Speed of sound

The speed of sound is the distance travelled per unit time by a sound wave as it propagates through an elastic medium. At 20 °C (68 °F), the speed of sound in air is about 343 meters per second (1,234.8 km/h; 1,125 ft/s; 767 mph; 667 kn), or a kilometre in 2.9 s or a mile in 4.7 s. It depends strongly on temperature, but also varies by several meters per second, depending on which gases exist in the medium through which a soundwave is propagating.

The speed of sound in an ideal gas depends only on its temperature and composition. The speed has a weak dependence on frequency and pressure in ordinary air, deviating slightly from ideal behavior.

In common everyday speech, speed of sound refers to the speed of sound waves in air. However, the speed of sound varies from substance to substance: sound travels most slowly in gases; it travels faster in liquids; and faster still in solids. For example, (as noted above), sound travels at 343 m/s in air; it travels at 1,480 m/s in water (4.3 times as fast as in air); and at 5,120 m/s in iron (about 15 times as fast as in air). In an exceptionally stiff material such as diamond, sound travels at 12,000 metres per second (27,000 mph);[1] (about 35 times as fast as in air) which is around the maximum speed that sound will travel under normal conditions.

Sound waves in solids are composed of compression waves (just as in gases and liquids), and a different type of sound wave called a shear wave, which occurs only in solids. Shear waves in solids usually travel at different speeds, as exhibited in seismology. The speed of compression waves in solids is determined by the medium's compressibility, shear modulus and density. The speed of shear waves is determined only by the solid material's shear modulus and density.

In fluid dynamics, the speed of sound in a fluid medium (gas or liquid) is used as a relative measure for the speed of an object moving through the medium. The ratio of the speed of an object to the speed of sound in the fluid is called the object's Mach number. Objects moving at speeds greater than Mach1 are said to be traveling at supersonic speeds.

Sound measurements
 Sound pressure p, SPL,LPA
 Particle velocity v, SVL
 Particle displacement δ
 Sound intensity I, SIL
 Sound power P, SWL, LWA
 Sound energy W
 Sound energy density w
 Sound exposure E, SEL
 Acoustic impedance Z
 Speed of sound c
 Audio frequency AF
 Transmission loss TL


Sir Isaac Newton computed the speed of sound in air as 979 feet per second (298 m/s), which is too low by about 15%,.[2] Newton's analysis was good save for neglecting the (then unknown) effect of rapidly-fluctuating temperature in a sound wave (in modern terms, sound wave compression and expansion of air is an adiabatic process, not an isothermal process). This error was later rectified by Laplace.[3]

During the 17th century, there were several attempts to measure the speed of sound accurately, including attempts by Marin Mersenne in 1630 (1,380 Parisian feet per second), Pierre Gassendi in 1635 (1,473 Parisian feet per second) and Robert Boyle (1,125 Parisian feet per second).[4]

In 1709, the Reverend William Derham, Rector of Upminster, published a more accurate measure of the speed of sound, at 1,072 Parisian feet per second.[4] Derham used a telescope from the tower of the church of St Laurence, Upminster to observe the flash of a distant shotgun being fired, and then measured the time until he heard the gunshot with a half-second pendulum. Measurements were made of gunshots from a number of local landmarks, including North Ockendon church. The distance was known by triangulation, and thus the speed that the sound had travelled was calculated.[5]

Basic concepts

The transmission of sound can be illustrated by using a model consisting of an array of spherical objects interconnected by springs.

In real material terms, the spheres represent the material's molecules and the springs represent the bonds between them. Sound passes through the system by compressing and expanding the springs, transmitting the acoustic energy to neighboring spheres. This helps transmit the energy in-turn to the neighboring sphere's springs (bonds), and so on.

The speed of sound through the model depends on the stiffness/rigidity of the springs, and the mass of the spheres. As long as the spacing of the spheres remains constant, stiffer springs/bonds transmit energy quicker, while larger spheres transmit the energy slower.

In a real material, the stiffness of the springs is known as the "elastic modulus", and the mass corresponds to the material density. Given that all other things being equal (ceteris paribus), sound will travel slower in spongy materials, and faster in stiffer ones. Effects like dispersion and reflection can also be understood using this model.

For instance, sound will travel 1.59 times faster in nickel than in bronze, due to the greater stiffness of nickel at about the same density. Similarly, sound travels about 1.41 times faster in light hydrogen (protium) gas than in heavy hydrogen (deuterium) gas, since deuterium has similar properties but twice the density. At the same time, "compression-type" sound will travel faster in solids than in liquids, and faster in liquids than in gases, because the solids are more difficult to compress than liquids, while liquids in turn are more difficult to compress than gases.

Some textbooks mistakenly state that the speed of sound increases with density. This notion is illustrated by presenting data for three materials, such as air, water and steel, which also have vastly different compressibility, more which making up for the density differences. An illustrative example of the two effects is that sound travels only 4.3 times faster in water than air, despite enormous differences in compressibility of the two media. The reason is that the larger density of water, which works to slow sound in water relative to air, nearly makes up for the compressibility differences in the two media.

A practical example can be observed in Edinburgh when the "One o' Clock Gun" is fired at the eastern end of Edinburgh Castle. Standing at the base of the western end of the Castle Rock, the sound of the Gun can be heard through the rock, slightly before it arrives by the air route, partly delayed by the slightly longer route. It is particularly effective if a multi-gun salute such as for "The Queen's Birthday" is being fired.

Compression and shear waves

Onde compression impulsion 1d 30 petit
Pressure-pulse or compression-type wave (longitudinal wave) confined to a plane. This is the only type of sound wave that travels in fluids (gases and liquids). A pressure-type wave may also travel in solids, along with other types of waves (transverse waves, see below)
Onde cisaillement impulsion 1d 30 petit
Transverse wave affecting atoms initially confined to a plane. This additional type of sound wave (additional type of elastic wave) travels only in solids, for it requires a sideways shearing motion which is supported by the presence of elasticity in the solid. The sideways shearing motion may take place in any direction which is at right-angle to the direction of wave-travel (only one shear direction is shown here, at right angles to the plane). Furthermore, the right-angle shear direction may change over time and distance, resulting in different types of polarization of shear-waves

In a gas or liquid, sound consists of compression waves. In solids, waves propagate as two different types. A longitudinal wave is associated with compression and decompression in the direction of travel, and is the same process in gases and liquids, with an analogous compression-type wave in solids. Only compression waves are supported in gases and liquids. An additional type of wave, the transverse wave, also called a shear wave, occurs only in solids because only solids support elastic deformations. It is due to elastic deformation of the medium perpendicular to the direction of wave travel; the direction of shear-deformation is called the "polarization" of this type of wave. In general, transverse waves occur as a pair of orthogonal polarizations.

These different waves (compression waves and the different polarizations of shear waves) may have different speeds at the same frequency. Therefore, they arrive at an observer at different times, an extreme example being an earthquake, where sharp compression waves arrive first and rocking transverse waves seconds later.

The speed of a compression wave in a fluid is determined by the medium's compressibility and density. In solids, the compression waves are analogous to those in fluids, depending on compressibility and density, but with the additional factor of shear modulus which affects compression waves due to off-axis elastic energies which are able to influence effective tension and relaxation in a compression. The speed of shear waves, which can occur only in solids, is determined simply by the solid material's shear modulus and density.


The speed of sound in mathematical notation is conventionally represented by c, from the Latin celeritas meaning "velocity".

For fluids in general, the speed of sound c is given by the Newton–Laplace equation:


  • Ks is a coefficient of stiffness, the isentropic bulk modulus (or the modulus of bulk elasticity for gases);
  • ρ is the density.

Thus the speed of sound increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of the material and decreases with an increase in density. For ideal gases, the bulk modulus K is simply the gas pressure multiplied by the dimensionless adiabatic index, which is about 1.4 for air under normal conditions of pressure and temperature.

For general equations of state, if classical mechanics is used, the speed of sound c is given by


  • p is the pressure;
  • ρ is the density and the derivative is taken isentropically, that is, at constant entropy s.

If relativistic effects are important, the speed of sound is calculated from the relativistic Euler equations.

In a non-dispersive medium, the speed of sound is independent of sound frequency, so the speeds of energy transport and sound propagation are the same for all frequencies. Air, a mixture of oxygen and nitrogen, constitutes a non-dispersive medium. However, air does contain a small amount of CO2 which is a dispersive medium, and causes dispersion to air at ultrasonic frequencies (> 28 kHz).[6]

In a dispersive medium, the speed of sound is a function of sound frequency, through the dispersion relation. Each frequency component propagates at its own speed, called the phase velocity, while the energy of the disturbance propagates at the group velocity. The same phenomenon occurs with light waves; see optical dispersion for a description.

Dependence on the properties of the medium

The speed of sound is variable and depends on the properties of the substance through which the wave is travelling. In solids, the speed of transverse (or shear) waves depends on the shear deformation under shear stress (called the shear modulus), and the density of the medium. Longitudinal (or compression) waves in solids depend on the same two factors with the addition of a dependence on compressibility.

In fluids, only the medium's compressibility and density are the important factors, since fluids do not transmit shear stresses. In heterogeneous fluids, such as a liquid filled with gas bubbles, the density of the liquid and the compressibility of the gas affect the speed of sound in an additive manner, as demonstrated in the hot chocolate effect.

In gases, adiabatic compressibility is directly related to pressure through the heat capacity ratio (adiabatic index), while pressure and density are inversely related to the temperature and molecular weight, thus making only the completely independent properties of temperature and molecular structure important (heat capacity ratio may be determined by temperature and molecular structure, but simple molecular weight is not sufficient to determine it).

In low molecular weight gases such as helium, sound propagates faster as compared to heavier gases such as xenon. For monatomic gases, the speed of sound is about 75% of the mean speed that the atoms move in that gas.

For a given ideal gas the molecular composition is fixed, and thus the speed of sound depends only on its temperature. At a constant temperature, the gas pressure has no effect on the speed of sound, since the density will increase, and since pressure and density (also proportional to pressure) have equal but opposite effects on the speed of sound, and the two contributions cancel out exactly. In a similar way, compression waves in solids depend both on compressibility and density—just as in liquids—but in gases the density contributes to the compressibility in such a way that some part of each attribute factors out, leaving only a dependence on temperature, molecular weight, and heat capacity ratio which can be independently derived from temperature and molecular composition (see derivations below). Thus, for a single given gas (assuming the molecular weight does not change) and over a small temperature range (for which the heat capacity is relatively constant), the speed of sound becomes dependent on only the temperature of the gas.

In non-ideal gas behavior regimen, for which the van der Waals gas equation would be used, the proportionality is not exact, and there is a slight dependence of sound velocity on the gas pressure.

Humidity has a small but measurable effect on the speed of sound (causing it to increase by about 0.1%–0.6%), because oxygen and nitrogen molecules of the air are replaced by lighter molecules of water. This is a simple mixing effect.

Altitude variation and implications for atmospheric acoustics

Comparison US standard atmosphere 1962
Density and pressure decrease smoothly with altitude, but temperature (red) does not. The speed of sound (blue) depends only on the complicated temperature variation at altitude and can be calculated from it since isolated density and pressure effects on the speed of sound cancel each other. The speed of sound increases with height in two regions of the stratosphere and thermosphere, due to heating effects in these regions.

In the Earth's atmosphere, the chief factor affecting the speed of sound is the temperature. For a given ideal gas with constant heat capacity and composition, the speed of sound is dependent solely upon temperature; see Details below. In such an ideal case, the effects of decreased density and decreased pressure of altitude cancel each other out, save for the residual effect of temperature.

Since temperature (and thus the speed of sound) decreases with increasing altitude up to 11 km, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.[7] The decrease of the speed of sound with height is referred to as a negative sound speed gradient.

However, there are variations in this trend above 11 km. In particular, in the stratosphere above about 20 km, the speed of sound increases with height, due to an increase in temperature from heating within the ozone layer. This produces a positive speed of sound gradient in this region. Still another region of positive gradient occurs at very high altitudes, in the aptly-named thermosphere above 90 km.

Practical formula for dry air

Speed of sound in dry air
Approximation of the speed of sound in dry air based on the heat capacity ratio (in green) against the truncated Taylor expansion (in red).

The approximate speed of sound in dry (0% humidity) air, in meters per second, at temperatures near 0 °C, can be calculated from

where is the temperature in degrees Celsius (°C).

This equation is derived from the first two terms of the Taylor expansion of the following more accurate equation:

Dividing the first part, and multiplying the second part, on the right hand side, by 273.15 gives the exactly equivalent form

which can also be written as

where T denotes the thermodynamic temperature.

The value of 331.3 m/s, which represents the speed at 0 °C (or 273.15 K), is based on theoretical (and some measured) values of the heat capacity ratio, γ, as well as on the fact that at 1 atm real air is very well described by the ideal gas approximation. Commonly found values for the speed of sound at 0 °C may vary from 331.2 to 331.6 due to the assumptions made when it is calculated. If ideal gas γ is assumed to be 7/5 = 1.4 exactly, the 0 °C speed is calculated (see section below) to be 331.3 m/s, the coefficient used above.

This equation is correct to a much wider temperature range, but still depends on the approximation of heat capacity ratio being independent of temperature, and for this reason will fail, particularly at higher temperatures. It gives good predictions in relatively dry, cold, low-pressure conditions, such as the Earth's stratosphere. The equation fails at extremely low pressures and short wavelengths, due to dependence on the assumption that the wavelength of the sound in the gas is much longer than the average mean free path between gas molecule collisions. A derivation of these equations will be given in the following section.

A graph comparing results of the two equations is at right, using the slightly different value of 331.5 m/s for the speed of sound at 0 °C.


Speed of sound in ideal gases and air

For an ideal gas, K (the bulk modulus in equations above, equivalent to C, the coefficient of stiffness in solids) is given by

thus, from the Newton–Laplace equation above, the speed of sound in an ideal gas is given by


  • γ is the adiabatic index also known as the isentropic expansion factor. It is the ratio of specific heats of a gas at a constant-pressure to a gas at a constant-volume(), and arises because a classical sound wave induces an adiabatic compression, in which the heat of the compression does not have enough time to escape the pressure pulse, and thus contributes to the pressure induced by the compression;
  • p is the pressure;
  • ρ is the density.

Using the ideal gas law to replace p with nRT/V, and replacing ρ with nM/V, the equation for an ideal gas becomes


  • cideal is the speed of sound in an ideal gas;
  • R (approximately 8.314,5 J · mol−1 · K−1) is the molar gas constant(universal gas constant);[8]
  • k is the Boltzmann constant;
  • γ (gamma) is the adiabatic index. At room temperature, where thermal energy is fully partitioned into rotation (rotations are fully excited) but quantum effects prevent excitation of vibrational modes, the value is 7/5 = 1.400 for diatomic molecules, according to kinetic theory. Gamma is actually experimentally measured over a range from 1.399,1 to 1.403 at 0 °C, for air. Gamma is exactly 5/3 = 1.6667 for monatomic gases such as noble gases and it is approxemately 1.3 for triatomic molecule gases;
  • T is the absolute temperature;
  • M is the molar mass of the gas. The mean molar mass for dry air is about 0.028,964,5 kg/mol;
  • n is the number of moles;
  • m is the mass of a single molecule.

This equation applies only when the sound wave is a small perturbation on the ambient condition, and the certain other noted conditions are fulfilled, as noted below. Calculated values for cair have been found to vary slightly from experimentally determined values.[9]

Newton famously considered the speed of sound before most of the development of thermodynamics and so incorrectly used isothermal calculations instead of adiabatic. His result was missing the factor of γ but was otherwise correct.

Numerical substitution of the above values gives the ideal gas approximation of sound velocity for gases, which is accurate at relatively low gas pressures and densities (for air, this includes standard Earth sea-level conditions). Also, for diatomic gases the use of γ = 1.4000 requires that the gas exists in a temperature range high enough that rotational heat capacity is fully excited (i.e., molecular rotation is fully used as a heat energy "partition" or reservoir); but at the same time the temperature must be low enough that molecular vibrational modes contribute no heat capacity (i.e., insignificant heat goes into vibration, as all vibrational quantum modes above the minimum-energy-mode, have energies too high to be populated by a significant number of molecules at this temperature). For air, these conditions are fulfilled at room temperature, and also temperatures considerably below room temperature (see tables below). See the section on gases in specific heat capacity for a more complete discussion of this phenomenon.

For air, we introduce the shorthand

In addition, we switch to the Celsius temperature = T − 273.15, which is useful to calculate air speed in the region near 0 °C (about 273 kelvin). Then, for dry air,

where (theta) is the temperature in degrees Celsius(°C).

Substituting numerical values

for the molar gas constant in J/mole/Kelvin, and

for the mean molar mass of air, in kg; and using the ideal diatomic gas value of γ = 1.4000, we have

Finally, Taylor expansion of the remaining square root in yields

The above derivation includes the first two equations given in the "Practical formula for dry air" section above.

Effects due to wind shear

The speed of sound varies with temperature. Since temperature and sound velocity normally decrease with increasing altitude, sound is refracted upward, away from listeners on the ground, creating an acoustic shadow at some distance from the source.[7] Wind shear of 4 m/(s · km) can produce refraction equal to a typical temperature lapse rate of 7.5 °C/km.[10] Higher values of wind gradient will refract sound downward toward the surface in the downwind direction,[11] eliminating the acoustic shadow on the downwind side. This will increase the audibility of sounds downwind. This downwind refraction effect occurs because there is a wind gradient; the sound is not being carried along by the wind.[12]

For sound propagation, the exponential variation of wind speed with height can be defined as follows:[13]


  • U(h) is the speed of the wind at height h;
  • ζ is the exponential coefficient based on ground surface roughness, typically between 0.08 and 0.52;
  • dU/dH(h) is the expected wind gradient at height h.

In the 1862 American Civil War Battle of Iuka, an acoustic shadow, believed to have been enhanced by a northeast wind, kept two divisions of Union soldiers out of the battle,[14] because they could not hear the sounds of battle only 10 km (six miles) downwind.[15]


In the standard atmosphere:

  • T0 is 273.15 K (= 0 °C = 32 °F), giving a theoretical value of 331.3 m/s (= 1086.9 ft/s = 1193 km/h = 741.1 mph = 644.0 kn). Values ranging from 331.3 to 331.6 m/s may be found in reference literature, however;
  • T20 is 293.15 K (= 20 °C = 68 °F), giving a value of 343.2 m/s (= 1126.0 ft/s = 1236 km/h = 767.8 mph = 667.2 kn);
  • T25 is 298.15 K (= 25 °C = 77 °F), giving a value of 346.1 m/s (= 1135.6 ft/s = 1246 km/h = 774.3 mph = 672.8 kn).

In fact, assuming an ideal gas, the speed of sound c depends on temperature only, not on the pressure or density (since these change in lockstep for a given temperature and cancel out). Air is almost an ideal gas. The temperature of the air varies with altitude, giving the following variations in the speed of sound using the standard atmosphere—actual conditions may vary.

Effect of temperature on properties of air
T (°C)
Speed of sound
c (m/s)
Density of air
ρ (kg/m3)
Characteristic specific acoustic impedance
z0 (Pa·s/m)
35 351.88 1.1455 403.2
30 349.02 1.1644 406.5
25 346.13 1.1839 409.4
20 343.21 1.2041 413.3
15 340.27 1.2250 416.9
10 337.31 1.2466 420.5
5 334.32 1.2690 424.3
0 331.30 1.2922 428.0
−5 328.25 1.3163 432.1
−10 325.18 1.3413 436.1
−15 322.07 1.3673 440.3
−20 318.94 1.3943 444.6
−25 315.77 1.4224 449.1

Given normal atmospheric conditions, the temperature, and thus speed of sound, varies with altitude:

Altitude Temperature m/s km/h mph kn
Sea level 15 °C (59 °F) 340 1,225 761 661
11,000 m20,000 m
(Cruising altitude of commercial jets,
and first supersonic flight)
−57 °C (−70 °F) 295 1,062 660 573
29,000 m (Flight of X-43A) −48 °C (−53 °F) 301 1,083 673 585

Effect of frequency and gas composition

General physical considerations

The medium in which a sound wave is travelling does not always respond adiabatically, and as a result, the speed of sound can vary with frequency.[16]

The limitations of the concept of speed of sound due to extreme attenuation are also of concern. The attenuation which exists at sea level for high frequencies applies to successively lower frequencies as atmospheric pressure decreases, or as the mean free path increases. For this reason, the concept of speed of sound (except for frequencies approaching zero) progressively loses its range of applicability at high altitudes.[9] The standard equations for the speed of sound apply with reasonable accuracy only to situations in which the wavelength of the soundwave is considerably longer than the mean free path of molecules in a gas.

The molecular composition of the gas contributes both as the mass (M) of the molecules, and their heat capacities, and so both have an influence on speed of sound. In general, at the same molecular mass, monatomic gases have slightly higher speed of sound (over 9% higher) because they have a higher γ (5/3 = 1.66...) than diatomics do (7/5 = 1.4). Thus, at the same molecular mass, the speed of sound of a monatomic gas goes up by a factor of

This gives the 9% difference, and would be a typical ratio for speeds of sound at room temperature in helium vs. deuterium, each with a molecular weight of 4. Sound travels faster in helium than deuterium because adiabatic compression heats helium more since the helium molecules can store heat energy from compression only in translation, but not rotation. Thus helium molecules (monatomic molecules) travel faster in a sound wave and transmit sound faster. (Sound travels at about 70% of the mean molecular speed in gases; the figure is 75% in monatomic gases and 68% in diatomic gases).

Note that in this example we have assumed that temperature is low enough that heat capacities are not influenced by molecular vibration (see heat capacity). However, vibrational modes simply cause gammas which decrease toward 1, since vibration modes in a polyatomic gas give the gas additional ways to store heat which do not affect temperature, and thus do not affect molecular velocity and sound velocity. Thus, the effect of higher temperatures and vibrational heat capacity acts to increase the difference between the speed of sound in monatomic vs. polyatomic molecules, with the speed remaining greater in monatomics.

Practical application to air

By far the most important factor influencing the speed of sound in air is temperature. The speed is proportional to the square root of the absolute temperature, giving an increase of about 0.6 m/s per degree Celsius. For this reason, the pitch of a musical wind instrument increases as its temperature increases.

The speed of sound is raised by humidity but decreased by carbon dioxide. The difference between 0% and 100% humidity is about 1.5 m/s at standard pressure and temperature, but the size of the humidity effect increases dramatically with temperature. The carbon dioxide content of air is not fixed, due to both carbon pollution and human breath (e.g., in the air blown through wind instruments).

The dependence on frequency and pressure are normally insignificant in practical applications. In dry air, the speed of sound increases by about 0.1 m/s as the frequency rises from 10 Hz to 100 Hz. For audible frequencies above 100 Hz it is relatively constant. Standard values of the speed of sound are quoted in the limit of low frequencies, where the wavelength is large compared to the mean free path.[17]

Mach number

FA-18 Hornet breaking sound barrier (7 July 1999) - filtered
U.S. Navy F/A-18 traveling near the speed of sound. The white halo consists of condensed water droplets formed by the sudden drop in air pressure behind the shock cone around the aircraft (see Prandtl-Glauert singularity).[18]

Mach number, a useful quantity in aerodynamics, is the ratio of air speed to the local speed of sound. At altitude, for reasons explained, Mach number is a function of temperature. Aircraft flight instruments, however, operate using pressure differential to compute Mach number, not temperature. The assumption is that a particular pressure represents a particular altitude and, therefore, a standard temperature. Aircraft flight instruments need to operate this way because the stagnation pressure sensed by a Pitot tube is dependent on altitude as well as speed.

Experimental methods

A range of different methods exist for the measurement of sound in air.

The earliest reasonably accurate estimate of the speed of sound in air was made by William Derham and acknowledged by Isaac Newton. Derham had a telescope at the top of the tower of the Church of St Laurence in Upminster, England. On a calm day, a synchronized pocket watch would be given to an assistant who would fire a shotgun at a pre-determined time from a conspicuous point some miles away, across the countryside. This could be confirmed by telescope. He then measured the interval between seeing gunsmoke and arrival of the sound using a half-second pendulum. The distance from where the gun was fired was found by triangulation, and simple division (distance/time) provided velocity. Lastly, by making many observations, using a range of different distances, the inaccuracy of the half-second pendulum could be averaged out, giving his final estimate of the speed of sound. Modern stopwatches enable this method to be used today over distances as short as 200–400 meters, and not needing something as loud as a shotgun.

Single-shot timing methods

The simplest concept is the measurement made using two microphones and a fast recording device such as a digital storage scope. This method uses the following idea.

If a sound source and two microphones are arranged in a straight line, with the sound source at one end, then the following can be measured:

  1. The distance between the microphones (x), called microphone basis.
  2. The time of arrival between the signals (delay) reaching the different microphones (t).

Then v = x/t.

Other methods

In these methods, the time measurement has been replaced by a measurement of the inverse of time (frequency).

Kundt's tube is an example of an experiment which can be used to measure the speed of sound in a small volume. It has the advantage of being able to measure the speed of sound in any gas. This method uses a powder to make the nodes and antinodes visible to the human eye. This is an example of a compact experimental setup.

A tuning fork can be held near the mouth of a long pipe which is dipping into a barrel of water. In this system it is the case that the pipe can be brought to resonance if the length of the air column in the pipe is equal to (1 + 2n)λ/4 where n is an integer. As the antinodal point for the pipe at the open end is slightly outside the mouth of the pipe it is best to find two or more points of resonance and then measure half a wavelength between these.

Here it is the case that v = .

High-precision measurements in air

The effect of impurities can be significant when making high-precision measurements. Chemical desiccants can be used to dry the air, but will, in turn, contaminate the sample. The air can be dried cryogenically, but this has the effect of removing the carbon dioxide as well; therefore many high-precision measurements are performed with air free of carbon dioxide rather than with natural air. A 2002 review[19] found that a 1963 measurement by Smith and Harlow using a cylindrical resonator gave "the most probable value of the standard speed of sound to date." The experiment was done with air from which the carbon dioxide had been removed, but the result was then corrected for this effect so as to be applicable to real air. The experiments were done at 30 °C but corrected for temperature in order to report them at 0 °C. The result was 331.45 ± 0.01 m/s for dry air at STP, for frequencies from 93 Hz to 1,500 Hz.

Non-gaseous media

Speed of sound in solids

Three-dimensional solids

In a solid, there is a non-zero stiffness both for volumetric deformations and shear deformations. Hence, it is possible to generate sound waves with different velocities dependent on the deformation mode. Sound waves generating volumetric deformations (compression) and shear deformations (shearing) are called pressure waves (longitudinal waves) and shear waves (transverse waves), respectively. In earthquakes, the corresponding seismic waves are called P-waves (primary waves) and S-waves (secondary waves), respectively. The sound velocities of these two types of waves propagating in a homogeneous 3-dimensional solid are respectively given by[20]


The last quantity is not an independent one, as E = 3K(1 − 2ν). Note that the speed of pressure waves depends both on the pressure and shear resistance properties of the material, while the speed of shear waves depends on the shear properties only.

Typically, pressure waves travel faster in materials than do shear waves, and in earthquakes this is the reason that the onset of an earthquake is often preceded by a quick upward-downward shock, before arrival of waves that produce a side-to-side motion. For example, for a typical steel alloy, K = 170 GPa, G = 80 GPa and ρ = 7,700 kg/m3, yielding a compressional speed csolid,p of 6,000 m/s.[20] This is in reasonable agreement with csolid,p measured experimentally at 5,930 m/s for a (possibly different) type of steel.[21] The shear speed csolid,s is estimated at 3,200 m/s using the same numbers.

One-dimensional solids

The speed of sound for pressure waves in stiff materials such as metals is sometimes given for "long rods" of the material in question, in which the speed is easier to measure. In rods where their diameter is shorter than a wavelength, the speed of pure pressure waves may be simplified and is given by:

where E is Young's modulus. This is similar to the expression for shear waves, save that Young's modulus replaces the shear modulus. This speed of sound for pressure waves in long rods will always be slightly less than the same speed in homogeneous 3-dimensional solids, and the ratio of the speeds in the two different types of objects depends on Poisson's ratio for the material.

Speed of sound in liquids

Speed of sound in water
Speed of sound in water vs temperature.

In a fluid, the only non-zero stiffness is to volumetric deformation (a fluid does not sustain shear forces).

Hence the speed of sound in a fluid is given by

where K is the bulk modulus of the fluid.


In fresh water, sound travels at about 1481 m/s at 20 °C (see the External Links section below for online calculators).[22] Applications of underwater sound can be found in sonar, acoustic communication and acoustical oceanography.


Underwater speed of sound
Speed of sound as a function of depth at a position north of Hawaii in the Pacific Ocean derived from the 2005 World Ocean Atlas. The SOFAR channel spans the minimum in the speed of sound at about 750-m depth.

In salt water that is free of air bubbles or suspended sediment, sound travels at about 1500 m/s (1500.235 m/s at 1000 kilopascals, 10 °C and 3% salinity by one method).[23] The speed of sound in seawater depends on pressure (hence depth), temperature (a change of 1 °C ~ 4 m/s), and salinity (a change of 1 ~ 1 m/s), and empirical equations have been derived to accurately calculate the speed of sound from these variables.[24][25] Other factors affecting the speed of sound are minor. Since in most ocean regions temperature decreases with depth, the profile of the speed of sound with depth decreases to a minimum at a depth of several hundred meters. Below the minimum, sound speed increases again, as the effect of increasing pressure overcomes the effect of decreasing temperature (right).[26] For more information see Dushaw et al.[27]

A simple empirical equation for the speed of sound in sea water with reasonable accuracy for the world's oceans is due to Mackenzie:[28]


  • T is the temperature in degrees Celsius;
  • S is the salinity in parts per thousand;
  • z is the depth in meters.

The constants a1, a2, ..., a9 are

with check value 1550.744 m/s for T = 25 °C, S = 35 parts per thousand, z = 1,000 m. This equation has a standard error of 0.070 m/s for salinity between 25 and 40 ppt. See Technical Guides. Speed of Sound in Sea-Water for an online calculator.

(Note: The Sound Speed vs. Depth graph does not correlate directly to the MacKenzie formula. This is due to the fact that the temperature and salinity varies at different depths. When T and S are held constant, the formula itself it always increasing.)

Other equations for the speed of sound in sea water are accurate over a wide range of conditions, but are far more complicated, e.g., that by V. A. Del Grosso[29] and the Chen-Millero-Li Equation.[27][30]

Speed of sound in plasma

The speed of sound in a plasma for the common case that the electrons are hotter than the ions (but not too much hotter) is given by the formula (see here)


In contrast to a gas, the pressure and the density are provided by separate species, the pressure by the electrons and the density by the ions. The two are coupled through a fluctuating electric field.


When sound spreads out evenly in all directions in three dimensions, the intensity drops in proportion to the inverse square of the distance. However, in the ocean, there is a layer called the 'deep sound channel' or SOFAR channel which can confine sound waves at a particular depth.

In the SOFAR channel, the speed of sound is lower than that in the layers above and below. Just as light waves will refract towards a region of higher index, sound waves will refract towards a region where their speed is reduced. The result is that sound gets confined in the layer, much the way light can be confined to a sheet of glass or optical fiber. Thus, the sound is confined in essentially two dimensions. In two dimensions the intensity drops in proportion to only the inverse of the distance. This allows waves to travel much further before being undetectably faint.

A similar effect occurs in the atmosphere. Project Mogul successfully used this effect to detect a nuclear explosion at a considerable distance.

See also


  1. ^ Speed of Sound
  2. ^ "The Speed of Sound". mathpages.com. Retrieved 3 May 2015.
  3. ^ Bannon, Mike; Kaputa, Frank. "The Newton–Laplace Equation and Speed of Sound". Thermal Jackets. Retrieved 3 May 2015.
  4. ^ a b Murdin, Paul (25 December 2008). Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth. Springer Science & Business Media. pp. 35–36. ISBN 9780387755342.
  5. ^ Fox, Tony (2003). Essex Journal. Essex Arch & Hist Soc. pp. 12–16.
  6. ^ Dean, E. A. (August 1979). Atmospheric Effects on the Speed of Sound, Technical report of Defense Technical Information Center
  7. ^ a b Everest, F. (2001). The Master Handbook of Acoustics. New York: McGraw-Hill. pp. 262–263. ISBN 978-0-07-136097-5.
  8. ^ "CODATA Value: molar gas constant". Physics.nist.gov. Retrieved 24 October 2010.
  9. ^ a b U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C., 1976.
  10. ^ Uman, Martin (1984). Lightning. New York: Dover Publications. ISBN 978-0-486-64575-9.
  11. ^ Volland, Hans (1995). Handbook of Atmospheric Electrodynamics. Boca Raton: CRC Press. p. 22. ISBN 978-0-8493-8647-3.
  12. ^ Singal, S. (2005). Noise Pollution and Control Strategy. Oxford: Alpha Science International. p. 7. ISBN 978-1-84265-237-4. It may be seen that refraction effects occur only because there is a wind gradient and it is not due to the result of sound being convected along by the wind.
  13. ^ Bies, David (2004). Engineering Noise Control, Theory and Practice. London: Spon Press. p. 235. ISBN 978-0-415-26713-7. As wind speed generally increases with altitude, wind blowing towards the listener from the source will refract sound waves downwards, resulting in increased noise levels.
  14. ^ Cornwall, Sir (1996). Grant as Military Commander. New York: Barnes & Noble. p. 92. ISBN 978-1-56619-913-1.
  15. ^ Cozens, Peter (2006). The Darkest Days of the War: the Battles of Iuka and Corinth. Chapel Hill: The University of North Carolina Press. ISBN 978-0-8078-5783-0.
  16. ^ A B Wood, A Textbook of Sound (Bell, London, 1946)
  17. ^ "Speed of Sound in Air". Phy.mtu.edu. Retrieved 13 June 2014.
  18. ^ Nemiroff, R.; Bonnell, J., eds. (19 August 2007). "A Sonic Boom". Astronomy Picture of the Day. NASA. Retrieved 24 October 2010.
  19. ^ Zuckerwar, Handbook of the speed of sound in real gases, p. 52
  20. ^ a b L. E. Kinsler et al. (2000), Fundamentals of acoustics, 4th Ed., John Wiley and sons Inc., New York, USA.
  21. ^ J. Krautkrämer and H. Krautkrämer (1990), Ultrasonic testing of materials, 4th fully revised edition, Springer-Verlag, Berlin, Germany, p. 497
  22. ^ "Speed of Sound in Water at Temperatures between 32–212 oF (0–100 oC) — imperial and SI units". The Engineering Toolbox.
  23. ^ Wong, George S. K.; Zhu, Shi-ming (1995). "Speed of sound in seawater as a function of salinity, temperature, and pressure". The Journal of the Acoustical Society of America. 97 (3): 1732. Bibcode:1995ASAJ...97.1732W. doi:10.1121/1.413048.
  24. ^ APL-UW TR 9407 High-Frequency Ocean Environmental Acoustic Models Handbook, pp. I1-I2.
  25. ^ Robinson, Stephen (22 Sep 2005). "Technical Guides - Speed of Sound in Sea-Water". National Physical Laboratory. Retrieved 7 December 2016.
  26. ^ "How Fast Does Sound Travel?". Discovery of Sound in the Sea. University of Rhode Island. Retrieved 30 November 2010.
  27. ^ a b Dushaw, Brian D.; Worcester, P. F.; Cornuelle, B. D.; Howe, B. M. (1993). "On Equations for the Speed of Sound in Seawater". Journal of the Acoustical Society of America. 93 (1): 255–275. Bibcode:1993ASAJ...93..255D. doi:10.1121/1.405660.
  28. ^ Kenneth V., Mackenzie (1981). "Discussion of sea-water sound-speed determinations". Journal of the Acoustical Society of America. 70 (3): 801–806. Bibcode:1981ASAJ...70..801M. doi:10.1121/1.386919.
  29. ^ Del Grosso, V. A. (1974). "New equation for speed of sound in natural waters (with comparisons to other equations)". Journal of the Acoustical Society of America. 56 (4): 1084–1091. Bibcode:1974ASAJ...56.1084D. doi:10.1121/1.1903388.
  30. ^ Meinen, Christopher S.; Watts, D. Randolph (1997). "Further Evidence that the Sound-Speed Algorithm of Del Grosso Is More Accurate Than that of Chen and Millero". Journal of the Acoustical Society of America. 102 (4): 2058–2062. Bibcode:1997ASAJ..102.2058M. doi:10.1121/1.419655.

External links


Aerodynamics, from Greek ἀήρ aer (air) + δυναμική (dynamics), is the study of motion of air, particularly as interaction with a solid object, such as an airplane wing. It is a sub-field of fluid dynamics and gas dynamics, and many aspects of aerodynamics theory are common to these fields. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air.

The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.

Atmosphere of Earth

The atmosphere of Earth is the layer of gases, commonly known as air, that surrounds the planet Earth and is retained by Earth's gravity. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation).

By volume, dry air contains 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Air content and atmospheric pressure vary at different layers, and air suitable for use in photosynthesis by terrestrial plants and breathing of terrestrial animals is found only in Earth's troposphere and in artificial atmospheres.

The atmosphere has a mass of about 5.15×1018 kg, three quarters of which is within about 11 km (6.8 mi; 36,000 ft) of the surface. The atmosphere becomes thinner and thinner with increasing altitude, with no definite boundary between the atmosphere and outer space. The Kármán line, at 100 km (62 mi), or 1.57% of Earth's radius, is often used as the border between the atmosphere and outer space. Atmospheric effects become noticeable during atmospheric reentry of spacecraft at an altitude of around 120 km (75 mi). Several layers can be distinguished in the atmosphere, based on characteristics such as temperature and composition.

The study of Earth's atmosphere and its processes is called atmospheric science (aerology). Early pioneers in the field include Léon Teisserenc de Bort and Richard Assmann.


In thermodynamics and fluid mechanics, compressibility (also known as the coefficient of compressibility or isothermal compressibility) is a measure of the relative volume change of a fluid or solid as a response to a pressure (or mean stress) change. In its simple form, the compressibility may be expressed as


where V is volume and p is pressure. The choice to define compressibility as the opposite of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. It is also known as reciprocal of bulk modulus(k) of elasticity of a fluid.

Compressible flow

Compressible flow (gas dynamics) is the branch of fluid mechanics that deals with flows having significant changes in fluid density. Gases, mostly, display such behaviour. While all flows are compressible, flows are usually treated as being incompressible when the Mach number (the ratio of the speed of the flow to the speed of sound) is less than 0.3 (since the density change due to velocity is about 5% in that case). The study of compressible flow is relevant to high-speed aircraft, jet engines, rocket motors, high-speed entry into a planetary atmosphere, gas pipelines, commercial applications such as abrasive blasting, and many other fields.

Helium analyzer

A Helium analyzer is an instrument used to identify the presence and concentration of helium in a mixture of gases. In Technical diving where breathing gas mixtures known as Trimix comprising oxygen, helium and nitrogen are used, it is necessary to know the fraction of helium in the mixture to reliably calculate decompression schedules for dives using that mixture.

Jet aircraft

A jet aircraft (or simply jet) is an aircraft (nearly always a fixed-wing aircraft) propelled by jet engines (jet propulsion).

Whereas the engines in propeller-powered aircraft generally achieve their maximum efficiency at much lower speeds and altitudes, jet engines and aircraft achieve maximum efficiency (see specific impulse) at speeds close to or even well above the speed of sound. Jet aircraft generally cruise at faster than about Mach 0.8 (609 mph, 981 km/h or 273 m/s) at altitudes around 10,000–15,000 metres (33,000–49,000 ft) or more.

Frank Whittle, an English inventor and RAF officer, developed the concept of the jet engine in 1928, and Hans von Ohain in Germany developed the concept independently in the early 1930s. He wrote in February 1936 to Ernst Heinkel, who led the construction of the world's first turbojet aircraft and jet plane Heinkel He 178. However, it can be argued that the English engineer A. A. Griffith, who published a paper in July 1926 on compressors and turbines, also deserves credit.

Let 'Em In

"Let 'Em In" is a song by Wings from their 1976 album Wings at the Speed of Sound. It was written and sung by Paul McCartney and reached the top 3 in the United Kingdom, the United States and Canada. It was a No. 2 hit in the UK; in the U.S. it was a No. 3 pop hit and No. 1 easy listening hit. In Canada, the song was No. 3 for three weeks on the pop chart and No. 1 for three weeks on the MOR chart of RPM magazine. The single was certified Gold by the Recording Industry Association of America for sales of over one million copies. It can also be found on McCartney's 1987 compilation album, All the Best! A demo of the song, featuring Denny Laine on lead vocal, was included as a bonus track on the Archive Collection reissue of Wings at the Speed of Sound.

List of Canadian number-one albums of 1976

This page lists the Canadian number-one albums of 1976. The chart was compiled and published by RPM every Saturday.

The top position [December 27, 1975, Vol. 24, No. 14] preceding January 10 [Vol. 24, No. 15] was Elton John's Rock of the Westies. Stevie Wonder's Songs in the Key of Life entered the chart at #1. Three acts held the top position in the albums and singles charts simultaneously: The Bay City Rollers on March 13, Wings on June 5 - 12 and Rod Stewart on December 18.)

(Entries with dates marked thus* are not presently on record at Library and Archives Canada and were inferred from the following week's listing.)

identifies Canadian musical acts.

Mach number

In fluid dynamics, the Mach number (M or Ma) (/mɑːk/; German: [max]) is a dimensionless quantity representing the ratio of flow velocity past a boundary to the local speed of sound.


M is the Mach number,
u is the local flow velocity with respect to the boundaries (either internal, such as an object immersed in the flow, or external, like a channel), and
c is the speed of sound in the medium.

By definition, at Mach 1, the local flow velocity u is equal to the speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic).

The local speed of sound, and thereby the Mach number, depends on the condition of the surrounding medium, in particular the temperature. The Mach number is primarily used to determine the approximation with which a flow can be treated as an incompressible flow. The medium can be a gas or a liquid. The boundary can be traveling in the medium, or it can be stationary while the medium flows along it, or they can both be moving, with different velocities: what matters is their relative velocity with respect to each other. The boundary can be the boundary of an object immersed in the medium, or of a channel such as a nozzle, diffusers or wind tunnels channeling the medium. As the Mach number is defined as the ratio of two speeds, it is a dimensionless number. If M < 0.2–0.3 and the flow is quasi-steady and isothermal, compressibility effects will be small and simplified incompressible flow equations can be used.

The Mach number is named after Austrian physicist and philosopher Ernst Mach, and is a designation proposed by aeronautical engineer Jakob Ackeret. As the Mach number is a dimensionless quantity rather than a unit of measure, with Mach, the number comes after the unit; the second Mach number is Mach 2 instead of 2 Mach (or Machs). This is somewhat reminiscent of the early modern ocean sounding unit mark (a synonym for fathom), which was also unit-first, and may have influenced the use of the term Mach. In the decade preceding faster-than-sound human flight, aeronautical engineers referred to the speed of sound as Mach's number, never Mach 1.


A Machmeter is an aircraft pitot-static system flight instrument that

shows the ratio of the true airspeed to the speed of sound,

a dimensionless quantity called Mach number. This is shown on a Machmeter as a decimal fraction.

An aircraft flying at the speed of sound is flying

at a Mach number of one, expressed as Mach 1.

Sonic boom

A sonic boom is the sound associated with the shock waves created whenever an object travelling through the air travels faster than the speed of sound. Sonic booms generate enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to the human ear. The crack of a supersonic bullet passing overhead or the crack of a bullwhip are examples of a sonic boom in miniature.Sonic booms due to large supersonic aircraft can be particularly loud and startling, tend to awaken people, and may cause minor damage to some structures. They led to prohibition of routine supersonic flight over land. Although they cannot be completely prevented, research suggests that with careful shaping of the vehicle the nuisance due to them may be reduced to the point that overland supersonic flight may become a practical option.

A sonic boom does not occur only at the moment an object crosses the speed of sound; and neither is it heard in all directions emanating from the speeding object. Rather the boom is a continuous effect that occurs while the object is travelling at supersonic speeds. But it only affects observers that are positioned at a point that intersects a region in the shape of a geometrical cone behind the object. As the object moves, this conical region also moves behind it and when the cone passes over the observer, they will briefly experience the boom.


In physics, sound is a vibration that typically propagates as an audible wave of pressure, through a transmission medium such as a gas, liquid or solid.

In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Humans can only hear sound waves as distinct pitches when the frequency lies between about 20 Hz and 20 kHz. Sound waves above 20 kHz are known as ultrasound and is not perceptible by humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

Sound barrier

The sound barrier or sonic barrier is the sudden increase in aerodynamic drag and other undesirable effects experienced by an aircraft or other object when it approaches the speed of sound. When aircraft first began to be able to reach close to the speed of sound, these effects were seen as constituting a barrier making faster speeds very difficult or impossible. The term sound barrier is still sometimes used today to refer to aircraft reaching supersonic flight.

In dry air at 20 °C (68 °F), the speed of sound is 343 metres per second (about 767 mph, 1234 km/h or 1,125 ft/s). The term came into use during World War II when pilots of high-speed fighter aircraft experienced the effects of compressibility, a number of adverse aerodynamic effects that deterred further acceleration, seemingly impeding flight at speeds close to the speed of sound. These difficulties represented a barrier to flying at faster speeds. In 1947 it was demonstrated that safe flight at the speed of sound was achievable in purpose-designed aircraft thereby breaking the barrier. By the 1950s new designs of fighter aircraft routinely reached the speed of sound, and faster.

Sound velocity probe

Note: This page refers to the device used to measure the speed of sound in water for use in hydrography

A sound velocity probe is a device that is used for measuring the speed of sound, specifically in the water column, for oceanographic and hydrographic research purposes.

Speed of Sound (song)

"Speed of Sound" is a song by British rock band Coldplay. It was written by all members of the band for their third studio album, X&Y (2005). Constructed around a piano and guitar riff, the song builds into a huge, synthesiser-heavy chorus. It was released by Parlophone Records as the lead single from the album. "Speed of Sound" was released in the US and UK on 18 April 2005, and then made its radio premiere on BBC Radio 1 with Lamacq on the day of the release on 19 April. The single was pressed with two B-sides: "Things I Don't Understand" and "Proof". The song premiered in the UK on 23 May.Coldplay vocalist Chris Martin admitted that the song was developed after the band had listened to English art rock singer Kate Bush. Upon the song's release, it charted in the UK Singles Chart in the number two position. In the United States, it debuted at number eight on the Billboard Hot 100, their first top ten hit in the country, and their most successful song until "Viva la Vida" reached number one in 2008.

"Speed of Sound" was recognised Song of the Year by the American Society of Composers, Authors and Publishers (ASCAP) and it was nominated twice at the 48th Grammy Awards. The song won a Brit Award in the category for Best British Single in 2006. The track's music video was nominated for four MTV Video Music Awards. "Speed of Sound" was also the billionth song downloaded from the iTunes Store.

Speeds of sound of the elements

The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional.

Supersonic speed

Supersonic travel is a rate of travel of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately 344 m/s, 1,125 ft/s, 768 mph, 667 knots, or 1,235 km/h. Speeds greater than five times the speed of sound (Mach 5) are often referred to as hypersonic. Flights during which only some parts of the air surrounding an object, such as the ends of rotor blades, reach supersonic speeds are called transonic. This occurs typically somewhere between Mach 0.8 and Mach 1.2.

Sounds are traveling vibrations in the form of pressure waves in an elastic medium. In gases, sound travels longitudinally at different speeds, mostly depending on the molecular mass and temperature of the gas, and pressure has little effect. Since air temperature and composition varies significantly with altitude, Mach numbers for aircraft may change despite a constant travel speed. In water at room temperature supersonic speed can be considered as any speed greater than 1,440 m/s (4,724 ft/s). In solids, sound waves can be polarized longitudinally or transversely and have even higher velocities.

Supersonic fracture is crack motion faster than the speed of sound in a brittle material.


In aeronautics, transonic (or transsonic) flight is flying at or near the speed of sound 343 meters per second (1,235 km/h; 1,125 ft/s; 767 mph; 667 kn, at sea level under average conditions), relative to the air through which the vehicle is traveling. A typical convention used is to define transonic flight as speeds in the range of Mach 0.72 to 1.0 (965–1,235 km/h (600–767 mph) at sea level).

This condition depends not only on the travel speed of the craft, but also on the temperature of the airflow in the vehicle's local environment. It is formally defined as the range of speeds between the critical Mach number, when some parts of the airflow over an air vehicle or airfoil are supersonic, and a higher speed, typically near Mach 1.2, when most of the airflow is supersonic. Between these speeds some of the airflow is supersonic, but a significant fraction is not.

Most modern jet powered aircraft are engineered to operate at transonic air speeds. Transonic airspeeds see a rapid increase in drag from about Mach 0.8, and it is the fuel costs of the drag that typically limits the airspeed. Attempts to reduce wave drag can be seen on all high-speed aircraft. Most notable is the use of swept wings, but another common form is a wasp-waist fuselage as a side effect of the Whitcomb area rule.

Severe instability can occur at transonic speeds. Shock waves move through the air at the speed of sound. When an object such as an aircraft also moves at the speed of sound, these shock waves build up in front of it to form a single, very large shock wave. During transonic flight, the plane must pass through this large shock wave, as well as contend with the instability caused by air moving faster than sound over parts of the wing and slower in other parts.

Transonic speeds can also occur at the tips of rotor blades of helicopters and aircraft. This puts severe, unequal stresses on the rotor blade and may lead to accidents if it occurs. It is one of the limiting factors of the size of rotors and the forward speeds of helicopters (as this speed is added to the forward-sweeping [leading] side of the rotor, possibly causing localized transonics).

Wings at the Speed of Sound

Wings at the Speed of Sound is the fifth studio album by Wings, released on 25 March 1976 as a follow-up to their previous album Venus and Mars. Issued at the height of the band's popularity, it reached the top spot on the US album chart and peaked at number 2 on the UK album chart. Both singles from the album also reached the top 5 of the UK and US singles charts, with 'Silly Love Songs' reaching number 1 in the US.

The album was recorded and released in the midst of Wings' highly successful Wings Over the World tour, with songs from the album performed on the tour after its release. Subsequently, performances of 'Let 'Em In', 'Time to Hide', 'Silly Love Songs' and 'Beware My Love' were included on the live album Wings over America, released in December 1976.

As a reaction to critics who believed Wings was merely a vehicle for Paul McCartney, the album featured every member of the band taking lead vocals on at least one song, and two songs from the album are written or co-written by band members other than the McCartneys.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.