would depend on concentration for an ideal solution. The term "activity" in this sense was coined by the American chemist Gilbert N. Lewis in 1907.By convention, activity is treated as a dimensionless quantity, although its value depends on customary choices of standard state for the species. The activity of pure substances in condensed phases (solid or liquids) is normally taken as unity (the number 1). Activity depends on temperature, pressure and composition of the mixture, among other things. For gases, the activity is the effective partial pressure, and is usually referred to as fugacity.

The difference between activity and other measures of composition arises because molecules in non-ideal gases or solutions interact with each other, either to attract or to repel each other. The activity of an ion is particularly influenced by its surroundings.

Activities should be used to define equilibrium constants but, in practice, concentrations are often used instead. The same is often true of equations for reaction rates. However, there are circumstances where the activity and the concentration are significantly different and, as such, it is not valid to approximate with concentrations where activities are required. Two examples serve to illustrate this point:

In a solution of potassium hydrogen iodate KH(IO3)2 at 0.02 M the activity is 40% lower than the calculated hydrogen ion concentration, resulting in a much higher pH than expected.

When a 0.1 M hydrochloric acid solution containing methyl green indicator is added to a 5 M solution of magnesium chloride, the color of the indicator changes from green to yellow—indicating increasing acidity—when in fact the acid has been diluted. Although at low ionic strength (< 0.1 M) the activity coefficient approaches unity, this coefficient can actually increase with ionic strength in a high ionic strength regime. For hydrochloric acid solutions, the minimum is around 0.4 M.

Thermodynamic databases for pure substances

Thermodynamic databases contain information about thermodynamic properties for substances, the most important being enthalpy, entropy, and Gibbs free energy. Numerical values of these thermodynamic properties are collected as tables or are calculated from thermodynamic datafiles. Data is expressed as temperature-dependent values for one mole of substance at the standard pressure of 101.325 kPa (1 atm), or 100 kPa (1 bar). Unfortunately, both of these definitions for the standard condition for pressure are in use.

Thioescaline

Thioescaline (TE) is a pair of lesser-known psychedelic drugs with the chemical formula C12H19NO2S. They structural analogs of escaline in which an oxygen atom has been replaced with a sulfur atom. They were first synthesized by Alexander Shulgin and reported in his book PiHKAL. Very little is known about their dangers or toxicity.

Water activity

Water activity or aw is the partial vapor pressure of water in a substance divided by the standard state partial vapor pressure of water. In the field of food science, the standard state is most often defined as the partial vapor pressure of pure water at the same temperature. Using this particular definition, pure distilled water has a water activity of exactly one. As temperature increases, aw typically increases, except in some products with crystalline salt or sugar.

Higher aw substances tend to support more microorganisms. Bacteria usually require at least 0.91, and fungi at least 0.7. See also fermentation.

Water migrates from areas of high aw to areas of low aw. For example, if honey (aw ≈ 0.6) is exposed to humid air (aw ≈ 0.7), the honey absorbs water from the air. If salami (aw ≈ 0.87) is exposed to dry air (aw ≈ 0.5), the salami dries out, which could preserve it or spoil it.

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.