Sound card

A sound card (also known as an audio card) is an internal expansion card that provides input and output of audio signals to and from a computer under control of computer programs. The term sound card is also applied to external audio interfaces used for professional audio applications.

Sound functionality can also be integrated onto the motherboard, using components similar to those found on plug-in cards. The integrated sound system is often still referred to as a sound card. Sound processing hardware is also present on modern video cards with HDMI to output sound along with the video using that connector; previously they used a S/PDIF connection to the motherboard or sound card.

Typical uses of sound cards or sound card functionality include providing the audio component for multimedia applications such as music composition, editing video or audio, presentation, education and entertainment (games) and video projection. Sound cards are also used for computer-based communication such as voice over IP and teleconferencing.

Audio interface
KL Creative Labs Soundblaster Live Value CT4670 (cropped and transparent)
A Sound Blaster Live! Value card, a typical (circa 2000) PCI sound card.
Connects to via one of:

Line in or out: via one of:

Microphone via one of:

  • Phone connector
  • PIN connector
Common manufacturersCreative Labs (and subsidiary E-mu Systems)
Realtek
C-Media
MARIAN digital audio electronics
M-Audio
Turtle Beach
ASUS

General characteristics

Computer sound card01.JPEG
Close-up of a sound card PCB, showing electrolytic capacitors, SMT capacitors and resistors, and a YAC512 two-channel 16-bit DAC[1]

Sound cards use a digital-to-analog converter (DAC), which converts recorded or generated digital signal data into an analog format. The output signal is connected to an amplifier, headphones, or external device using standard interconnects, such as a TRS phone connector. If the number and size of connectors is too large for the space on the backplate, the connectors will be off-board, typically using a breakout box, an auxiliary backplate, or a panel mounted at the front. Some cards include a sound chip to support production of synthesized sounds, usually for real-time generation of music and sound effects using minimal data and CPU time.

A common external connector is the microphone connector, for signals from a microphone or other low-level input device. Input through a microphone jack can be used, for example, by speech recognition or voice over IP applications. Most sound cards have a line in connector for an analog input from a cassette tape or other sound source that has higher voltage levels than a microphone. In either case, the sound card uses an analog-to-digital converter to digitize this signal. The card may use direct memory access to transfer the samples to the main memory, from where a recording software may write it to the hard disk for storage, editing, or further processing.

Sound channels and polyphony

CirrusLogicCS4282-AB
8-channel DAC Cirrus Logic CS4382 placed on Sound Blaster X-Fi Fatal1ty

An important sound card characteristic is polyphony, which refers to its ability to process and output multiple independent voices or sounds simultaneously. These distinct channels are seen as the number of audio outputs, which may correspond to a speaker configuration such as 2.0 (stereo), 2.1 (stereo and sub woofer), 5.1 (surround), or other configuration. Sometimes, the terms voice and channel are used interchangeably to indicate the degree of polyphony, not the output speaker configuration.

For example, many older sound chips could accommodate three voices, but only one audio channel (i.e., a single mono output) for output, requiring all voices to be mixed together. Later cards, such as the AdLib sound card, had a 9-voice polyphony combined in 1 mono output channel.

For some years, most PC sound cards have had multiple FM synthesis voices (typically 9 or 16) which were usually used for MIDI music. The full capabilities of advanced cards are often not fully used; only one (mono) or two (stereo) voice(s) and channel(s) are usually dedicated to playback of digital sound samples, and playing back more than one digital sound sample usually requires a software downmix at a fixed sampling rate. Modern low-cost integrated sound cards (i.e., those built into motherboards) such as audio codecs like those meeting the AC'97 standard and even some lower-cost expansion sound cards still work this way. These devices may provide more than two sound output channels (typically 5.1 or 7.1 surround sound), but they usually have no actual hardware polyphony for either sound effects or MIDI reproduction – these tasks are performed entirely in software. This is similar to the way inexpensive softmodems perform modem tasks in software rather than in hardware.

Also, in the early days of 'wavetable' sample-based synthesis, some sound card manufacturers advertised polyphony solely on the MIDI capabilities alone. In this case, the card's output channel is irrelevant; typically, the card is only capable of two channels of digital sound. Instead, the polyphony measurement solely applies to the number of MIDI instruments the sound card is capable of producing at one given time.

Today, a sound card providing actual hardware polyphony, regardless of the number of output channels, is typically referred to as a "hardware audio accelerator", although actual voice polyphony is not the sole (or even a necessary) prerequisite, with other aspects such as hardware acceleration of 3D sound, positional audio and real-time DSP effects being more important.

Since digital sound playback has become available and single and provided better performance than synthesis, modern sound cards with hardware polyphony do not actually use DACs with as many channels as voices; instead, they perform voice mixing and effects processing in hardware, eventually performing digital filtering and conversions to and from the frequency domain for applying certain effects, inside a dedicated DSP. The final playback stage is performed by an external (in reference to the DSP chip(s)) DAC with significantly fewer channels than voices (e.g., 8 channels for 7.1 audio, which can be divided among 32, 64 or even 128 voices).

List of sound card standards

Sound card standards
Name Year Precision Frequency Channels
PC speaker 1981 6 bit 1 pulse-width modulation
PCjr 1984 16 volume settings 122 Hz to 125 kHz 3 square wave tone; 1 white noise
Tandy* 1984 16 volume settings / 6 bit 122 Hz to 125 kHz 3 square wave tone; 1 white noise; 1 pulse-width modulation
MPU-401 1984 MIDI
Covox 1987 8 bit 1 DAC
AdLib 1987 64 volume settings ≈49.716 kHz 6-voice FM synthesizer, 5 percussion instruments
Roland MT-32 1987 16 bit 32 kHz 8 melodic channels; 1 rhythm channel
Sound Blaster 1989 8 bit 22 kHz 1 DAC; 11-voice FM synthesizer
Roland Sound Canvas 1991 16 bit 32 kHz 24 voices
Gravis Ultrasound 1992 16 bit 44.1 kHz 16 stereo channels
AC97 1997 20 bit 96 kHz 6 independent output channels
Environmental Audio Extensions 2001 8 simultaneous 3D voices
Intel High Definition Audio 2004 32 bit 192 kHz up to 15 independent output channels
  • The Tandy 1000 and the PCjr used the same soundchip, but the Tandy 1000 utilesed the Audio IN pin, whereas the PCjr did not. This allowed the tandy to produce the speaker sound at the same time as the SN74689

Color codes

Connectors on the sound cards are color-coded as per the PC System Design Guide.[2] They will also have symbols with arrows, holes and soundwaves that are associated with each jack position, the meaning of each is given below:

Color Pantone Function Connector Symbol
  Pink 701C Analog microphone audio input 3.5 mm minijack A microphone
  Light blue 284C Analog line level audio input 3.5 mm minijack An arrow going into a circle
  Lime 577C Analog line level audio output for the main stereo signal (front speakers or headphones) 3.5 mm minijack Arrow going out one side of a circle into a wave
  Orange 157C Analog line level audio output for center channel speaker and subwoofer 3.5 mm minijack
  Black Analog line level audio output for surround speakers, typically rear stereo 3.5 mm minijack
  Silver/Grey 422C Analog line level audio output for surround optional side channels 3.5 mm minijack
  Brown/Dark 4645C Analog line level audio output for a special panning, 'Right-to-left speaker' 3.5 mm minijack
  Gold/Grey Game port / MIDI 15 pin D Arrow going out both sides into waves

History of sound cards for the IBM PC architecture

AdLib
The AdLib Music Synthesizer Card, was one of the first sound cards circa 1990. Note the manual volume adjustment knob. ISA-8 bus.
Mozart 16 (Oak OTI601)
Sound card Mozart 16 for ISA-16 bus
Turtle Beach Sound Card (Catalina)
A Turtle Beach sound card for PCI bus
Echo Digital Audio Corporation's Indigo IO
Echo Digital Audio's Indigo IO – PCMCIA card 24-bit 96 kHz stereo in/out sound card
A VIA Envy Sound Card 5.1 6 Channels (VIA VT1617A)
A VIA Technologies Envy sound card for PC, 5.1 channel for PCI slot

Sound cards for IBM PC compatible computers were very uncommon until 1988. For the majority IBM PC users, the internal PC speaker was the only way for early PC software to produce sound and music.[3] The speaker hardware was typically limited to square waves. The resulting sound was generally described as "beeps and boops" which resulted in the common nickname "beeper". Several companies, most notably Access Software, developed techniques for digital sound reproduction over the PC speaker like RealSound. The resulting audio, while functional, suffered from heavily distorted output and low volume, and usually required all other processing to be stopped while sounds were played. Other home computers of the 1980s like the Commodore 64 included hardware support for digital sound playback and/or music synthesis, leaving the IBM PC at a disadvantage when it came to multimedia applications. Early sound cards for the IBM PC platform were not designed for gaming or multimedia applications, but rather on specific audio applications, such as music composition with the AdLib Personal Music System, IBM Music Feature Card, and Creative Music System, or on speech synthesis like Digispeech DS201, Covox Speech Thing, and Street Electronics Echo.

In 1988, a panel of computer-game CEOs stated at the Consumer Electronics Show that the PC's limited sound capability prevented it from becoming the leading home computer, that it needed a $49–79 sound card with better capability than current products, and that once such hardware was widely installed their companies would support it. Sierra On-Line, which had pioneered supporting EGA and VGA video, and 3 1/2" disks, promised that year to support the AdLib, IBM Music Feature, and Roland MT-32 sound cards in its games.[4] A 1989 Computer Gaming World survey found that 18 of 25 game companies planned to support AdLib, six Roland and Covox, and seven Creative Music System/Game Blaster.[5]

Hardware manufacturers

One of the first manufacturers of sound cards for the IBM PC was AdLib,[3] which produced a card based on the Yamaha YM3812 sound chip, also known as the OPL2. The AdLib had two modes: A 9-voice mode where each voice could be fully programmed, and a less frequently used "percussion" mode with 3 regular voices producing 5 independent percussion-only voices for a total of 11. (The percussion mode was considered inflexible by most developers; it was used mostly by AdLib's own composition software.)

Creative Labs also marketed a sound card about the same time called the Creative Music System. Although the C/MS had twelve voices to AdLib's nine, and was a stereo card while the AdLib was mono, the basic technology behind it was based on the Philips SAA1099 chip which was essentially a square-wave generator. It sounded much like twelve simultaneous PC speakers would have except for each channel having amplitude control, and failed to sell well, even after Creative renamed it the Game Blaster a year later, and marketed it through RadioShack in the US. The Game Blaster retailed for under $100 and was compatible with many popular games, such as Silpheed.

A large change in the IBM PC compatible sound card market happened when Creative Labs introduced the Sound Blaster card.[3] Recommended by Microsoft to developers creating software based on the Multimedia PC standard,[6] the Sound Blaster cloned the AdLib and added a sound coprocessor for recording and play back of digital audio (likely to have been an Intel microcontroller relabeled by Creative). It was incorrectly called a "DSP" (to suggest it was a digital signal processor), a game port for adding a joystick, and capability to interface to MIDI equipment (using the game port and a special cable). With more features at nearly the same price, and compatibility as well, most buyers chose the Sound Blaster. It eventually outsold the AdLib and dominated the market.

Roland also made sound cards in the late 1980s, most of them being high quality "prosumer" cards, such as the MT-32 and LAPC-I.[3] Roland cards often sold for hundreds of dollars, and sometimes over a thousand. Many games had music written for their cards, such as Silpheed and Police Quest II. The cards were often poor at sound effects such as laughs, but for music were by far the best sound cards available until the mid nineties. Some Roland cards, such as the SCC, and later versions of the MT-32 were made to be less expensive, but their quality was usually drastically poorer than the other Roland cards.

By 1992 one sound card vendor advertised that its product was "Sound Blaster, AdLib, Disney Sound Source and Covox Speech Thing Compatible!".[7] Responding to readers complaining about an article on sound cards that unfavorably mentioned the Gravis Ultrasound, Computer Gaming World stated in January 1994 that "The de facto standard in the gaming world is Sound Blaster compatibility ... It would have been unfair to have recommended anything else".[8] The magazine that year stated that Wing Commander II was "Probably the game responsible" for making it the standard card.[9] The Sound Blaster line of cards, together with the first inexpensive CD-ROM drives and evolving video technology, ushered in a new era of multimedia computer applications that could play back CD audio, add recorded dialogue to video games, or even reproduce full motion video (albeit at much lower resolutions and quality in early days). The widespread decision to support the Sound Blaster design in multimedia and entertainment titles meant that future sound cards such as Media Vision's Pro Audio Spectrum and the Gravis Ultrasound had to be Sound Blaster compatible if they were to sell well. Until the early 2000s (by which the AC'97 audio standard became more widespread and eventually usurped the SoundBlaster as a standard due to its low cost and integration into many motherboards), Sound Blaster compatibility is a standard that many other sound cards still support to maintain compatibility with many games and applications released.

Industry adoption

Three-isa-audio-cards
Three early ISA (16-bit) PC sound cards showing the progression toward integrated chipsets

When game company Sierra On-Line opted to support add-on music hardware in addition to built-in hardware such as the PC speaker and built-in sound capabilities of the IBM PCjr and Tandy 1000, what could be done with sound and music on the IBM PC changed dramatically. Two of the companies Sierra partnered with were Roland and AdLib, opting to produce in-game music for King's Quest 4 that supported the MT-32 and AdLib Music Synthesizer. The MT-32 had superior output quality, due in part to its method of sound synthesis as well as built-in reverb. Since it was the most sophisticated synthesizer they supported, Sierra chose to use most of the MT-32's custom features and unconventional instrument patches, producing background sound effects (e.g., chirping birds, clopping horse hooves, etc.) before the Sound Blaster brought playing real audio clips to the PC entertainment world. Many game companies also supported the MT-32, but supported the Adlib card as an alternative because of the latter's higher market base. The adoption of the MT-32 led the way for the creation of the MPU-401/Roland Sound Canvas and General MIDI standards as the most common means of playing in-game music until the mid-1990s.

Feature evolution

Early ISA bus sound cards were half-duplex, meaning they couldn't record and play digitized sound simultaneously, mostly due to inferior card hardware (e.g., DSPs). Later, ISA cards like the SoundBlaster AWE series and Plug-and-play Soundblaster clones eventually became full-duplex and supported simultaneous recording and playback, but at the expense of using up two IRQ and DMA channels instead of one, making them no different from having two half-duplex sound cards in terms of configuration. Towards the end of the ISA bus' life, ISA sound cards started taking advantage of IRQ sharing, thus reducing the IRQs needed to one, but still needed two DMA channels. Many Conventional PCI bus cards do not have these limitations and are mostly full-duplex. It should also be noted that many modern PCI bus cards also do not require free DMA channels to operate.

Also, throughout the years, sound cards have evolved in terms of digital audio sampling rate (starting from 8-bit 11025 Hz, to 32-bit, 192 kHz that the latest solutions support). Along the way, some cards started offering 'wavetable' sample-based synthesis, which provides superior MIDI synthesis quality relative to the earlier OPL-based solutions, which uses FM-synthesis. Also, some higher end cards started having their own RAM and processor for user-definable sound samples and MIDI instruments as well as to offload audio processing from the CPU.

For years, sound cards had only one or two channels of digital sound (most notably the Sound Blaster series and their compatibles) with the exception of the E-MU card family, the Gravis GF-1 and AMD Interwave, which had hardware support for up to 32 independent channels of digital audio. Early games and MOD-players needing more channels than a card could support had to resort to mixing multiple channels in software. Even today, the tendency is still to mix multiple sound streams in software, except in products specifically intended for gamers or professional musicians, with a sensible difference in price from "software based" products. Also, in the early era of 'wavetable' sample-based synthesis, sound card companies would also sometimes boast about the card's polyphony capabilities in terms of MIDI synthesis. In this case polyphony solely refers to the count of MIDI notes the card is capable of synthesizing simultaneously at one given time and not the count of digital audio streams the card is capable of handling.

In regards to physical sound output, the number of physical sound channels has also increased. The first sound card solutions were mono. Stereo sound was introduced in the early 1980s, and quadraphonic sound came in 1989. This was shortly followed by 5.1 channel audio. The latest sound cards support up to 8 physical audio channels in the 7.1 speaker setup.[10]

Crippling of features

Most new sound cards no longer have the audio loopback device commonly called "Stereo Mix"/"Wave out mix"/"Mono Mix"/"What U Hear" that was once very prevalent and that allows users to digitally record speaker output to the microphone input.

Lenovo and other manufacturers fail to implement the chipset feature in hardware, while other manufacturers disable the driver from supporting it. In some cases loopback can be reinstated with driver updates (as in the case of some Dell computers[11]); alternatively software (Total Recorder or Virtual Audio Cable) can be purchased to enable the functionality. According to Microsoft, the functionality was hidden by default in Windows Vista (to reduce user confusion), but is still available, as long as the underlying sound card drivers and hardware support it.[12] Ultimately, the user can connect the line out directly to the line in (analog hole).

Professional sound cards (audio interfaces)

Soundkarte M Audio R7309376 wp
An M-Audio professional sound card with its fanout cables

Professional sound cards are special sound cards optimized for low-latency multichannel sound recording and playback, including studio-grade fidelity. Their drivers usually follow the Audio Stream Input Output protocol for use with professional sound engineering and music software, although ASIO drivers are also available for a range of consumer-grade sound cards.

Professional sound cards are usually described as "audio interfaces", and sometimes have the form of external rack-mountable units using USB, FireWire, or an optical interface, to offer sufficient data rates. The emphasis in these products is, in general, on multiple input and output connectors, direct hardware support for multiple input and output sound channels, as well as higher sampling rates and fidelity as compared to the usual consumer sound card. In that respect, their role and intended purpose is more similar to a specialized multi-channel data recorder and real-time audio mixer and processor, roles which are possible only to a limited degree with typical consumer sound cards.

On the other hand, certain features of consumer sound cards such as support for environmental audio extensions (EAX), optimization for hardware acceleration in video games, or real-time ambience effects are secondary, nonexistent or even undesirable in professional sound cards, and as such audio interfaces are not recommended for the typical home user.

The typical "consumer-grade" sound card is intended for generic home, office, and entertainment purposes with an emphasis on playback and casual use, rather than catering to the needs of audio professionals. In response to this, Steinberg (the creators of audio recording and sequencing software, Cubase and Nuendo) developed a protocol that specified the handling of multiple audio inputs and outputs.

In general, consumer grade sound cards impose several restrictions and inconveniences that would be unacceptable to an audio professional. One of a modern sound card's purposes is to provide an AD/DA converter (analog to digital/digital to analog). However, in professional applications, there is usually a need for enhanced recording (analog to digital) conversion capabilities.

One of the limitations of consumer sound cards is their comparatively large sampling latency; this is the time it takes for the AD Converter to complete conversion of a sound sample and transfer it to the computer's main memory.

Consumer sound cards are also limited in the effective sampling rates and bit depths they can actually manage (compare analog versus digital sound) and have lower numbers of less flexible input channels: professional studio recording use typically requires more than the two channels that consumer sound cards provide, and more accessible connectors, unlike the variable mixture of internal—and sometimes virtual—and external connectors found in consumer-grade sound cards.

Sound devices other than expansion cards

Integrated sound hardware on PC motherboards

2014-08-31T15-57-14.141Z-IMG 1195.JPG.2560x2560 q85
A spinoff of the classic IBM SN76489 by Squareinator

In 1984, the first IBM PCjr had a rudimentary 3-voice sound synthesis chip (the SN76489) which was capable of generating three square-wave tones with variable amplitude, and a pseudo-white noise channel that could generate primitive percussion sounds. The Tandy 1000, initially a clone of the PCjr, duplicated this functionality, with the Tandy TL/SL/RL models adding digital sound recording and playback capabilities. Many games during the 1980s that supported the PCjr's video standard (described as "Tandy-compatible", "Tandy graphics", or "TGA") also supported PCjr/Tandy 1000 audio.

In the late 1990s many computer manufacturers began to replace plug-in sound cards with a "codec" chip (actually a combined audio AD/DA-converter) integrated into the motherboard. Many of these used Intel's AC'97 specification. Others used inexpensive ACR slot accessory cards.

From around 2001 many motherboards incorporated integrated "real" (non-codec) sound cards, usually in the form of a custom chipset providing something akin to full Sound Blaster compatibility, providing relatively high-quality sound.

However, these features were dropped when AC'97 was superseded by Intel's HD Audio standard, which was released in 2004, again specified the use of a codec chip, and slowly gained acceptance. As of 2011, most motherboards have returned to using a codec chip, albeit a HD Audio compatible one, and the requirement for Sound Blaster compatibility relegated to history.

Integrated sound on other platforms

Various non-IBM PC compatible computers, such as early home computers like the Commodore 64 (1982) and Amiga (1985), NEC's PC-88 and PC-98, Fujitsu's FM-7 and FM Towns, the MSX,[13] Apple's Macintosh, and workstations from manufacturers like Sun, have had their own motherboard integrated sound devices. In some cases, most notably in those of the Amiga, C64, PC-88, PC-98, MSX, FM-7, and FM towns, they provide very advanced capabilities (as of the time of manufacture), in others they are only minimal capabilities. Some of these platforms have also had sound cards designed for their bus architectures that cannot be used in a standard PC.

Several Japanese computer platforms, including the PC-88, PC-98, MSX, and FM-7, featured built-in FM synthesis sound from Yamaha by the mid-1980s. By 1989, the FM Towns computer platform featured built-in PCM sample-based sound and supported the CD-ROM format.[13]

The custom sound chip on Amiga, named Paula, had four digital sound channels (2 for the left speaker and 2 for the right) with 8-bit resolution (although with patches, 14/15-bit was accomplishable at the cost of high CPU usage) for each channel and a 6-bit volume control per channel. Sound playback on Amiga was done by reading directly from the chip-RAM without using the main CPU.

Most arcade games have integrated sound chips, the most popular being the Yamaha OPL chip for BGM coupled with a variety of DACs for sampled audio and sound effects.

Sound cards on other platforms

Melodik

Melodik sound card with the AY-3-8912 chip for the Didaktik

ZXSpectrumFullerSoundBox

ZX Spectrum with Fuller soundbox

Turbo sound revision a

Turbo Sound board manufactured by NedoPC, revision A

The earliest known sound card used by computers was the Gooch Synthetic Woodwind, a music device for PLATO terminals, and is widely hailed as the precursor to sound cards and MIDI. It was invented in 1972.

Certain early arcade machines made use of sound cards to achieve playback of complex audio waveforms and digital music, despite being already equipped with onboard audio. An example of a sound card used in arcade machines is the Digital Compression System card, used in games from Midway. For example, Mortal Kombat II on the Midway T Unit hardware. The T-Unit hardware already has an onboard YM2151 OPL chip coupled with an OKI 6295 DAC, but said game uses an added on DCS card instead.[14] The card is also used in the arcade version of Midway and Aerosmith's Revolution X for complex looping BGM and speech playback (Revolution X used fully sampled songs from the band's album that transparently looped- an impressive feature at the time the game was released).

MSX computers, while equipped with built-in sound capabilities, also relied on sound cards to produce better quality audio. The card, known as Moonsound, uses a Yamaha OPL4 sound chip. Prior to the Moonsound, there were also sound cards called MSX Music and MSX Audio, which uses OPL2 and OPL3 chipsets, for the system.

The Apple II series of computers, which did not have sound capabilities beyond a beep until the IIGS, could use plug-in sound cards from a variety of manufacturers. The first, in 1978, was ALF's Apple Music Synthesizer, with 3 voices; two or three cards could be used to create 6 or 9 voices in stereo. Later ALF created the Apple Music II, a 9-voice model. The most widely supported card, however, was the Mockingboard. Sweet Micro Systems sold the Mockingboard in various models. Early Mockingboard models ranged from 3 voices in mono, while some later designs had 6 voices in stereo. Some software supported use of two Mockingboard cards, which allowed 12-voice music and sound. A 12-voice, single card clone of the Mockingboard called the Phasor was made by Applied Engineering. In late 2005 a company called ReactiveMicro.com produced a 6-voice clone called the Mockingboard v1 and also had plans to clone the Phasor and produce a hybrid card user-selectable between Mockingboard and Phasor modes plus support both the SC-01 or SC-02 speech synthesizers.

The Sinclair ZX Spectrum that initially only had a beeper had some sound cards made for it. One example is the TurboSound.[15] Other examples are the Fuller Box,[16][17] Melodik for the Didaktik Gamma, AY-Magic et.c. The Zon X-81 for the ZX81[18][19] was also possible to use on the ZX Spectrum using an adapter.

External sound devices

Devices such as the Covox Speech Thing could be attached to the parallel port of an IBM PC and feed 6- or 8-bit PCM sample data to produce audio. Also, many types of professional sound cards (audio interfaces) have the form of an external FireWire or USB unit, usually for convenience and improved fidelity.

Sound cards using the PCMCIA Cardbus interface were available before laptop and notebook computers routinely had onboard sound. Cardbus audio may still be used if onboard sound quality is poor. When Cardbus interfaces were superseded by Expresscard on computers since about 2005, manufacturers followed. Most of these units are designed for mobile DJs, providing separate outputs to allow both playback and monitoring from one system, however some also target mobile gamers, providing high-end sound to gaming laptops who are usually well-equipped when it comes to graphics and processing power, but tend to have audio codecs that are no better than the ones found on regular laptops.

USB sound cards

Soundblaster Live USB
USB sound card

USB sound "cards" are external devices that plug into the computer via USB. They are often used in studios and on stage by electronic musicians including live PA performers and DJs. DJs who use DJ software typically use sound cards integrated into DJ controllers or specialized DJ sound cards. DJ sound cards sometimes have inputs with phono preamplifiers to allow turntables to be connected to the computer to control the software's playback of music files with timecode vinyl.

The USB specification defines a standard interface, the USB audio device class, allowing a single driver to work with the various USB sound devices and interfaces on the market. Mac OS X, Windows, and Linux support this standard. However, many USB sound cards do not conform to the standard and require proprietary drivers from the manufacturer.

Even cards meeting the older, slow, USB 1.1 specification are capable of high quality sound with a limited number of channels, or limited sampling frequency or bit depth, but USB 2.0 or later is more capable.

A USB audio interface may also describe a device allowing a computer which has a sound-card, yet lacks a standard audio socket, to be connected to an external device which requires such a socket, via its USB socket.

Uses

The main function of a sound card is to play audio, usually music, with varying formats (monophonic, stereophonic, various multiple speaker setups) and degrees of control. The source may be a CD or DVD, a file, streamed audio, or any external source connected to a sound card input.

Audio may be recorded. Sometimes sound card hardware and drivers do not support recording a source that is being played.

A card can also be used, in conjunction with software, to generate arbitrary waveforms, acting as an audio-frequency function generator. Free and commercial software is available for this purpose;[20] there are also online services that generate audio files for any desired waveforms, playable through a sound card.

A card can be used, again in conjunction with free or commercial software, to analyse input waveforms. For example, a very-low-distortion sinewave oscillator can be used as input to equipment under test; the output is sent to a sound card's line input and run through Fourier transform software to find the amplitude of each harmonic of the added distortion.[21] Alternatively, a less pure signal source may be used, with circuitry to subtract the input from the output, attenuated and phase-corrected; the result is distortion and noise only, which can be analysed.

There are programs which allow a sound card to be used as an audio-frequency oscilloscope.

For all measurement purposes a sound card must be chosen with good audio properties. It must itself contribute as little distortion and noise as possible, and attention must be paid to bandwidth and sampling. A typical integrated sound card, the Realtek ALC887, according to its data sheet has distortion of about 80 dB below the fundamental; cards are available with distortion better than -100 dB.

Sound cards with a sampling rate of 192 kHz can be used to synchronize the clock of the computer with a time signal transmitter working on frequencies below 96 kHz like DCF 77 with a special software and a coil at the entrance of the sound card, working as antenna [2], [3].

Driver architecture

To use a sound card, the operating system (OS) typically requires a specific device driver, a low-level program that handles the data connections between the physical hardware and the operating system. Some operating systems include the drivers for many cards; for cards not so supported, drivers are supplied with the card, or available for download.

  • DOS programs for the IBM PC often had to use universal middleware driver libraries (such as the HMI Sound Operating System, the Miles Audio Interface Libraries (AIL), the Miles Sound System etc.) which had drivers for most common sound cards, since DOS itself had no real concept of a sound card. Some card manufacturers provided (sometimes inefficient) middleware TSR-based drivers for their products. Often the driver is a Sound Blaster and AdLib emulator designed to allow their products to emulate a Sound Blaster and AdLib, and to allow games that could only use SoundBlaster or AdLib sound to work with the card. Finally, some programs simply had driver/middleware source code incorporated into the program itself for the sound cards that were supported.
  • Microsoft Windows uses drivers generally written by the sound card manufacturers. Many device manufacturers supply the drivers on their own discs or to Microsoft for inclusion on Windows installation disc. Sometimes drivers are also supplied by the individual vendors for download and installation. Bug fixes and other improvements are likely to be available faster via downloading, since CDs cannot be updated as frequently as a web or FTP site. USB audio device class support is present from Windows 98 SE onwards.[22] Since Microsoft's Universal Audio Architecture (UAA) initiative which supports the HD Audio, FireWire and USB audio device class standards, a universal class driver by Microsoft can be used. The driver is included with Windows Vista. For Windows XP, Windows 2000 or Windows Server 2003, the driver can be obtained by contacting Microsoft support.[23] Almost all manufacturer-supplied drivers for such devices also include this class driver.
  • A number of versions of UNIX make use of the portable Open Sound System (OSS). Drivers are seldom produced by the card manufacturer.
  • Most present day Linux distributions make use of the Advanced Linux Sound Architecture (ALSA). Up until Linux kernel 2.4, OSS was the standard sound architecture for Linux, although ALSA can be downloaded, compiled and installed separately for kernels 2.2 or higher. But from kernel 2.5 onwards, ALSA was integrated into the kernel and the OSS native drivers were deprecated. Backwards compatibility with OSS-based software is maintained, however, by the use of the ALSA-OSS compatibility API and the OSS-emulation kernel modules.
  • Mockingboard support on the Apple II is usually incorporated into the programs itself as many programs for the Apple II boot directly from disk. However a TSR is shipped on a disk that adds instructions to Apple Basic so users can create programs that use the card, provided that the TSR is loaded first.

List of sound card manufacturers

See also

References

This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

  1. ^ YAC512
  2. ^ PC 99 System Design Guide, Intel Corporation and Microsoft Corporation, 14 July 1999. Chapter 3: PC 99 basic requirements (PC 99 System Design Guide (Self-extracting .exe archive). Requirement 3.18.3: Systems use a color-coding scheme for connectors and ports. Accessed 2012-11-26
  3. ^ a b c d Latimer, Joey. "PC Sound Gets Serious!" (PDF). Compute!. Archived from the original (PDF) on September 6, 2014.
  4. ^ "Winds of Progress Unleashed in "Windy City"". Computer Gaming World. July 1988. p. 8. Retrieved November 3, 2013.
  5. ^ "The Gamer's Guide to Sound Boards". Computer Gaming World. September 1989. p. 18. Retrieved November 4, 2013.
  6. ^ English, David (June 1992). "Sound Blaster turns Pro". Compute!. p. 82. Retrieved November 11, 2013.
  7. ^ "Computing Will Never Sound the Same". Computer Gaming World (advertisement). July 1992. p. 90. Retrieved July 3, 2014.
  8. ^ "Sound Philosophy". Letters from Paradise. Computer Gaming World. January 1994. pp. 120, 122.
  9. ^ Brooks, M. Evan (May 1994). "Never Trust A Gazfluvian Flingschnogger!". Computer Gaming World. pp. 42–58.
  10. ^ "Realtek". Retrieved September 7, 2017.
  11. ^ [1] Archived 2013-05-20 at the Wayback Machine Installing an LG driver on many Dells with Sigmatel 92xx chip, including the Inspiron 6400 and other models can add support for stereo mix. Reference dates from 2007 and covers Windows XP and Vista
  12. ^ "Whatever happened to Wave Out Mix? - Larry Osterman's WebLog - Site Home - MSDN Blogs". Blogs.msdn.com. Retrieved September 7, 2017.
  13. ^ a b John Szczepaniak. "Retro Japanese Computers: Gaming's Final Frontier Retro Japanese Computers". Hardcore Gaming 101. Retrieved 2011-03-29. Reprinted from Retro Gamer (67), 2009
  14. ^ System 16 - Midway T Unit Hardware
  15. ^ VeleSoft
  16. ^ WoS: Fuller Box
  17. ^ "Crash Issue 01, February 1984". Archived from the original on 2017-04-04. Retrieved 2017-04-04.
  18. ^ ZON X-81 Programmable Sound Generator
  19. ^ Sinclair User, issue 8, page 21
  20. ^ Web page with free function generator and oscilloscope software for sound card
  21. ^ Detailed discussion of distortion measurement with sound cards, including suitable cards and software
  22. ^ "Microsoft USB FAQ". Archived from the original on 2008-04-09. Retrieved 2008-02-03.
  23. ^ Universal Audio Architecture (UAA) High Definition Audio class driver version 1.0a available Retrieved September 7, 2017.

External links

Ad Lib, Inc.

Ad Lib, Inc. was a Canadian manufacturer of sound cards and other computer equipment founded by Martin Prevel, a former professor of music and vice-dean of the music department at the Université Laval. The company's best known product, the AdLib Music Synthesizer Card (ALMSC), or simply the AdLib as it was called, was the first add-on sound card (on IBM compatibles) to achieve widespread game-developer acceptance, becoming the first de facto standard for audio reproduction.Today the AdLib's functionality can be recreated with emulators such as AdPlug and VDMSound (the latter is now deprecated but its source code has been incorporated into DOSBox). Emulating the AdLib Gold 1000 proves more of a challenge due to the surround sound module and the 2x oversampling effect.

Advanced Linux Sound Architecture

Advanced Linux Sound Architecture (ALSA) is a software framework and part of the Linux kernel that provides an application programming interface (API) for sound card device drivers.

Some of the goals of the ALSA project at its inception were automatic configuration of sound-card hardware and graceful handling of multiple sound devices in a system. ALSA is released under the GNU General Public License (GPL) and the GNU Lesser General Public License (LGPL).The sound servers PulseAudio and JACK (low-latency professional-grade audio editing and mixing), the higher-level abstraction APIs OpenAL, SDL audio, etc. work on top of ALSA and implemented sound card device drivers. On Linux systems, ALSA succeeded the older Open Sound System (OSS).

Audio Stream Input/Output

Audio Stream Input/Output (ASIO) is a computer sound card driver protocol for digital audio specified by Steinberg, providing a low-latency and high fidelity interface between a software application and a computer's sound card. Whereas Microsoft's DirectSound is commonly used as an intermediary signal path for non-professional users, ASIO allows musicians and sound engineers to access external hardware directly.

Champions of Krynn

Champions of Krynn is role-playing video game, the first in a three-part series of Dragonlance Advanced Dungeons & Dragons "Gold Box" games. The game was released in 1990. The highest graphics setting supported in the MS-DOS version was EGA graphics. It also supported the Adlib sound card and either a mouse or joystick.

Computer hardware

Computer hardware includes the physical, tangible parts or components of a computer, such as the cabinet, central processing unit, monitor, keyboard, computer data storage, graphic card, sound card, speakers and motherboard. By contrast, software is instructions that can be stored and run by hardware. Hardware is so-termed because it is "hard" or rigid with respect to changes or modifications; whereas software is "soft" because it is easy to update or change. Intermediate between software and hardware is "firmware", which is software that is strongly coupled to the particular hardware of a computer system and thus the most difficult to change but also among the most stable with respect to consistency of interface. The progression from levels of "hardness" to "softness" in computer systems parallels a progression of layers of abstraction in computing.

Hardware is typically directed by the software to execute any command or instruction. A combination of hardware and software forms a usable computing system, although other systems exist with only hardware components.

Creative Technology

Creative Technology Ltd. is a global technology company headquartered in Jurong East, Singapore with additional offices in offices in Silicon Valley, Dublin, Tokyo, and Shanghai. The principal activities of the company and its subsidiaries consist of the design, manufacture and distribution of digitized sound and video boards, computers and related multimedia and personal digital entertainment products. It also partners with mainboard manufacturers and laptop brands to embed its Sound Blaster technology on their products.

DirectSound

DirectSound is a deprecated software component of the Microsoft DirectX library for the Windows operating system. DirectSound provides a low-latency interface to sound card drivers written for Windows 95 through Windows XP and can handle the mixing and recording of multiple audio streams.

Besides providing the essential service of passing audio data to the sound card, DirectSound provides other essential capabilities such as recording and mixing sound, adding effects to sound (e.g., reverb, echo, or flange), using hardware accelerated buffers in Windows 95 through XP, and positioning sounds in 3D space. DirectSound also provides a means to capture sounds from a microphone or other input and controlling capture effects during audio capture.After many years of development, today DirectSound is a mature API, and supplies many other useful capabilities, such as the ability to play multichannel sounds at high resolution. While DirectSound was designed to be used by games, today it is used to play audio in a large number of audio applications. DirectShow uses DirectSound's hardware audio acceleration capabilities if the sound card's hardware audio acceleration capabilities exist and are exposed by the audio driver.

Ensoniq

Ensoniq Corp. was an American electronics manufacturer, best known throughout the mid-1980s and 1990s for its musical instruments, principally samplers and synthesizers.

Ensoniq Soundscape Elite

The Soundscape ELITE was Ensoniq's high-end ISA PC sound card offering. It offers the highest MIDI quality of any PC sound card Ensoniq produced. The board is an evolution of the company's previous Soundscape S-2000. The Soundscape ELITE was launched in March 1995.

Microsoft Narrator

Narrator is a light-duty screen reader utility included in Microsoft Windows. Narrator reads dialog boxes and window controls in a number of the more basic applications for Windows. Developed by Professor Paul Blenkhorn in 2000, the utility made the Windows operating system more accessible for blind and visually impaired users.

While Microsoft recommends that the visually impaired purchase a full-function screen reader for general computer use, Narrator is a useful piece of built-in accessibility software. Narrator is included with every copy of Microsoft Windows, providing a measure of access to Windows without the need to install additional software as long as the computer in use includes a sound card and speakers or headphones. Windows 2000 was the first Microsoft operating system released with some degree of accessibility for the blind built in, permitting a blind person to walk up to any such computer and make some use of it immediately.

Narrator can assist a blind person in installing a full-function screen reader, assisting the user until their screen reader of choice is up and running. Because Narrator is a lightweight screen reader that requires minimal "hooks" into the operating system, Narrator can provide speech when a full-function screen reader might be unable to do so, such as during the process of updating hardware drivers.

The Windows 2000 version of Narrator uses SAPI 4 and allows the use of other SAPI 4 voices. The Windows XP version uses the newer SAPI 5. However, it only allows the use of the default voice, Microsoft Sam, even if other voices have been installed.

In Windows Vista and Windows 7, Narrator has been updated to use SAPI 5.3 and the Microsoft Anna voice for English. In Windows Ultimate and Windows editions for China, the Microsoft Lili voice for Mandarin Chinese is included.

In Windows 10, Narrator is available in English (United States, United Kingdom, and India), French, Italian, German, Japanese, Korean, Mandarin (Chinese Simplified and Chinese Traditional), Cantonese (Chinese Traditional), Spanish (Spain and Mexico), Polish, Russian, and Portuguese (Brazil).

A version of Narrator is also included in all Windows Phones, though with far fewer settings than the Narrator for the desktop. Narrator for Windows Phones previously only worked if the phone's language is set to "English (United States)".

There are numerous voices included in the narrator pack, such as Microsoft David, Microsoft Zira, Microsoft Mark, and in earlier editions, Microsoft Hazel.

Mpxplay

Mpxplay is a 32-bit console audio player for MS-DOS and Windows. It supports a wide range of audio codecs, playlists, as well as containers for video formats. The MS-DOS version uses a 32-bit DOS extender (DOS/32 Advanced DOS Extender being the most up-to-date version compatible).

NV1

The Nvidia NV1, manufactured by SGS-THOMSON Microelectronics under the model name STG2000, was a multimedia PCI card released in 1995. It was sold to retail by Diamond as the Diamond Edge 3D.

The NV1 featured a complete 2D/3D graphics core based upon quadratic texture mapping, VRAM or FPM DRAM memory, an integrated 32-channel 350 MIPS playback-only sound card, and a Sega Saturn compatible joypad port. As such, it was intended to replace the 2D graphics card, Sound Blaster-compatible audio systems, and 15-pin joystick ports, then prevalent on IBM PC compatibles.

Putting all of this functionality on a single card led to significant compromises, and the NV1 was not very successful in the market. A modified version, the NV2, was developed in partnership with Sega for the Sega Dreamcast, but ultimately dropped. Nvidia's next stand-alone product, the RIVA 128, focussed entirely on 2D and 3D performance and was much more successful.

Overdubbing

Overdubbing (the process of making an overdub, or overdubs) is a technique used in audio recording, whereby a musical passage is recorded two or more times. This practice can be found with singers, as well as with instruments, or ensembles/orchestras.

In vocal performances the performer usually listens to an existing recorded performance (usually through headphones in a recording studio) and simultaneously plays a new performance along with it, which is also recorded. The intention is that the final mix will contain a combination of these "dubs".Another kind of overdubbing is the so called 'Tracking' (or "laying the basic tracks"), where tracks containing the rhythm section (usually including drums) is recorded first, then following up with overdubs (solo instruments, such as keyboards or guitar, then finally vocals). This method has been the standard technique for recording popular music since the early 1960s. Today, overdubbing can be accomplished even on basic recording equipment, or a typical PC equipped with a sound card, using digital audio workstation software.

PSK31

PSK31 or "Phase Shift Keying, 31 Baud", also BPSK31 and QPSK31, is a popular computer-sound card-generated radioteletype mode, used primarily by amateur radio operators to conduct real-time keyboard-to-keyboard chat, most often using frequencies in the high frequency amateur radio bands (near-shortwave). PSK31 is distinguished from other digital modes in that it is specifically tuned to have a data rate close to typing speed, and has an extremely narrow bandwidth, allowing many conversations in the same bandwidth as a single voice channel. This narrow bandwidth also concentrates the RF energy in a very narrow space thus allowing relatively low-power equipment (25 watts) to communicate globally using the same skywave propagation used by shortwave radio stations.

Phasor (sound synthesizer)

Phasor is a stereo music, sound and speech synthesizer created by Applied Engineering for the Apple II family of computers. Consisting of a sound card and a set of related software, the Phasor system was designed to be compatible with most software written for other contemporary Apple II cards, including the Mockingboard, ALF's Apple Music Synthesizer, Echo+ and Super Music Synthesizer.

Softphone

A softphone is a software program for making telephone calls over the Internet using a general purpose computer rather than dedicated hardware. The softphone can be installed on a piece of equipment such as a desktop, mobile device, or other computer and allows the user to place and receive calls without requiring an actual telephone set. Often, a softphone is designed to behave like a traditional telephone, sometimes appearing as an image of a handset, with a display panel and buttons with which the user can interact. A softphone is usually used with a headset connected to the sound card of the PC or with a USB phone.

SoundFont

SoundFont is a brand name that collectively refers to a file format and associated technology that uses sample-based synthesis to play MIDI files. It was first used on the Sound Blaster AWE32 sound card for its General MIDI support.

Sound Blaster

The Sound Blaster family of sound cards was the de facto standard for consumer audio on the IBM PC compatible system platform, until the widespread transition to Microsoft Windows 95, which standardized the programming interface at application level (eliminating the importance of backward compatibility with Sound Blaster), and the evolution in PC design led to onboard audio electronics, which commoditized PC audio functionality. By 1995, Sound Blaster cards had sold over 15 million units worldwide and accounted for seven out of ten sound card sales.The creator of Sound Blaster is the Singapore-based firm Creative Technology Limited, also known by the name of its United States subsidiary, Creative Labs.

Super low frequency

Super low frequency (SLF) is electromagnetic waves (radio waves) in the frequency range between 30 hertz and 300 hertz. They have corresponding wavelengths of 10,000 to 1,000 kilometers. This frequency range includes the frequencies of AC power grids (50 hertz and 60 hertz). Another conflicting designation which includes this frequency range is Extremely Low Frequency (ELF), which in some contexts refers to all frequencies up to 300 hertz.

Because of the extreme difficulty of building transmitters that can generate such long waves, frequencies in this range have been used in very few artificial communication systems. However, SLF waves can penetrate seawater to a depth of hundreds of meters. Therefore, in recent decades the U.S., Russian and Indian military have built huge radio transmitters using SLF frequencies to communicate with their submarines. The U.S. naval service is called Seafarer and operates at 76 hertz. It became operational in 1989 but was discontinued in 2004 due to advances in VLF communication systems. The Russian service is called ZEVS and operates at 82 hertz. The Indian Navy has an operational ELF communication facility at the INS Kattabomman naval base to communicate with its Arihant class and Akula class submarines.The requirements for receivers at SLF frequencies is less stringent than transmitters, because the signal strength (set by atmospheric noise) is far above the noise floor of the receiver, so small, inefficient antennas can be used. Radio amateurs have received signals in this range using simple receivers built around personal computers, with coil or loop antennas connected to the PCs sound card. Signals are analysed by a software fast Fourier transform algorithm and converted into audible sound.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.