In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. (The term "dispersive effects" refers to a property of certain systems where the speed of the waves varies according to frequency.) Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.

The soliton phenomenon was first described in 1834 by John Scott Russell (1808–1882) who observed a solitary wave in the Union Canal in Scotland. He reproduced the phenomenon in a wave tank and named it the "Wave of Translation".

Soliton hydro
Solitary wave in a laboratory wave channel


A single, consensus definition of a soliton is difficult to find. Drazin & Johnson (1989, p. 15) ascribe three properties to solitons:

  1. They are of permanent form;
  2. They are localized within a region;
  3. They can interact with other solitons, and emerge from the collision unchanged, except for a phase shift.

More formal definitions exist, but they require substantial mathematics. Moreover, some scientists use the term soliton for phenomena that do not quite have these three properties (for instance, the 'light bullets' of nonlinear optics are often called solitons despite losing energy during interaction).[1]


Sech soliton
A hyperbolic secant (sech) envelope soliton for water waves: The blue line is the carrier signal, while the red line is the envelope soliton.

Dispersion and nonlinearity can interact to produce permanent and localized wave forms. Consider a pulse of light traveling in glass. This pulse can be thought of as consisting of light of several different frequencies. Since glass shows dispersion, these different frequencies travel at different speeds and the shape of the pulse therefore changes over time. However, also the nonlinear Kerr effect occurs; the refractive index of a material at a given frequency depends on the light's amplitude or strength. If the pulse has just the right shape, the Kerr effect exactly cancels the dispersion effect, and the pulse's shape does not change over time, thus is a soliton. See soliton (optics) for a more detailed description.

Many exactly solvable models have soliton solutions, including the Korteweg–de Vries equation, the nonlinear Schrödinger equation, the coupled nonlinear Schrödinger equation, and the sine-Gordon equation. The soliton solutions are typically obtained by means of the inverse scattering transform, and owe their stability to the integrability of the field equations. The mathematical theory of these equations is a broad and very active field of mathematical research.

Some types of tidal bore, a wave phenomenon of a few rivers including the River Severn, are 'undular': a wavefront followed by a train of solitons. Other solitons occur as the undersea internal waves, initiated by seabed topography, that propagate on the oceanic pycnocline. Atmospheric solitons also exist, such as the morning glory cloud of the Gulf of Carpentaria, where pressure solitons traveling in a temperature inversion layer produce vast linear roll clouds. The recent and not widely accepted soliton model in neuroscience proposes to explain the signal conduction within neurons as pressure solitons.

A topological soliton, also called a topological defect, is any solution of a set of partial differential equations that is stable against decay to the "trivial solution". Soliton stability is due to topological constraints, rather than integrability of the field equations. The constraints arise almost always because the differential equations must obey a set of boundary conditions, and the boundary has a nontrivial homotopy group, preserved by the differential equations. Thus, the differential equation solutions can be classified into homotopy classes.

No continuous transformation maps a solution in one homotopy class to another. The solutions are truly distinct, and maintain their integrity, even in the face of extremely powerful forces. Examples of topological solitons include the screw dislocation in a crystalline lattice, the Dirac string and the magnetic monopole in electromagnetism, the Skyrmion and the Wess–Zumino–Witten model in quantum field theory, the magnetic skyrmion in condensed matter physics, and cosmic strings and domain walls in cosmology.


In 1834, John Scott Russell describes his wave of translation.[nb 1] The discovery is described here in Scott Russell's own words:[nb 2]

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped – not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.[2]

Scott Russell spent some time making practical and theoretical investigations of these waves. He built wave tanks at his home and noticed some key properties:

  • The waves are stable, and can travel over very large distances (normal waves would tend to either flatten out, or steepen and topple over)
  • The speed depends on the size of the wave, and its width on the depth of water.
  • Unlike normal waves they will never merge – so a small wave is overtaken by a large one, rather than the two combining.
  • If a wave is too big for the depth of water, it splits into two, one big and one small.

Scott Russell's experimental work seemed at odds with Isaac Newton's and Daniel Bernoulli's theories of hydrodynamics. George Biddell Airy and George Gabriel Stokes had difficulty accepting Scott Russell's experimental observations because they could not be explained by the existing water wave theories. Their contemporaries spent some time attempting to extend the theory but it would take until the 1870s before Joseph Boussinesq and Lord Rayleigh published a theoretical treatment and solutions.[nb 3] In 1895 Diederik Korteweg and Gustav de Vries provided what is now known as the Korteweg–de Vries equation, including solitary wave and periodic cnoidal wave solutions.[3][nb 4]

BBM equation - overtaking solitary waves animation
An animation of the overtaking of two solitary waves according to the Benjamin–Bona–Mahony equation – or BBM equation, a model equation for (among others) long surface gravity waves. The wave heights of the solitary waves are 1.2 and 0.6, respectively, and their velocities are 1.4 and 1.2.
The upper graph is for a frame of reference moving with the average velocity of the solitary waves.
The lower graph (with a different vertical scale and in a stationary frame of reference) shows the oscillatory tail produced by the interaction.[4] Thus, the solitary wave solutions of the BBM equation are not solitons.

In 1965 Norman Zabusky of Bell Labs and Martin Kruskal of Princeton University first demonstrated soliton behavior in media subject to the Korteweg–de Vries equation (KdV equation) in a computational investigation using a finite difference approach. They also showed how this behavior explained the puzzling earlier work of Fermi, Pasta, Ulam, and Tsingou.[5]

In 1967, Gardner, Greene, Kruskal and Miura discovered an inverse scattering transform enabling analytical solution of the KdV equation.[6] The work of Peter Lax on Lax pairs and the Lax equation has since extended this to solution of many related soliton-generating systems.

Note that solitons are, by definition, unaltered in shape and speed by a collision with other solitons.[7] So solitary waves on a water surface are near-solitons, but not exactly – after the interaction of two (colliding or overtaking) solitary waves, they have changed a bit in amplitude and an oscillatory residual is left behind.[8]

Solitons are also studied in quantum mechanics, thanks to the fact that they could provide a new foundation of it through de Broglie's unfinished program, known as "Double solution theory" or "Nonlinear wave mechanics". This theory, developed by de Broglie in 1927 and revived in the 1950s, is the natural continuation of his ideas developed between 1923 and 1926, which extended the wave-particle duality introduced by Einstein for the light quanta, to all the particles of matter.

Solitons in fiber optics

Much experimentation has been done using solitons in fiber optics applications. Solitons in a fiber optic system are described by the Manakov equations. Solitons' inherent stability make long-distance transmission possible without the use of repeaters, and could potentially double transmission capacity as well.[9]

Year Discovery
1973 Akira Hasegawa of AT&T Bell Labs was the first to suggest that solitons could exist in optical fibers, due to a balance between self-phase modulation and anomalous dispersion.[10] Also in 1973 Robin Bullough made the first mathematical report of the existence of optical solitons. He also proposed the idea of a soliton-based transmission system to increase performance of optical telecommunications.
1987 Emplit et al. (1987) – from the Universities of Brussels and Limoges – made the first experimental observation of the propagation of a dark soliton, in an optical fiber.
1988 Linn Mollenauer and his team transmitted soliton pulses over 4,000 kilometers using a phenomenon called the Raman effect, named after Sir C. V. Raman who first described it in the 1920s, to provide optical gain in the fiber.
1991 A Bell Labs research team transmitted solitons error-free at 2.5 gigabits per second over more than 14,000 kilometers, using erbium optical fiber amplifiers (spliced-in segments of optical fiber containing the rare earth element erbium). Pump lasers, coupled to the optical amplifiers, activate the erbium, which energizes the light pulses.
1998 Thierry Georges and his team at France Telecom R&D Center, combining optical solitons of different wavelengths (wavelength-division multiplexing), demonstrated a composite data transmission of 1 terabit per second (1,000,000,000,000 units of information per second), not to be confused with Terabit-Ethernet.

The above impressive experiments have not translated to actual commercial soliton system deployments however, in either terrestrial or submarine systems, chiefly due to the Gordon–Haus (GH) jitter. The GH jitter requires sophisticated, expensive compensatory solutions that ultimately makes dense wavelength-division multiplexing (DWDM) soliton transmission in the field unattractive, compared to the conventional non-return-to-zero/return-to-zero paradigm. Further, the likely future adoption of the more spectrally efficient phase-shift-keyed/QAM formats makes soliton transmission even less viable, due to the Gordon–Mollenauer effect. Consequently, the long-haul fiberoptic transmission soliton has remained a laboratory curiosity.

2000 Cundiff predicted the existence of a vector soliton in a birefringence fiber cavity passively mode locking through a semiconductor saturable absorber mirror (SESAM). The polarization state of such a vector soliton could either be rotating or locked depending on the cavity parameters.[11]
2008 D. Y. Tang et al. observed a novel form of higher-order vector soliton from the perspectives of experiments and numerical simulations. Different types of vector solitons and the polarization state of vector solitons have been investigated by his group.[12]

Solitons in biology

Solitons may occur in proteins[13] and DNA.[14] Solitons are related to the low-frequency collective motion in proteins and DNA.[15]

A recently developed model in neuroscience proposes that signals, in the form of density waves, are conducted within neurons in the form of solitons.[16][17][18]

Solitons in magnets

In magnets, there also exist different types of solitons and other nonlinear waves.[19] These magnetic solitons are an exact solution of classical nonlinear differential equations — magnetic equations, e.g. the Landau–Lifshitz equation, continuum Heisenberg model, Ishimori equation, nonlinear Schrödinger equation and others.

Solitons in nuclear physics

Atomic nuclei may exhibit solitonic behavior.[20] Here the whole nuclear wave function is predicted to exist as a soliton under certain conditions of temperature and energy. Such conditions are suggested to exist in the cores of some stars in which the nuclei would not react but pass through each other unchanged, retaining their soliton waves through a collision between nuclei.

The Skyrme Model is a model of nuclei in which each nucleus is considered to be a topologically stable soliton solution of a field theory with conserved baryon number.


The bound state of two solitons is known as a bion,[21][22][23] or in systems where the bound state periodically oscillates, a breather.

In field theory bion usually refers to the solution of the Born–Infeld model. The name appears to have been coined by G. W. Gibbons in order to distinguish this solution from the conventional soliton, understood as a regular, finite-energy (and usually stable) solution of a differential equation describing some physical system.[24] The word regular means a smooth solution carrying no sources at all. However, the solution of the Born–Infeld model still carries a source in the form of a Dirac-delta function at the origin. As a consequence it displays a singularity in this point (although the electric field is everywhere regular). In some physical contexts (for instance string theory) this feature can be important, which motivated the introduction of a special name for this class of solitons.

On the other hand, when gravity is added (i.e. when considering the coupling of the Born–Infeld model to general relativity) the corresponding solution is called EBIon, where "E" stands for Einstein.

See also


  1. ^ "Translation" here means that there is real mass transport, although it is not the same water which is transported from one end of the canal to the other end by this "Wave of Translation". Rather, a fluid parcel acquires momentum during the passage of the solitary wave, and comes to rest again after the passage of the wave. But the fluid parcel has been displaced substantially forward during the process – by Stokes drift in the wave propagation direction. And a net mass transport is the result. Usually there is little mass transport from one side to another side for ordinary waves.
  2. ^ This passage has been repeated in many papers and books on soliton theory.
  3. ^ Lord Rayleigh published a paper in Philosophical Magazine in 1876 to support John Scott Russell's experimental observation with his mathematical theory. In his 1876 paper, Lord Rayleigh mentioned Scott Russell's name and also admitted that the first theoretical treatment was by Joseph Valentin Boussinesq in 1871. Joseph Boussinesq mentioned Russell's name in his 1871 paper. Thus Scott Russell's observations on solitons were accepted as true by some prominent scientists within his own lifetime of 1808–1882.
  4. ^ Korteweg and de Vries did not mention John Scott Russell's name at all in their 1895 paper but they did quote Boussinesq's paper of 1871 and Lord Rayleigh's paper of 1876. The paper by Korteweg and de Vries in 1895 was not the first theoretical treatment of this subject but it was a very important milestone in the history of the development of soliton theory.


  1. ^ "Light bullets".
  2. ^ Scott Russell, J. (1844). "Report on waves". Fourteenth meeting of the British Association for the Advancement of Science.
  3. ^ Korteweg, D. J.; de Vries, G. (1895). "On the Change of Form of Long Waves advancing in a Rectangular Canal and on a New Type of Long Stationary Waves". Philosophical Magazine. 39 (240): 422–443. doi:10.1080/14786449508620739.
  4. ^ Bona, J. L.; Pritchard, W. G.; Scott, L. R. (1980). "Solitary‐wave interaction". Physics of Fluids. 23 (3): 438–441. Bibcode:1980PhFl...23..438B. doi:10.1063/1.863011.
  5. ^ Zabusky & Kruskal (1965)
  6. ^ Gardner, Clifford S.; Greene, John M.; Kruskal, Martin D.; Miura, Robert M. (1967). "Method for Solving the Korteweg–deVries Equation". Physical Review Letters. 19 (19): 1095–1097. Bibcode:1967PhRvL..19.1095G. doi:10.1103/PhysRevLett.19.1095.
  7. ^ Remoissenet, M. (1999). Waves called solitons: Concepts and experiments. Springer. p. 11. ISBN 9783540659198.
  8. ^ See e.g.:
    Maxworthy, T. (1976). "Experiments on collisions between solitary waves". Journal of Fluid Mechanics. 76 (1): 177–186. Bibcode:1976JFM....76..177M. doi:10.1017/S0022112076003194.
    Fenton, J.D.; Rienecker, M.M. (1982). "A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions". Journal of Fluid Mechanics. 118: 411–443. Bibcode:1982JFM...118..411F. doi:10.1017/S0022112082001141.
    Craig, W.; Guyenne, P.; Hammack, J.; Henderson, D.; Sulem, C. (2006). "Solitary water wave interactions". Physics of Fluids. 18 (57106): 057106–057106–25. Bibcode:2006PhFl...18e7106C. doi:10.1063/1.2205916.
  9. ^ "Photons advance on two fronts". October 24, 2005. Retrieved 2011-02-15.
  10. ^ Fred Tappert (January 29, 1998). "Reminiscences on Optical Soliton Research with Akira Hasegawa" (PDF).
  11. ^ Cundiff, S. T.; Collings, B. C.; Akhmediev, N. N.; Soto-Crespo, J. M.; Bergman, K.; Knox, W. H. (1999). "Observation of Polarization-Locked Vector Solitons in an Optical Fiber". Physical Review Letters. 82 (20): 3988. Bibcode:1999PhRvL..82.3988C. doi:10.1103/PhysRevLett.82.3988. hdl:10261/54313.
  12. ^ Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X. (2008). "Observation of high-order polarization-locked vector solitons in a fiber laser". Physical Review Letters. 101 (15): 153904. arXiv:0903.2392. Bibcode:2008PhRvL.101o3904T. doi:10.1103/PhysRevLett.101.153904. PMID 18999601.
  13. ^ Davydov, Aleksandr S. (1991). Solitons in molecular systems. Mathematics and its applications (Soviet Series). 61 (2nd ed.). Kluwer Academic Publishers. ISBN 978-0-7923-1029-7.
  14. ^ Yakushevich, Ludmila V. (2004). Nonlinear physics of DNA (2nd revised ed.). Wiley-VCH. ISBN 978-3-527-40417-9.
  15. ^ Sinkala, Z. (August 2006). "Soliton/exciton transport in proteins". J. Theor. Biol. 241 (4): 919–27. CiteSeerX doi:10.1016/j.jtbi.2006.01.028. PMID 16516929.
  16. ^ Heimburg, T., Jackson, A.D. (12 July 2005). "On soliton propagation in biomembranes and nerves". Proc. Natl. Acad. Sci. U.S.A. 102 (2): 9790–5. Bibcode:2005PNAS..102.9790H. doi:10.1073/pnas.0503823102. PMC 1175000. PMID 15994235.CS1 maint: multiple names: authors list (link)
  17. ^ Heimburg, T., Jackson, A.D. (2007). "On the action potential as a propagating density pulse and the role of anesthetics". Biophys. Rev. Lett. 2: 57–78. arXiv:physics/0610117. Bibcode:2006physics..10117H. doi:10.1142/S179304800700043X.CS1 maint: multiple names: authors list (link)
  18. ^ Andersen, S.S.L., Jackson, A.D., Heimburg, T. (2009). "Towards a thermodynamic theory of nerve pulse propagation". Prog. Neurobiol. 88 (2): 104–113. doi:10.1016/j.pneurobio.2009.03.002. PMID 19482227.CS1 maint: multiple names: authors list (link)
  19. ^ Kosevich, A. M.; Gann, V. V.; Zhukov, A. I.; Voronov, V. P. (1998). "Magnetic soliton motion in a nonuniform magnetic field". Journal of Experimental and Theoretical Physics. 87 (2): 401–407. Bibcode:1998JETP...87..401K. doi:10.1134/1.558674.
  20. ^ Iwata, Yoritaka; Stevenson, Paul (2019). "Conditional recovery of time-reversal symmetry in many nucleus systems". New Journal of Physics. 21 (4): 043010. arXiv:1809.10461. Bibcode:2019NJPh...21d3010I. doi:10.1088/1367-2630/ab0e58.
  21. ^ Belova, T.I.; Kudryavtsev, A.E. (1997). "Solitons and their interactions in classical field theory". Physics-Uspekhi. 40 (4): 359–386. Bibcode:1997PhyU...40..359B. doi:10.1070/pu1997v040n04abeh000227.
  22. ^ Gani, V.A.; Kudryavtsev, A.E.; Lizunova, M.A. (2014). "Kink interactions in the (1+1)-dimensional φ^6 model". Physical Review D. 89 (12): 125009. arXiv:1402.5903. Bibcode:2014PhRvD..89l5009G. doi:10.1103/PhysRevD.89.125009.
  23. ^ Gani, V.A.; Lensky, V.; Lizunova, M.A. (2015). "Kink excitation spectra in the (1+1)-dimensional φ^8 model". Journal of High Energy Physics. 2015 (8): 147. arXiv:1506.02313. doi:10.1007/JHEP08(2015)147. ISSN 1029-8479.
  24. ^ Gibbons, G. W. (1998). "Born–Infeld particles and Dirichlet p-branes". Nuclear Physics B. 514 (3): 603–639. arXiv:hep-th/9709027. Bibcode:1998NuPhB.514..603G. doi:10.1016/S0550-3213(97)00795-5.
  25. ^ Powell, Devin (20 May 2011). "Rogue Waves Captured". Science News. Retrieved 24 May 2011.

Further reading

External links

Related to John Scott Russell
Davydov soliton

Davydov soliton is a quantum quasiparticle representing an excitation propagating along the protein α-helix self-trapped amide I. It is a solution of the Davydov Hamiltonian. It is named for the Soviet and Ukrainian physicist Alexander Davydov. The Davydov model describes the interaction of the amide I vibrations with the hydrogen bonds that stabilize the α-helix of proteins. The elementary excitations within the α-helix are given by the phonons which correspond to the deformational oscillations of the lattice, and the excitons which describe the internal amide I excitations of the peptide groups. Referring to the atomic structure of an α-helix region of protein the mechanism that creates the Davydov soliton (polaron, exciton) can be described as follows: vibrational energy of the C=O stretching (or amide I) oscillators that is localized on the α-helix acts through a phonon coupling effect to distort the structure of the α-helix, while the helical distortion reacts again through phonon coupling to trap the amide I oscillation energy and prevent its dispersion. This effect is called self-localization or self-trapping. Solitons in which the energy is distributed in a fashion preserving the helical symmetry are dynamically unstable, and such symmetrical solitons once formed decay rapidly when they propagate. On the other hand, an asymmetric soliton which spontaneously breaks the local translational and helical symmetries possesses the lowest energy and is a robust localized entity.

Dissipative soliton

Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.

Apart from aspects similar to the behavior of classical particles like the formation of bound states, DSs exhibit interesting behavior – e.g. scattering, creation and annihilation – all without the constraints of energy or momentum

conservation. The excitation of internal degrees of freedom may result in a dynamically stabilized intrinsic speed, or periodic oscillations of the shape.

Domain wall (optics)

A domain wall is a term used in physics which can have similar meanings in optics, magnetism, or string theory. These phenomena can all be generically described as topological solitons which occur whenever a discrete symmetry is spontaneously broken.As of 2009, a phase-locked dark-dark vector soliton was observed only in fiber lasers of positive dispersion while a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations, and further showed that the observed vector solitons are the two types of phase-locked polarization domain-wall solitons theoretically predicted. Another novel type of domain wall soliton is the vector dark domain wall, consisting of stable localized structures separating the two orthogonal linear polarization eigenstates of the laser emission, with a dark structure that is visible only when the total laser emission is measured.

Fiber laser

A fiber laser (or fibre laser in British English) is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.

Gerald Teschl

Gerald Teschl (born May 12, 1970 in Graz) is an Austrian mathematical physicist and professor of mathematics.

He works in the area of mathematical physics; in particular direct and inverse spectral theory with application to completely integrable partial differential equations (soliton equations).

Inverse scattering problem

In mathematics and physics, the inverse scattering problem is the problem of determining characteristics of an object, based on data of how it scatters incoming radiation or particles. It is the inverse problem to the direct scattering problem, which is to determine how radiation or particles are scattered based on the properties of the scatterer.

Soliton equations are a class of partial differential equations which can be studied and solved by a method called the inverse scattering transform, which reduces the nonlinear PDEs to a linear inverse scattering problem. The nonlinear Schrödinger equation, the Korteweg–de Vries equation and the KP equation are examples of soliton equations. In one space dimension the inverse scattering problem is equivalent to a Riemann-Hilbert problem. Since its early statement for radiolocation, many applications have been found for inverse scattering techniques, including echolocation, geophysical survey, nondestructive testing, medical imaging, quantum field theory.

Modified Morlet wavelet

Modified Mexican hat, Modified Morlet and Dark soliton or Darklet wavelets are derived from hyperbolic (sech) (bright soliton) and hyperbolic tangent (tanh) (dark soliton) pulses. These functions are derived intuitively from the solutions of the nonlinear Schrödinger equation in the anomalous and normal dispersion regimes in a similar fashion to the way that the Morlet and the Mexican hat are derived. The modified Morlet is defined as:

Non-topological soliton

In quantum field theory, a non-topological soliton (NTS) is a field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.

The interior region of an NTS is occupied by vacuum different from the ambient vacuum. The vacuums are separated by the surface of the NTS representing a domain wall configuration (topological defect), which also appears in field theories with broken discrete symmetry. Infinite domain walls contradict cosmology, but the surface of an NTS is closed and finite, so its existence would not be contradictory. If the topological domain wall is closed, it shrinks because of wall tension; however, due to the structure of the NTS surface, it does not shrink since the decrease of the NTS volume would increase its energy.

Peregrine soliton

The Peregrine soliton (or Peregrine breather) is an analytic solution of the nonlinear Schrödinger equation. This solution was proposed in 1983 by Howell Peregrine, researcher at the mathematics department of the University of Bristol.


In physics, a plasmon is a quantum of plasma oscillation. Just as light (an optical oscillation) consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

Sine-Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic partial differential equation in 1 + 1 dimensions involving the d'Alembert operator and the sine of the unknown function. It was originally introduced by Edmond Bour (1862) in the course of study of surfaces of constant negative curvature as the Gauss–Codazzi equation for surfaces of curvature −1 in 3-space, and rediscovered by Frenkel and Kontorova (1939) in their study of crystal dislocations known as the Frenkel–Kontorova model. This equation attracted a lot of attention in the 1970s due to the presence of soliton solutions.


In particle theory, the skyrmion () is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1962. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid state physics, as well as having ties to certain areas of string theory.

Skyrmions as topological objects are important in solid state physics, especially in the emerging technology of spintronics. A two-dimensional magnetic skyrmion, as a topological object, is formed, e.g., from a 3D effective-spin "hedgehog" (in the field of micromagnetics: out of a so-called "Bloch point" singularity of homotopy degree +1) by a stereographic projection, whereby the positive north-pole spin is mapped onto a far-off edge circle of a 2D-disk, while the negative south-pole spin is mapped onto the center of the disk. In a spinor field such as for example photonic or polariton fluids the skyrmion topology corresponds to a full Poincaré beam (which is, a quantum vortex of spin comprising all the states of polarization).Skyrmions have been reported, but not conclusively proven, to be in Bose-Einstein condensates, superconductors, thin magnetic films and in chiral nematic liquid crystals.As a model of the nucleon, the topological stability of the Skyrmion can be interpreted as a statement that the baryon number is conserved; i.e. that the proton does not decay. The Skyrme Lagrangian is essentially a one-parameter model of the nucleon. Fixing the parameter fixes the proton radius, and also fixes all other low-energy properties, which appear to be correct to about 30%. It is this predictive power of the model that makes it so appealing as a model of the nucleon.

Hollowed-out skyrmions form the basis for the chiral bag model (Chesire cat model) of the nucleon. Exact results for the duality between the fermion spectrum and the topological winding number of the non-linear sigma model have been obtained by Dan Freed. This can be interpreted as a foundation for the duality between a QCD description of the nucleon (but consisting only of quarks, and without gluons) and the Skyrme model for the nucleon.

The skyrmion can be quantized to form a quantum superposition of baryons and resonance states. It could be predicted from some nuclear matter properties.

Solid-state laser

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers (see Laser diode).

Soliton (optics)

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and linear effects in the medium. There are two main kinds of solitons:

spatial solitons: the nonlinear effect can balance the diffraction. The electromagnetic field can change the refractive index of the medium while propagating, thus creating a structure similar to a graded-index fiber. If the field is also a propagating mode of the guide it has created, then it will remain confined and it will propagate without changing its shape

temporal solitons: if the electromagnetic field is already spatially confined, it is possible to send pulses that will not change their shape because the nonlinear effects will balance the dispersion. Those solitons were discovered first and they are often simply referred as "solitons" in optics.

Soliton Incorporated

Soliton Incorporated is a Canadian company formed in 1993 to continue supporting and developing the programming language Sharp APL, and related products and services, originally developed by Canadian company I. P. Sharp Associates.

Soliton distribution

A soliton distribution is a type of discrete probability distribution that arises in the theory of erasure correcting codes. A paper by Luby introduced two forms of such distributions, the ideal soliton distribution and the robust soliton distribution.

Soliton model in neuroscience

The soliton hypothesis in neuroscience is a model that claims to explain how action potentials are initiated and conducted along axons based on a thermodynamic theory of nerve pulse propagation. It proposes that the signals travel along the cell's membrane in the form of certain kinds of solitary sound (or density) pulses that can be modeled as solitons. The model is proposed as an alternative to the Hodgkin–Huxley model in which action potentials: voltage-gated ion channels in the membrane open and allow sodium ions to enter the cell (inward current). The resulting decrease in membrane potential opens nearby voltage-gated sodium channels, thus propagating the action potential. The transmembrane potential is restored by delayed opening of potassium channels. Soliton hypothesis proponents assert that energy is mainly conserved during propagation except dissipation losses; however, measured temperature changes are also consistent with the Hodgkin-Huxley model.The soliton model ( and sound waves in general) depends on adiabatic propagation in which the energy provided at the source of excitation is carried adiabatically through the medium, i.e. plasma membrane. The measurement of a temperature pulse and the claimed absence of heat release during an action potential were the basis of the proposal that nerve impulses are an adiabatic phenomenon much like sound waves. Synaptically evoked action potentials in the electric organ of the electric eel are associated with substantial positive (only) heat production. In the garfish olfactory nerve, the action potential is associated with a biphasic temperature change; however, there is a net production of heat. These published results are consistent with the Hodgkin-Huxley Model and the authors interpret their work in terms of that model: The initial sodium current releases heat as the membrane capacitance is discharged; heat is absorbed during recharge of the membrane capacitance as potassium ions move with their concentration gradient but against the membrane potential. This mechanism is called the "Condenser Theory". Additional heat may be generated by membrane configuration changes driven by the changes in membrane potential. An increase in entropy during depolarization would release heat; entropy increase during repolarization would absorb heat.

Topological defect

A topological soliton occurs when two adjoining structures or spaces are in some way "out of phase" with each other in ways that make a seamless transition between them impossible. One of the simplest and most commonplace examples of a topological soliton occurs in old-fashioned coiled telephone handset cords, which are usually coiled clockwise. Years of picking up the handset can end up coiling parts of the cord in the opposite counterclockwise direction, and when this happens there will be a distinctive larger loop that separates the two directions of coiling. This odd looking transition loop, which is neither clockwise nor counterclockwise, is an excellent example of a topological soliton. No matter how complex the context, anything that qualifies as a topological soliton must at some level exhibit this same simple issue of reconciliation seen in the twisted phone cord example.

Topological solitons arise with ease when creating the crystalline semiconductors used in modern electronics, and in that context their effects are almost always deleterious. For this reason such crystal transitions are called topological defects. However, this mostly solid-state terminology distracts from the rich and intriguing mathematical properties of such boundary regions. Thus for most non-solid-state contexts the more positive and mathematically rich phrase "topological soliton" is preferable.

A more detailed discussion of topological solitons and related topics is provided below.

In mathematics and physics, a topological soliton or a topological defect is a solution of a system of partial differential equations or of a quantum field theory homotopically distinct from the vacuum solution.

Vector soliton

In physical optics or wave optics, a vector soliton is a solitary wave with multiple components coupled together that maintains its shape during propagation. Ordinary solitons maintain their shape but have effectively only one (scalar) polarization component, while vector solitons have two distinct polarization components. Among all the types of solitons, optical vector solitons draw the most attention due to their wide range of applications, particularly in generating ultrafast pulses and light control technology. Optical vector solitons can be classified into temporal vector solitons and spatial vector solitons. During the propagation of both temporal solitons and spatial solitons, despite being in a medium with birefringence, the orthogonal polarizations can copropagate as one unit without splitting due to the strong cross-phase modulation and coherent energy exchange between the two polarizations of the vector soliton which may induce intensity differences between these two polarizations. Thus vector solitons are no longer linearly polarized but rather elliptically polarized.

Ocean zones
Sea level


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.