Silver is a chemical element with symbol Ag (from the Latin argentum, derived from the Proto-Indo-European h₂erǵ: "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. The metal is found in the Earth's crust in the pure, free elemental form ("native silver"), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining.

Silver has long been valued as a precious metal. Silver metal is used in many bullion coins, sometimes alongside gold:[4] while it is more abundant than gold, it is much less abundant as a native metal.[5] Its purity is typically measured on a per-mille basis; a 94%-pure alloy is described as "0.940 fine". As one of the seven metals of antiquity, silver has had an enduring role in most human cultures.

Other than in currency and as an investment medium (coins and bullion),[6] silver is used in solar panels, water filtration, jewellery, ornaments, high-value tableware and utensils (hence the term silverware), in electrical contacts and conductors, in specialized mirrors, window coatings, in catalysis of chemical reactions, as a colorant in stained glass and in specialised confectionery. Its compounds are used in photographic and X-ray film. Dilute solutions of silver nitrate and other silver compounds are used as disinfectants and microbiocides (oligodynamic effect), added to bandages and wound-dressings, catheters, and other medical instruments.

Silver,  47Ag
Silver crystal
Appearancelustrous white metal
Standard atomic weight Ar, std(Ag)107.8682(2)[1]
Silver in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson


Atomic number (Z)47
Groupgroup 11
Periodperiod 5
Element category  transition metal
Electron configuration[Kr] 4d10 5s1
Electrons per shell
2, 8, 18, 18, 1
Physical properties
Phase at STPsolid
Melting point1234.93 K ​(961.78 °C, ​1763.2 °F)
Boiling point2435 K ​(2162 °C, ​3924 °F)
Density (near r.t.)10.49 g/cm3
when liquid (at m.p.)9.320 g/cm3
Heat of fusion11.28 kJ/mol
Heat of vaporisation254 kJ/mol
Molar heat capacity25.350 J/(mol·K)
Vapour pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1283 1413 1575 1782 2055 2433
Atomic properties
Oxidation states−2, −1, +1, +2, +3 (an amphoteric oxide)
ElectronegativityPauling scale: 1.93
Ionisation energies
  • 1st: 731.0 kJ/mol
  • 2nd: 2070 kJ/mol
  • 3rd: 3361 kJ/mol
Atomic radiusempirical: 144 pm
Covalent radius145±5 pm
Van der Waals radius172 pm
Color lines in a spectral range
Spectral lines of silver
Other properties
Natural occurrenceprimordial
Crystal structureface-centred cubic (fcc)
Face-centered cubic crystal structure for silver
Speed of sound thin rod2680 m/s (at r.t.)
Thermal expansion18.9 µm/(m·K) (at 25 °C)
Thermal conductivity429 W/(m·K)
Thermal diffusivity174 mm2/s (at 300 K)
Electrical resistivity15.87 nΩ·m (at 20 °C)
Magnetic orderingdiamagnetic[2]
Magnetic susceptibility−19.5·10−6 cm3/mol (296 K)[3]
Young's modulus83 GPa
Shear modulus30 GPa
Bulk modulus100 GPa
Poisson ratio0.37
Mohs hardness2.5
Vickers hardness251 MPa
Brinell hardness206–250 MPa
CAS Number7440-22-4
Discoverybefore 5000 BC
Main isotopes of silver
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
105Ag syn 41.2 d ε 105Pd
106mAg syn 8.28 d ε 106Pd
107Ag 51.839% stable
108mAg syn 418 y ε 108Pd
IT 108Ag
109Ag 48.161% stable
110mAg syn 249.95 d β 110Cd
111Ag syn 7.45 d β 111Cd


Ag atomic wire
Silver is extremely ductile, and can be drawn into a wire one atom wide.[7]

Silver is similar in its physical and chemical properties to its two vertical neighbours in group 11 of the periodic table, copper and gold. Its 47 electrons are arranged in the configuration [Kr]4d105s1, similarly to copper ([Ar]3d104s1) and gold ([Xe]4f145d106s1); group 11 is one of the few groups in the d-block which has a completely consistent set of electron configurations.[8] This distinctive electron configuration, with a single electron in the highest occupied s subshell over a filled d subshell, accounts for many of the singular properties of metallic silver.[9]

Silver is an extremely soft, ductile and malleable transition metal, though it is slightly less malleable than gold. Silver crystallizes in a face-centered cubic lattice with bulk coordination number 12, where only the single 5s electron is delocalized, similarly to copper and gold.[10] Unlike metals with incomplete d-shells, metallic bonds in silver are lacking a covalent character and are relatively weak. This observation explains the low hardness and high ductility of single crystals of silver.[11]

Silver has a brilliant white metallic luster that can take a high polish,[12] and which is so characteristic that the name of the metal itself has become a colour name.[9] Unlike copper and gold, the energy required to excite an electron from the filled d band to the s-p conduction band in silver is large enough (around 385 kJ/mol) that it no longer corresponds to absorption in the visible region of the spectrum, but rather in the ultraviolet; hence silver is not a coloured metal.[9] Protected silver has greater optical reflectivity than aluminium at all wavelengths longer than ~450 nm.[13] At wavelengths shorter than 450 nm, silver's reflectivity is inferior to that of aluminium and drops to zero near 310 nm.[14]

Very high electrical and thermal conductivity is common to the elements in group 11, because their single s electron is free and does not interact with the filled d subshell, as such interactions (which occur in the preceding transition metals) lower electron mobility.[15] The electrical conductivity of silver is the greatest of all metals, greater even than copper, but it is not widely used for this property because of the higher cost. An exception is in radio-frequency engineering, particularly at VHF and higher frequencies where silver plating improves electrical conductivity because those currents tend to flow on the surface of conductors rather than through the interior. During World War II in the US, 13540 tons of silver were used in electromagnets for enriching uranium, mainly because of the wartime shortage of copper.[16][17][18] Pure silver has the highest thermal conductivity of any metal, although the conductivity of carbon (in the diamond allotrope) and superfluid helium-4 are even higher.[8] Silver also has the lowest contact resistance of any metal.[8]

Silver readily forms alloys with copper and gold, as well as zinc. Zinc-silver alloys with low zinc concentration may be considered as face-centred cubic solid solutions of zinc in silver, as the structure of the silver is largely unchanged while the electron concentration rises as more zinc is added. Increasing the electron concentration further leads to body-centred cubic (electron concentration 1.5), complex cubic (1.615), and hexagonal close-packed phases (1.75).[10]


Naturally occurring silver is composed of two stable isotopes, 107Ag and 109Ag, with 107Ag being slightly more abundant (51.839% natural abundance). This almost equal abundance is rare in the periodic table. The atomic weight is 107.8682(2) u;[19][20] this value is very important because of the importance of silver compounds, particularly halides, in gravimetric analysis.[19] Both isotopes of silver are produced in stars via the s-process (slow neutron capture), as well as in supernovas via the r-process (rapid neutron capture).[21]

Twenty-eight radioisotopes have been characterized, the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.45 days, and 112Ag with a half-life of 3.13 hours. Silver has numerous nuclear isomers, the most stable being 108mAg (t1/2 = 418 years), 110mAg (t1/2 = 249.79 days) and 106mAg (t1/2 = 8.28 days). All of the remaining radioactive isotopes have half-lives of less than an hour, and the majority of these have half-lives of less than three minutes.[22]

Isotopes of silver range in relative atomic mass from 92.950 u (93Ag) to 129.950 u (130Ag);[23] the primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes, and the primary products after are cadmium (element 48) isotopes.[22]

The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high-enough palladium-to-silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.[24] The discoverers suggest the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd–107Ag correlations observed in bodies that have clearly been melted since the accretion of the solar system must reflect the presence of unstable nuclides in the early solar system.[25]


Oxidation states and stereochemistries of silver[26]
Stereochemistry Representative
0 (d10s1) 3 Planar Ag(CO)3
1 (d10) 2 Linear [Ag(CN)2]
3 Trigonal planar AgI(PEt2Ar)2
4 Tetrahedral [Ag(diars)2]+
6 Octahedral AgF, AgCl, AgBr
2 (d9) 4 Square planar [Ag(py)4]2+
3 (d8) 4 Square planar [AgF4]
6 Octahedral [AgF6]3−

Silver is a rather unreactive metal. This is because its filled 4d shell is not very effective in shielding the electrostatic forces of attraction from the nucleus to the outermost 5s electron, and hence silver is near the bottom of the electrochemical series (E0(Ag+/Ag) = +0.799 V).[9] In group 11, silver has the lowest first ionization energy (showing the instability of the 5s orbital), but has higher second and third ionization energies than copper and gold (showing the stability of the 4d orbitals), so that the chemistry of silver is predominantly that of the +1 oxidation state, reflecting the increasingly limited range of oxidation states along the transition series as the d-orbitals fill and stabilize.[27] Unlike copper, for which the larger hydration energy of Cu2+ as compared to Cu+ is the reason why the former is the more stable in aqueous solution and solids despite lacking the stable filled d-subshell of the latter, with silver this effect is swamped by its larger second ionisation energy. Hence, Ag+ is the stable species in aqueous solution and solids, with Ag2+ being much less stable as it oxidizes water.[27]

Most silver compounds have significant covalent character due to the small size and high first ionization energy (730.8 kJ/mol) of silver.[9] Furthermore, silver's Pauling electronegativity of 1.93 is higher than that of lead (1.87), and its electron affinity of 125.6 kJ/mol is much higher than that of hydrogen (72.8 kJ/mol) and not much less than that of oxygen (141.0 kJ/mol).[28] Due to its full d-subshell, silver in its main +1 oxidation state exhibits relatively few properties of the transition metals proper from groups 4 to 10, forming rather unstable organometallic compounds, forming linear complexes showing very low coordination numbers like 2, and forming an amphoteric oxide[29] as well as Zintl phases like the post-transition metals.[30] Unlike the preceding transition metals, the +1 oxidation state of silver is stable even in the absence of π-acceptor ligands.[27]

Silver does not react with air, even at red heat, and thus was considered by alchemists as a noble metal along with gold. Its reactivity is intermediate between that of copper (which forms copper(I) oxide when heated in air to red heat) and gold. Like copper, silver reacts with sulfur and its compounds; in their presence, silver tarnishes in air to form the black silver sulfide (copper forms the green sulfate instead, while gold does not react). Unlike copper, silver will not react with the halogens, with the exception of fluorine gas, with which it forms the difluoride. While silver is not attacked by non-oxidizing acids, the metal dissolves readily in hot concentrated sulfuric acid, as well as dilute or concentrated nitric acid. In the presence of air, and especially in the presence of hydrogen peroxide, silver dissolves readily in aqueous solutions of cyanide.[26]

The three main forms of deterioration in historical silver artifacts are tarnishing, formation of silver chloride due to long-term immersion in salt water, as well as reaction with nitrate ions or oxygen. Fresh silver chloride is pale yellow, becoming purplish on exposure to light; it projects slightly from the surface of the artifact or coin. The precipitation of copper in ancient silver can be used to date artifacts, as copper is nearly always a constituent of silver alloys.[31]

Silver metal is attacked by strong oxidizers such as potassium permanganate (KMnO
) and potassium dichromate (K
), and in the presence of potassium bromide (KBr). These compounds are used in photography to bleach silver images, converting them to silver bromide that can either be fixed with thiosulfate or redeveloped to intensify the original image. Silver forms cyanide complexes (silver cyanide) that are soluble in water in the presence of an excess of cyanide ions. Silver cyanide solutions are used in electroplating of silver.[32]

The common oxidation states of silver are (in order of commonness): +1 (the most stable state; for example, silver nitrate, AgNO3); +2 (highly oxidising; for example, silver(II) fluoride, AgF2); and even very rarely +3 (extreme oxidising; for example, potassium tetrafluoroargentate(III), KAgF4).[33] The +1 state is by far the most common, followed by the easily reducible +2 state. The +3 state requires very strong oxidising agents to attain, such as fluorine or peroxodisulfate, and some silver(III) compounds react with atmospheric moisture and attack glass.[34] Indeed, silver(III) fluoride is usually obtained by reacting silver or silver monofluoride with the strongest known oxidizing agent, krypton difluoride.[35]


Oxides and chalcogenides

Sulfid stříbrný
Silver(I) sulfide

Silver and gold have rather low chemical affinities for oxygen, lower than copper, and it is therefore expected that silver oxides are thermally quite unstable. Soluble silver(I) salts precipitate dark-brown silver(I) oxide, Ag2O, upon the addition of alkali. (The hydroxide AgOH exists only in solution; otherwise it spontaneously decomposes to the oxide.) Silver(I) oxide is very easily reduced to metallic silver, and decomposes to silver and oxygen above 160 °C.[36] This and other silver(I) compounds may be oxidized by the strong oxidizing agent peroxodisulfate to black AgO, a mixed silver(I,III) oxide of formula AgIAgIIIO2. Some other mixed oxides with silver in non-integral oxidation states, namely Ag2O3 and Ag3O4, are also known, as is Ag3O which behaves as a metallic conductor.[36]

Silver(I) sulfide, Ag2S, is very readily formed from its constituent elements and is the cause of the black tarnish on some old silver objects. It may also be formed from the reaction of hydrogen sulfide with silver metal or aqueous Ag+ ions. Many non-stoichiometric selenides and tellurides are known; in particular, AgTe~3 is a low-temperature superconductor.[36]


Common Silver Halide Precipitates
The three common silver halide precipitates: from left to right, silver iodide, silver bromide, and silver chloride.

The only known dihalide of silver is the difluoride, AgF2, which can be obtained from the elements under heat. A strong yet thermally stable and therefore safe fluorinating agent, silver(II) fluoride is often used to synthesize hydrofluorocarbons.[37]

In stark contrast to this, all four silver(I) halides are known. The fluoride, chloride, and bromide have the sodium chloride structure, but the iodide has three known stable forms at different temperatures; that at room temperature is the cubic zinc blende structure. They can all be obtained by the direct reaction of their respective elements.[37] As the halogen group is descended, the silver halide gains more and more covalent character, solubility decreases, and the color changes from the white chloride to the yellow iodide as the energy required for ligand-metal charge transfer (XAg+ → XAg) decreases.[37] The fluoride is anomalous, as the fluoride ion is so small that it has a considerable solvation energy and hence is highly water-soluble and forms di- and tetrahydrates.[37] The other three silver halides are highly insoluble in aqueous solutions and are very commonly used in gravimetric analytical methods.[19] All four are photosensitive (though the monofluoride is so only to ultraviolet light), especially the bromide and iodide which photodecompose to silver metal, and thus were used in traditional photography.[37] The reaction involved is:[38]

X + → X + e (excitation of the halide ion, which gives up its extra electron into the conduction band)
Ag+ + e → Ag (liberation of a silver ion, which gains an electron to become a silver atom)

The process is not reversible because the silver atom liberated is typically found at a crystal defect or an impurity site, so that the electron's energy is lowered enough that it is "trapped".[38]

Other inorganic compounds

Silver nitrate crystals
Crystals of silver nitrate

White silver nitrate, AgNO3, is a versatile precursor to many other silver compounds, especially the halides, and is much less sensitive to light. It was once called lunar caustic because silver was called luna by the ancient alchemists, who believed that silver was associated with the moon.[39] It is often used for gravimetric analysis, exploiting the insolubility of the heavier silver halides which it is a common precursor to.[19] Silver nitrate is used in many ways in organic synthesis, e.g. for deprotection and oxidations. Ag+ binds alkenes reversibly, and silver nitrate has been used to separate mixtures of alkenes by selective absorption. The resulting adduct can be decomposed with ammonia to release the free alkene.[40]

Yellow silver carbonate, Ag2CO3 can be easily prepared by reacting aqueous solutions of sodium carbonate with a deficiency of silver nitrate.[41] Its principal use is for the production of silver powder for use in microelectronics. It is reduced with formaldehyde, producing silver free of alkali metals:[42]

Ag2CO3 + CH2O → 2 Ag + 2 CO2 + H2

Silver carbonate is also used as a reagent in organic synthesis such as the Koenigs-Knorr reaction. In the Fétizon oxidation, silver carbonate on celite acts as an oxidising agent to form lactones from diols. It is also employed to convert alkyl bromides into alcohols.[41]

Silver fulminate, AgCNO, a powerful, touch-sensitive explosive used in percussion caps, is made by reaction of silver metal with nitric acid in the presence of ethanol. Other dangerously explosive silver compounds are silver azide, AgN3, formed by reaction of silver nitrate with sodium azide,[43] and silver acetylide, Ag2C2, formed when silver reacts with acetylene gas in ammonia solution.[27] In its most characteristic reaction, silver azide decomposes explosively, releasing nitrogen gas: given the photosensitivity of silver salts, this behaviour may be induced by shining a light on its crystals.[27]

2 AgN
(s) → 3 N
(g) + 2 Ag (s)

Coordination compounds

Structure of the diamminesilver(I) complex, [Ag(NH3)2]+

Silver complexes tend to be similar to those of its lighter homologue copper. Silver(III) complexes tend to be rare and very easily reduced to the more stable lower oxidation states, though they are slightly more stable than those of copper(III). For instance, the square planar periodate [Ag(IO5OH)2]5− and tellurate [Ag{TeO4(OH)2}2]5− complexes may be prepared by oxidising silver(I) with alkaline peroxodisulfate. The yellow diamagnetic [AgF4] is much less stable, fuming in moist air and reacting with glass.[34]

Silver(II) complexes are more common. Like the valence isoelectronic copper(II) complexes, they are usually square planar and paramagnetic, which is increased by the greater field splitting for 4d electrons than for 3d electrons. Aqueous Ag2+, produced by oxidation of Ag+ by ozone, is a very strong oxidising agent, even in acidic solutions: it is stabilized in phosphoric acid due to complex formation. Peroxodisulfate oxidation is generally necessary to give the more stable complexes with heterocyclic amines, such as [Ag(py)4]2+ and [Ag(bipy)2]2+: these are stable provided the counterion cannot reduce the silver back to the +1 oxidation state. [AgF4]2− is also known in its violet barium salt, as are some silver(II) complexes with N- or O-donor ligands such as pyridine carboxylates.[44]

By far the most important oxidation state for silver in complexes is +1. The Ag+ cation is diamagnetic, like its homologues Cu+ and Au+, as all three have closed-shell electron configurations with no unpaired electrons: its complexes are colourless provided the ligands are not too easily polarized such as I. Ag+ forms salts with most anions, but it is reluctant to coordinate to oxygen and thus most of these salts are insoluble in water: the exceptions are the nitrate, perchlorate, and fluoride. The tetracoordinate tetrahedral aqueous ion [Ag(H2O)4]+ is known, but the characteristic geometry for the Ag+ cation is 2-coordinate linear. For example, silver chloride dissolves readily in excess aqueous ammonia to form [Ag(NH3)2]+; silver salts are dissolved in photography due to the formation of the thiosulfate complex [Ag(S2O3)2]3−; and cyanide extraction for silver (and gold) works by the formation of the complex [Ag(CN)2]. Silver cyanide forms the linear polymer {Ag–C≡N→Ag–C≡N→}; silver thiocyanate has a similar structure, but forms a zigzag instead because of the sp3-hybridized sulfur atom. Chelating ligands are unable to form linear complexes and thus silver(I) complexes with them tend to form polymers; a few exceptions exist, such as the near-tetrahedral diphosphine and diarsine complexes [Ag(L–L)2]+.[45]


Under standard conditions, silver does not form simple carbonyls, due to the weakness of the Ag–C bond. A few are known at very low temperatures around 6–15 K, such as the green, planar paramagnetic Ag(CO)3, which dimerizes at 25–30 K, probably by forming Ag–Ag bonds. Additionally, the silver carbonyl [Ag(CO)] [B(OTeF5)4] is known. Polymeric AgLX complexes with alkenes and alkynes are known, but their bonds are thermodynamically weaker than even those of the platinum complexes (though they are formed more readily than those of the analogous gold complexes): they are also quite unsymmetrical, showing the weak π bonding in group 11. Ag–C σ bonds may also be formed by silver(I), like copper(I) and gold(I), but the simple alkyls and aryls of silver(I) are even less stable than those of copper(I) (which tend to explode under ambient conditions). For example, poor thermal stability is reflected in the relative decomposition temperatures of AgMe (−50 °C) and CuMe (−15 °C) as well as those of PhAg (74 °C) and PhCu (100 °C).[46]

The C–Ag bond is stabilized by perfluoroalkyl ligands, for example in AgCF(CF3)2.[47] Alkenylsilver compounds are also more stable than their alkylsilver counterparts.[48] Silver-NHC complexes are easily prepared, and are commonly used to prepare other NHC complexes by displacing labile ligands. For example, the reaction of the bis(NHC)silver(I) complex with bis(acetonitrile)palladium dichloride or chlorido(dimethyl sulfide)gold(I):[49]

Silver-NHC as carbene transmetallation agent
Silver-NHC as carbene transmetallation agent


Different colors of silver–copper–gold alloys

Silver forms alloys with most other elements on the periodic table. The elements from groups 1–3, except for hydrogen, lithium, and beryllium, are very miscible with silver in the condensed phase and form intermetallic compounds; those from groups 4–10 are only poorly miscible (particularly elements in period 4[50]); the elements in groups 11–14 (except boron and carbon) have very complex Ag–M phase diagrams and form the most commercially important alloys; and the remaining elements on the periodic table have no consistency in their Ag–M phase diagrams. By far the most important such alloys are those with copper: most silver used for coinage and jewellery is in reality a silver–copper alloy, and the eutectic mixture is used in vacuum brazing. The two metals are completely miscible as liquids but not as solids; their importance in industry comes from the fact that their properties tend to be suitable over a wide range of variation in silver and copper concentration, although most useful alloys tend to be richer in silver than the eutectic mixture (71.9% silver and 28.1% copper by weight, and 60.1% silver and 28.1% copper by atom).[51]

Most other binary alloys are of little use: for example, silver–gold alloys are too soft and silver–cadmium alloys too toxic. Ternary alloys have much greater importance: dental amalgams are usually silver–tin–mercury alloys, silver–copper–gold alloys are very important in jewellery (usually on the gold-rich side) and have a vast range of hardnesses and colours, silver–copper–zinc alloys are useful as low-melting brazing alloys, and silver–cadmium–indium (involving three adjacent elements on the periodic table) is useful in nuclear reactors because of its high thermal neutron capture cross-section, good conduction of heat, mechanical stability, and resistance to corrosion in hot water.[51]


The word "silver" appears in Anglo-Saxon in various spellings, such as seolfor and siolfor. A similar form is seen throughout the Germanic languages (compare Old High German silabar and silbir). The chemical symbol Ag is from the Latin word for "silver", argentum (compare Ancient Greek ἄργυρος, árgyros), from the Proto-Indo-European root *h₂erǵ- (formerly reconstructed as *arǵ-), meaning "white" or "shining": this was the usual Proto-Indo-European word for the metal, whose reflexes are missing in Germanic and Balto-Slavic. The Balto-Slavic words for silver are quite similar to the Germanic ones (e.g. Russian серебро [serebro], Polish srebro, Lithuanian sidabras) and they may have a common origin, although this is uncertain: some scholars have suggested the Akkadian sarpu "refined silver" as this origin, related to the word sarapu "to refine or smelt".[52][53]


Vadásztál (2)
Silver plate from the 4th century

Silver was one of the seven metals of antiquity that were known to prehistoric humans and whose discovery is thus lost to history.[54] In particular, the three metals of group 11, copper, silver, and gold, occur in the elemental form in nature and were probably used as the first primitive forms of money as opposed to simple bartering.[55] However, unlike copper, silver did not lead to the growth of metallurgy on account of its low structural strength, and was more often used ornamentally or as money.[56] Since silver is more reactive than gold, supplies of native silver were much more limited than those of gold.[55] For example, silver was more expensive than gold in Egypt until around the fifteenth century BC:[57] the Egyptians are thought to have separated gold from silver by heating the metals with salt, and then reducing the silver chloride produced to the metal.[58]

The situation changed with the discovery of cupellation, a technique that allowed silver metal to be extracted from its ores. While slag heaps found in Asia Minor and on the islands of the Aegean Sea indicate that silver was being separated from lead as early as the 4th millennium BC,[8] and one of the earliest silver extraction centres in Europe was Sardinia in the early Chalcolithic period,[59] these techniques did not spread widely until later, when it spread throughout the region and beyond.[57] The origins of silver production in India, China, and Japan were almost certainly equally ancient, but are not well-documented due to their great age.[58]

Silver mining in Kutná Hora 1490s
Silver mining and processing in Kutná Hora, Bohemia, 1490s

When the Phoenicians first came to what is now Spain, they obtained so much silver that they could not fit it all on their ships, and as a result used silver to weight their anchors instead of lead.[57] By the time of the Greek and Roman civilizations, silver coins were a staple of the economy:[55] the Greeks were already extracting silver from galena by the 7th century BC,[57] and the rise of Athens was partly made possible by the nearby silver mines at Laurium, from which they extracted about 30 tonnes a year from 600 to 300 BC.[60] The stability of the Roman currency relied to a high degree on the supply of silver bullion, mostly from Spain, which Roman miners produced on a scale unparalleled before the discovery of the New World. Reaching a peak production of 200 tonnes per year, an estimated silver stock of 10000 tonnes circulated in the Roman economy in the middle of the second century AD, five to ten times larger than the combined amount of silver available to medieval Europe and the Abbasid Caliphate around AD 800.[61][62] The Romans also recorded the extraction of silver in central and northern Europe in the same time period. This production came to a nearly complete halt with the fall of the Roman Empire, not to resume until the time of Charlemagne: by then, tens of thousands of tonnes of silver had already been extracted.[58]

Central Europe became the centre of silver production during the Middle Ages, as the Mediterranean deposits exploited by the ancient civilisations had been exhausted. Silver mines were opened in Bohemia, Saxony, Erzgebirge, Alsace, the Lahn region, Siegerland, Silesia, Hungary, Norway, Steiermark, Salzburg, and the southern Black Forest. Most of these ores were quite rich in silver and could simply be separated by hand from the remaining rock and then smelted; some deposits of native silver were also encountered. Many of these mines were soon exhausted, but a few of them remained active until the Industrial Revolution, before which the world production of silver was around a meagre 50 tonnes per year.[58] In the Americas, high temperature silver-lead cupellation technology was developed by pre-Inca civilizations as early as AD 60–120; silver deposits in India, China, Japan, and pre-Columbian America continued to be mined during this time.[58][63]

With the discovery of America and the plundering of silver by the Spanish conquistadors, Central and South America became the dominant producers of silver until around the beginning of the 18th century, particularly Peru, Bolivia, Chile, and Argentina:[58] the last of these countries later took its name from that of the metal that composed so much of its mineral wealth.[60] The silver trade this was a part of gave way to a global network of exchange. As one historian put it, silver "went round the world and made the world go round."[64] Much of this silver ended up in the hands of the Chinese. A Portuguese merchant in 1621 noted that silver "wanders throughout all the world... before flocking to China, where it remains as if at its natural center."[65] Still, much of it went to Spain, allowing Spanish rulers to pursue military and political ambitions in both Europe and the Americas. "New World mines," concluded several historians, "supported the Spanish empire."[66]

In the 19th century, primary production of silver moved to North America, particularly Canada, Mexico, and Nevada in the United States: some secondary production from lead and zinc ores also took place in Europe, and deposits in Siberia and the Russian Far East as well as in Australia were mined.[58] Poland emerged as an important producer during the 1970s after the discovery of copper deposits that were rich in silver, before the centre of production returned to the Americas the following decade. Today, Peru and Mexico are still among the primary silver producers, but the distribution of silver production around the world is quite balanced and about one-fifth of the silver supply comes from recycling instead of new production.[58]

Symbolic role

6852 les deniers de judas
16th-century fresco painting of Judas being paid thirty pieces of silver for his betrayal of Jesus

Silver plays a certain role in mythology and has found various usage as a metaphor and in folklore. The Greek poet Hesiod's Works and Days (lines 109–201) lists different ages of man named after metals like gold, silver, bronze and iron to account for successive ages of humanity.[67] Ovid's Metamorphoses contains another retelling of the story, containing an illustration of silver's metaphorical use of signifying the second-best in a series, better than bronze but worse than gold:

But when good Saturn, banish'd from above,
Was driv'n to Hell, the world was under Jove.
Succeeding times a silver age behold,
Excelling brass, but more excell'd by gold.

— Ovid, Metamorphoses, Book I, trans. John Dryden

In folklore, silver was commonly thought to have mystic powers: for example, a bullet cast from silver is often supposed in such folklore the only weapon that is effective against a werewolf, witch, or other monsters.[68][69] From this the idiom of a silver bullet developed into figuratively referring to any simple solution with very high effectiveness or almost miraculous results, as in the widely discussed software engineering paper No Silver Bullet.[70]

Silver production has also inspired figurative language. Clear references to cupellation occur throughout the Old Testament of the Bible, such as in Jeremiah's rebuke to Judah: "The bellows are burned, the lead is consumed of the fire; the founder melteth in vain: for the wicked are not plucked away. Reprobate silver shall men call them, because the Lord hath rejected them." (Jeremiah 6:19–20) Jeremiah was also aware of sheet silver, exemplifying the malleability and ductility of the metal: "Silver spread into plates is brought from Tarshish, and gold from Uphaz, the work of the workman, and of the hands of the founder: blue and purple is their clothing: they are all the work of cunning men." (Jeremiah 10:9)[57]

Silver also has more negative cultural meanings: the idiom thirty pieces of silver, referring to a reward for betrayal, references the bribe Judas Iscariot is said in the New Testament to have taken from Jewish leaders in Jerusalem to turn Jesus of Nazareth over to soldiers of the high priest Caiaphas.[71] Ethically, silver also symbolizes greed and degradation of consciousness; this is the negative aspect, the perverting of its value.[72]

Occurrence and production

Acanthite - Chispas Mine, Arizpe, Sonora, Mexico
Acanthite sample from the Chispas Mine in Sonora, Mexico; scale at bottom of image as one inch with a rule at one centimetre

The abundance of silver in the Earth's crust is 0.08 parts per million, almost exactly the same as that of mercury. It mostly occurs in sulfide ores, especially acanthite and argentite, Ag2S. Argentite deposits sometimes also contain native silver when they occur in reducing environments, and when in contact with salt water they are converted to chlorargyrite (including horn silver), AgCl, which is prevalent in Chile and New South Wales.[73] Most other silver minerals are silver pnictides or chalcogenides; they are generally lustrous semiconductors. Most true silver deposits, as opposed to argentiferous deposits of other metals, came from Tertiary period vulcanism.[74]

The principal sources of silver are the ores of copper, copper-nickel, lead, and lead-zinc obtained from Peru, Bolivia, Mexico, China, Australia, Chile, Poland and Serbia.[8] Peru, Bolivia and Mexico have been mining silver since 1546, and are still major world producers. Top silver-producing mines are Cannington (Australia), Fresnillo (Mexico), San Cristóbal (Bolivia), Antamina (Peru), Rudna (Poland), and Penasquito (Mexico).[75] Top near-term mine development projects through 2015 are Pascua Lama (Chile), Navidad (Argentina), Jaunicipio (Mexico), Malku Khota (Bolivia),[76] and Hackett River (Canada).[75] In Central Asia, Tajikistan is known to have some of the largest silver deposits in the world.[77]

Silver is usually found in nature combined with other metals, or in minerals that contain silver compounds, generally in the form of sulfides such as galena (lead sulfide) or cerussite (lead carbonate). So the primary production of silver requires the smelting and then cupellation of argentiferous lead ores, a historically important process.[78] Lead melts at 327 °C, lead oxide at 888 °C and silver melts at 960 °C. To separate the silver, the alloy is melted again at the high temperature of 960 °C to 1000 °C in an oxidizing environment. The lead oxidises to lead monoxide, then known as litharge, which captures the oxygen from the other metals present. The liquid lead oxide is removed or absorbed by capillary action into the hearth linings.[79][80][81]

Ag(s) + 2Pb(s) + O
(g) → 2PbO(absorbed) + Ag(l)

Today, silver metal is primarily produced instead as a secondary byproduct of electrolytic refining of copper, lead, and zinc, and by application of the Parkes process on lead bullion from ore that also contains silver.[82] In such processes, silver follows the non-ferrous metal in question through its concentration and smelting, and is later purified out. For example, in copper production, purified copper is electrolytically deposited on the cathode, while the less reactive precious metals such as silver and gold collect under the anode as the so-called "anode slime". This is then separated and purified of base metals by treatment with hot aerated dilute sulfuric acid and heating with lime or silica flux, before the silver is purified to over 99.9% purity via electrolysis in nitrate solution.[73]

Commercial-grade fine silver is at least 99.9% pure, and purities greater than 99.999% are available. In 2014, Mexico was the top producer of silver (5,000 tonnes or 18.7% of the world's total of 26,800 t), followed by China (4,060 t) and Peru (3,780 t).[82]

Monetary use
1,000 oz silver bar

The earliest known coins were minted in the kingdom of Lydia in Asia Minor around 600 BC.[83] The coins of Lydia were made of electrum, which is a naturally occurring alloy of gold and silver, that was available within the territory of Lydia.[83] Since that time, silver standards, in which the standard economic unit of account is a fixed weight of silver, have been widespread throughout the world until the 20th century. Notable silver coins through the centuries include the Greek drachma,[84] the Roman denarius,[85] the Islamic dirham,[86] the karshapana from ancient India and rupee from the time of the Mughal Empire (grouped with copper and gold coins to create a trimetallic standard),[87] and the Spanish dollar.[88][89]

The ratio between the amount of silver used for coinage and that used for other purposes has fluctuated greatly over time; for example, in wartime, more silver tends to have been used for coinage to finance the war.[90]

Today, silver bullion has the ISO 4217 currency code XAG, one of only four precious metals to have one (the others being palladium, platinum, and gold).[91] Silver coins are produced from cast rods or ingots, rolled to the correct thickness, heat-treated, and then used to cut blanks from. These blanks are then milled and minted in a coining press; modern coining presses can produce 8000 silver coins per hour.[90]


As of July 2018, silver is valued at around $495 per kilogram, or about $15.5 per ounce.[92]

Silver prices are normally quoted in Troy ounces. One troy ounce is equal to 31.1034 grams. In 2015 China reverted to the metric system and currently prices silver (and gold) in grams.[93][94] The London silver fix is published once daily at noon London time. This price is determined by several major international banks and is used by London bullion market members for trading that day. Prices are most commonly shown as the United States dollar (USD), the Pound sterling (GBP), and the Euro (EUR).


Jewellery and silverware

The major use of silver besides coinage throughout most of history was in the manufacture of jewellery and other general-use items, and this continues to be a major use today. Examples include table silver for cutlery, for which silver is highly suited due to its antibacterial properties. Western concert flutes are usually plated with or made out of sterling silver;[95] in fact, most silverware is only silver-plated rather than made out of pure silver; the silver is normally put in place by electroplating. Silver-plated glass (as opposed to metal) is used for mirrors, vacuum flasks, and Christmas tree decorations.[96]

Because pure silver is very soft, most silver used for these purposes is alloyed with copper, with finenesses of 925/1000, 835/1000, and 800/1000 being common. One drawback is the easy tarnishing of silver in the presence of hydrogen sulfide and its derivatives. Including precious metals such as palladium, platinum, and gold gives resistance to tarnishing but is quite costly; base metals like zinc, cadmium, silicon, and germanium do not totally prevent corrosion and tend to affect the lustre and colour of the alloy. Electrolytically refined pure silver plating is effective at increasing resistance to tarnishing. The usual solutions for restoring the lustre of tarnished silver are dipping baths that reduce the silver sulfide surface to metallic silver, and cleaning off the layer of tarnish with a paste; the latter approach also has the welcome side effect of polishing the silver concurrently.[95] A simple chemical approach to removal of the sulfide tarnish is to bring silver items into contact with aluminium foil whilst immersed in water containing a conducting salt, such as sodium chloride.


In medicine, silver is incorporated into wound dressings and used as an antibiotic coating in medical devices. Wound dressings containing silver sulfadiazine or silver nanomaterials are used to treat external infections. Silver is also used in some medical applications, such as urinary catheters (where tentative evidence indicates it reduces catheter-related urinary tract infections) and in endotracheal breathing tubes (where evidence suggests it reduces ventilator-associated pneumonia).[97][98] The silver ion is bioactive and in sufficient concentration readily kills bacteria in vitro. Silver ions interfere with enzymes in the bacteria that transport nutrients, form structures, and synthesise cell walls; these ions also bond with the bacteria's genetic material. Silver and silver nanoparticles are used as an antimicrobial in a variety of industrial, healthcare, and domestic application: for example, infusing clothing with nanosilver particles thus allows them to stay odourless for longer.[99][100] Bacteria can, however, develop resistance to the antimicrobial action of silver.[101] Silver compounds are taken up by the body like mercury compounds, but lack the toxicity of the latter. Silver and its alloys are used in cranial surgery to replace bone, and silver–tin–mercury amalgams are used in dentistry.[96] Silver diammine fluoride, the fluoride salt of a coordination complex with the formula [Ag(NH3)2]F, is a topical medicament (drug) used to treat and prevent dental caries (cavities) and relieve dentinal hypersensitivity.[102]


Silver is very important in electronics for conductors and electrodes on account of its high electrical conductivity even when tarnished. Bulk silver and silver foils were used to make vacuum tubes, and continue to be used today in the manufacture of semiconductor devices, circuits, and their components. For example, silver is used in high quality connectors for RF, VHF, and higher frequencies, particularly in tuned circuits such as cavity filters where conductors cannot be scaled by more than 6%. Printed circuits and RFID antennas are made with silver paints,[8][103] Powdered silver and its alloys are used in paste preparations for conductor layers and electrodes, ceramic capacitors, and other ceramic components.[104]

Brazing alloys

Silver-containing brazing alloys are used for brazing metallic materials, mostly cobalt, nickel, and copper-based alloys, tool steels, and precious metals. The basic components are silver and copper, with other elements selected according to the specific application desired: examples include zinc, tin, cadmium, palladium, manganese, and phosphorus. Silver provides increased workability and corrosion resistance during usage.[105]

Chemical equipment

Silver is useful in the manufacture of chemical equipment on account of its low chemical reactivity, high thermal conductivity, and being easily workable. Silver crucibles (alloyed with 0.15% nickel to avoid recrystallisation of the metal at red heat) are used for carrying out alkaline fusion. Copper and silver are also used when doing chemistry with fluorine. Equipment made to work at high temperatures is often silver-plated. Silver and its alloys with gold are used as wire or ring seals for oxygen compressors and vacuum equipment.[106]


Silver metal is a good catalyst for oxidation reactions; in fact it is somewhat too good for most purposes, as finely divided silver tends to result in complete oxidation of organic substances to carbon dioxide and water, and hence coarser-grained silver tends to be used instead. For instance, 15% silver supported on α-Al2O3 or silicates is a catalyst for the oxidation of ethylene to ethylene oxide at 230–270 °C. Dehydrogenation of methanol to formaldehyde is conducted at 600–720 °C over silver gauze or crystals as the catalyst, as is dehydrogenation of isopropanol to acetone. In the gas phase, glycol yields glyoxal and ethanol yields acetaldehyde, while organic amines are dehydrated to nitriles.[106]


The photosensitivity of the silver halides allowed for their use in traditional photography, although digital photography, which does not use silver, is now dominant. The photosensitive emulsion used in black-and-white photography is a suspension of silver halide crystals in gelatin, possibly mixed in with some noble metal compounds for improved photosensitivity, developing, and tuning. Colour photography requires the addition of special dye components and sensitisers, so that the initial black-and-white silver image couples with a different dye component. The original silver images are bleached off and the silver is then recovered and recycled. Silver nitrate is the starting material in all cases.[107]

The use of silver nitrate and silver halides in photography has rapidly declined with the advent of digital technology. From the peak global demand for photographic silver in 1999 (267,000,000 troy ounces or 8304.6 metric tonnes) the market contracted almost 70% by 2013.[108]


Nanosilver particles, between 10 and 100 nanometres in size, are used in many applications. They are used in conductive inks for printed electronics, and have a much lower melting point than larger silver particles of micrometre size. They are also used medicinally in antibacterials and antifungals in much the same way as larger silver particles.[100] In addition, according to the European Union Observatory for Nanomaterials (EUON), silver nanoparticles are used both in pigments, as well as cosmetics. [109][110]


Diwali sweets India 2009
A tray of South Asian sweets, with some pieces covered with shiny silver vark

Pure silver metal is used as a food colouring. It has the E174 designation and is approved in the European Union.[111] Traditional Pakistani and Indian dishes sometimes include decorative silver foil known as vark,[112] and in various other cultures, silver dragée are used to decorate cakes, cookies, and other dessert items.[113]

Photochromic lenses include silver halides, so that ultraviolet light in natural daylight liberates metallic silver, darkening the lenses. The silver halides are reformed in lower light intensities. Colourless silver chloride films are used in radiation detectors. Zeolite sieves incorporating Ag+ ions are used to desalinate seawater during rescues, using silver ions to precipitate chloride as silver chloride. Silver is also used for its antibacterial properties for water sanitisation, but the application of this is limited by limits on silver consumption. Colloidal silver is similarly used to disinfect closed swimming pools; while it has the advantage of not giving off a smell like hypochlorite treatments do, colloidal silver is not effective enough for more contaminated open swimming pools. Small silver iodide crystals are used in cloud seeding to cause rain.[100]


GHS pictograms The environment pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Warning
P273, P391, P501[114]
NFPA 704
Flammability code 0: Will not burn. E.g., waterHealth code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chlorideReactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogenSpecial hazards (white): no codeNFPA 704 four-colored diamond

Silver compounds have low toxicity compared to those of most other heavy metals, as they are poorly absorbed by the human body when digested, and that which does get absorbed is rapidly converted to insoluble silver compounds or complexed by metallothionein. However, silver fluoride and silver nitrate are caustic and can cause tissue damage, resulting in gastroenteritis, diarrhoea, falling blood pressure, cramps, paralysis, and respiratory arrest. Animals repeatedly dosed with silver salts have been observed to experience anaemia, slowed growth, necrosis of the liver, and fatty degeneration of the liver and kidneys; rats implanted with silver foil or injected with colloidal silver have been observed to develop localised tumours. Parenterally admistered colloidal silver causes acute silver poisoning.[115] Some waterborne species are particularly sensitive to silver salts and those of the other precious metals; in most situations, however, silver does not pose serious environmental hazards.[115]

In large doses, silver and compounds containing it can be absorbed into the circulatory system and become deposited in various body tissues, leading to argyria, which results in a blue-grayish pigmentation of the skin, eyes, and mucous membranes. Argyria is rare, and so far as is known, does not otherwise harm a person's health, though it is disfiguring and usually permanent. Mild forms of argyria are sometimes mistaken for cyanosis.[115][8]

Metallic silver, like copper, is an antibacterial agent, which was known to the ancients and first scientifically investigated and named the oligodynamic effect by Carl Nägeli. Silver ions damage the metabolism of bacteria even at such low concentrations as 0.01–0.1 milligrams per litre; metallic silver has a similar effect due to the formation of silver oxide. This effect is lost in the presence of sulfur due to the extreme insolubility of silver sulfide.[115]

Some silver compounds are very explosive, such as the nitrogen compounds silver azide, silver amide, and silver fulminate, as well as silver acetylide, silver oxalate, and silver(II) oxide. They can explode on heating, force, drying, illumination, or sometimes spontaneously. To avoid the formation of such compounds, ammonia and acetylene should be kept away from silver equipment. Salts of silver with strongly oxidising acids such as silver chlorate and silver nitrate can explode on contact with materials that can be readily oxidised, such as organic compounds, sulfur and soot.[115]

See also


  1. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  2. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  3. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  4. ^ "Bullion vs. Numismatic Coins: Difference between Bullion and Numismatic Coins". Retrieved 2017-12-17.
  5. ^ "'World has 5 times more gold than silver' | Latest News & Updates at Daily News & Analysis". dna. 2009-03-03. Retrieved 2017-12-17.
  6. ^ "Lucius Precious Metals | Buy Gold, Silver, Bullion & Coins". Retrieved 2017-10-14.
  7. ^ Masuda, Hideki (2016). "Combined Transmission Electron Microscopy – In situ Observation of the Formation Process and Measurement of Physical Properties for Single Atomic-Sized Metallic Wires". In Janecek, Milos; Kral, Robert. Modern Electron Microscopy in Physical and Life Sciences. InTech. doi:10.5772/62288. ISBN 978-953-51-2252-4.
  8. ^ a b c d e f g Hammond, C. R. (2004). The Elements, in Handbook of Chemistry and Physics (81st ed.). CRC press. ISBN 978-0-8493-0485-9.
  9. ^ a b c d e Greenwood and Earnshaw, p. 1177
  10. ^ a b Greenwood and Earnshaw, p. 1178
  11. ^ George L. Trigg; Edmund H. Immergut (1992). Encyclopedia of applied physics. 4: Combustion to Diamagnetism. VCH Publishers. pp. 267–72. ISBN 978-3-527-28126-8. Retrieved 2 May 2011.
  12. ^ Alex Austin (2007). The Craft of Silversmithing: Techniques, Projects, Inspiration. Sterling Publishing Company, Inc. p. 43. ISBN 978-1-60059-131-0.
  13. ^ Edwards, H.W.; Petersen, R.P. (1936). "Reflectivity of evaporated silver films". Physical Review. 50 (9): 871. Bibcode:1936PhRv...50..871E. doi:10.1103/PhysRev.50.871.
  14. ^ "Silver vs. Aluminum". Gemini Observatory. Retrieved 2014-08-01.
  15. ^ Russell AM & Lee KL 2005, Structure-property relations in nonferrous metals, Wiley-Interscience, New York, ISBN 0-471-64952-X. p. 302.
  16. ^ Nichols, Kenneth D. (1987). The Road to Trinity. Morrow, NY: Morrow. p. 42. ISBN 978-0-688-06910-0.
  17. ^ Young, Howard (11 September 2002). "Eastman at Oak Ridge During World War II". Archived from the original on 2012-02-08.
  18. ^ Oman, H. (1992). "Not invented here? Check your history". Aerospace and Electronic Systems Magazine. 7 (1): 51–53. doi:10.1109/62.127132.
  19. ^ a b c d "Atomic Weights of the Elements 2007 (IUPAC)". Retrieved 11 November 2009.
  20. ^ "Atomic Weights and Isotopic Compositions for All Elements (NIST)". Retrieved 11 November 2009.
  21. ^ Cameron, A.G.W. (1973). "Abundance of the Elements in the Solar System" (PDF). Space Science Reviews. 15 (1): 121–46. Bibcode:1973SSRv...15..121C. doi:10.1007/BF00172440.
  22. ^ a b Audi, Georges; Bersillon, O.; Blachot, J.; Wapstra, A.H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. CiteSeerX doi:10.1016/j.nuclphysa.2003.11.001.
  23. ^ "Atomic Weights and Isotopic Compositions for Silver (NIST)". Retrieved 11 November 2009.
  24. ^ Kelly, William R.; Wasserburg, G. J. (1978). "Evidence for the existence of 107Pd in the early solar system" (PDF). Geophysical Research Letters. 5 (12): 1079–82. Bibcode:1978GeoRL...5.1079K. doi:10.1029/GL005i012p01079.
  25. ^ Russell, Sara S.; Gounelle, Matthieu; Hutchison, Robert (2001). "Origin of Short-Lived Radionuclides". Philosophical Transactions of the Royal Society A. 359 (1787): 1991–2004. Bibcode:2001RSPTA.359.1991R. doi:10.1098/rsta.2001.0893. JSTOR 3066270.
  26. ^ a b Greenwood and Earnshaw, p. 1179
  27. ^ a b c d e Greenwood and Earnshaw, p. 1180
  28. ^ Greenwood and Earnshaw, p. 1176
  29. ^ Lidin RA 1996, Inorganic substances handbook, Begell House, New York, ISBN 1-56700-065-7. p. 5
  30. ^ Goodwin F, Guruswamy S, Kainer KU, Kammer C, Knabl W, Koethe A, Leichtfreid G, Schlamp G, Stickler R & Warlimont H 2005, 'Noble metals and noble metal alloys', in Springer Handbook of Condensed Matter and Materials Data, W Martienssen & H Warlimont (eds), Springer, Berlin, pp. 329–406, ISBN 3-540-44376-2. p. 341
  31. ^ "Silver Artifacts" in Corrosion – Artifacts. NACE Resource Center
  32. ^ Bjelkhagen, Hans I. (1995). Silver-halide recording materials: for holography and their processing. Springer. pp. 156–66. ISBN 978-3-540-58619-7.
  33. ^ Riedel, Sebastian; Kaupp, Martin (2009). "The highest oxidation states of the transition metal elements". Coordination Chemistry Reviews. 253 (5–6): 606–24. doi:10.1016/j.ccr.2008.07.014.
  34. ^ a b Greenwood and Earnshaw, p. 1188
  35. ^ Greenwood and Earnshaw, p. 903
  36. ^ a b c Greenwood and Earnshaw, pp. 1181–82
  37. ^ a b c d e Greenwood and Earnshaw, pp. 1183–85
  38. ^ a b Greenwood and Earnshaw, pp. 1185–87
  39. ^ "Definition of Lunar Caustic". Archived from the original on 31 January 2012.CS1 maint: BOT: original-url status unknown (link)
  40. ^ Cope, A. C.; Bach, R. D. (1973). "trans-Cyclooctene". Organic Syntheses.CS1 maint: Multiple names: authors list (link); Collective Volume, 5, p. 315
  41. ^ a b McCloskey C.M.; Coleman, G.H. (1955). "β-d-Glucose-2,3,4,6-Tetraacetate". Organic Syntheses.CS1 maint: Multiple names: authors list (link); Collective Volume, 3, p. 434
  42. ^ Andreas Brumby et al. "Silver, Silver Compounds, and Silver Alloys" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2008. doi:10.1002/14356007.a24_107.pub2
  43. ^ Meyer, Rudolf; Köhler, Josef & Homburg, Axel (2007). Explosives. Wiley–VCH. p. 284. ISBN 978-3-527-31656-4.
  44. ^ Greenwood and Earnshaw, p. 1189
  45. ^ Greenwood and Earnshaw, pp. 1195–96
  46. ^ Greenwood and Earnshaw, pp. 1199–200
  47. ^ Miller, W.T.; Burnard, R.J. (1968). "Perfluoroalkylsilver compounds". J. Am. Chem. Soc. 90 (26): 7367–68. doi:10.1021/ja01028a047.
  48. ^ Holliday, A.; Pendlebury, R.E. (1967). "Vinyllead compounds I. Cleavage of vinyl groups from tetravinyllead". J. Organomet. Chem. 7 (2): 281–84. doi:10.1016/S0022-328X(00)91078-7.
  49. ^ Wang, Harrison M.J.; Lin, Ivan J.B. (1998). "Facile Synthesis of Silver(I)−Carbene Complexes. Useful Carbene Transfer Agents". Organometallics. 17 (5): 972–75. doi:10.1021/om9709704.
  50. ^ groups 6-10 of period 4 elements are only monotectic.
  51. ^ a b Ullmann, pp. 54–61
  52. ^ Harper, Douglas (2001–16). "silver". Retrieved 2 March 2017.
  53. ^ Harper, Douglas (2001–16). "argent". Retrieved 2 March 2017.
  54. ^ Weeks, p. 4
  55. ^ a b c Greenwood and Earnshaw, pp. 1173–74
  56. ^ Readon, Arthur C. (2011). Metallurgy for the Non-Metallurgist. ASM International. pp. 73–84. ISBN 978-1-61503-821-3.
  57. ^ a b c d e Weeks, pp. 14–19
  58. ^ a b c d e f g h Ullmann, pp. 16–19
  59. ^ Maria Grazia Melis. "Silver in Neolithic and Eneolithic Sardinia, in H. Meller/R. Risch/E. Pernicka (eds.), Metalle der Macht – Frühes Gold und Silber. 6. Mitteldeutscher Archäologentag vom 17. bis 19. Oktober 2013 in Halle (Saale), Tagungen des Landesmuseums für".
  60. ^ a b Emsley, John (2011). Nature's building blocks: an A-Z guide to the elements. Oxford University Press. pp. 492–98. ISBN 978-0-19-960563-7.
  61. ^ Patterson, C.C. (1972). "Silver Stocks and Losses in Ancient and Medieval Times". The Economic History Review. 25 (2): 205235 (216, table 2, 228, table 6). doi:10.1111/j.1468-0289.1972.tb02173.x.
  62. ^ de Callataÿ, François (2005). "The Greco-Roman Economy in the Super Long-Run: Lead, Copper, and Shipwrecks". Journal of Roman Archaeology. 18: 361–72 [365ff]. doi:10.1017/s104775940000742x.
  63. ^ Carol A. Schultze; Charles Stanish; David A. Scott; Thilo Rehren; Scott Kuehner; James K. Feathers (2009). "Direct evidence of 1,900 years of indigenous silver production in the Lake Titicaca Basin of Southern Peru". Proceedings of the National Academy of Sciences of the United States of America. 106 (41): 17280–83. Bibcode:2009PNAS..10617280S. doi:10.1073/pnas.0907733106. PMC 2754926. PMID 19805127. Retrieved 22 May 2013.
  64. ^ Frank, Andre Gunder (1998). ReOrient: Global Economy in the Asian Age. Berkeley: University of California Press. p. 131.
  65. ^ von Glahn, Richard (1996). "Myth and Reality of China's Seventeenth Century Monetary Crisis". Journal of Economic History. 2: 132.
  66. ^ Flynn, Dennis O.; Giraldez, Arturo (1995). "Born with a "Silver Spoon"". Journal of World History. 2: 210.
  67. ^ Joseph Eddy Fontenrose: Work, Justice, and Hesiod's Five Ages. In: Classical Philology. V. 69, Nr. 1, 1974, p. 1–16.
  68. ^ Jackson, Robert (1995). Witchcraft and the Occult. Devizes, Quintet Publishing. p. 25. ISBN 978-1-85348-888-7.
  69. ^ Стойкова, Стефана. "Дельо хайдутин". Българска народна поезия и проза в седем тома (in Bulgarian). Т. III. Хайдушки и исторически песни. Варна: ЕИ "LiterNet". ISBN 978-954-304-232-6.
  70. ^ Brooks, Frederick. P., Jr. (1987). "No Silver Bullet – Essence and Accident in Software Engineering" (PDF). Computer. 20 (4): 10–19. CiteSeerX doi:10.1109/MC.1987.1663532.
  71. ^ Matthew 26:15
  72. ^ Chevalier, Jean; Gheerbrant, Alain (2009). Dicționar de Simboluri. Mituri, Vise, Obiceiuri, Gesturi, Forme, Figuri, Culori, Numere [Dictionary of Symbols. Myths, Dreams, Habits, Gestures, Shapes, Figures, Colors, Numbers] (in Romanian). Polirom. 105. ISBN 978-973-46-1286-4.
  73. ^ a b Greenwood and Earnshaw, pp. 1174–67
  74. ^ Ullmann, pp. 21–22
  75. ^ a b CPM Group (2011). CPM Silver Yearbook. New York: Euromoney Books. p. 68. ISBN 978-0-9826741-4-7.
  76. ^ "Preliminary Economic Assessment Technical Report 43-101" (PDF). South American Silver Corp. Archived from the original (PDF) on 19 January 2012.
  77. ^ "Why Are Kyrgyzstan and Tajikistan So Split on Foreign Mining?". 7 August 2013. Retrieved 19 August 2013.
  78. ^ Kassianidou, V. 2003. Early Extraction of Silver from Complex Polymetallic Ores, in Craddock, P.T. and Lang, J (eds) Mining and Metal production through the Ages. London, British Museum Press: 198–206
  79. ^ Craddock, P.T. (1995). Early metal mining and production. Edinburgh: Edinburgh University Press. p. 223
  80. ^ Bayley, J., Crossley, D. and Ponting, M. (eds). 2008. "Metals and Metalworking. A research framework for archaeometallurgy". Historical Metallurgy Society 6.
  81. ^ Pernicka, E., Rehren, Th., Schmitt-Strecker, S. 1998. Late Uruk silver production by cupellation at Habuba Kabira, Syria in Metallurgica Antiqua : in honour of Hans-Gert Bachmann and Robert Maddin by Bachmann, H.G, Maddin, Robert, Rehren, Thilo, Hauptmann, Andreas, Muhly, James David, Deutsches Bergbau-Museum: 123–34.
  82. ^ a b Hilliard, Henry E. "Silver". USGS.
  83. ^ a b "The origins of coinage". Retrieved September 21, 2015.
  84. ^ "Tetradrachm". Merriam-Webster. Retrieved 2008-01-20.
  85. ^ Crawford, Michael H. (1974). Roman Republican Coinage, Cambridge University Press, 2 Volumes. ISBN 0-521-07492-4
  86. ^ Oxford English Dictionary, 1st edition, s.v. 'dirhem'
  87. ^ (September 20, 2008). "Etymology of rupee". Retrieved 2008-09-20.
  88. ^ Ray Woodcock (1 May 2009). Globalization from Genesis to Geneva: A Confluence of Humanity. Trafford Publishing. pp. 104–05. ISBN 978-1-4251-8853-5. Retrieved 13 August 2013.
  89. ^ Thomas J. Osborne (2012). Pacific Eldorado: A History of Greater California. John Wiley & Sons. p. 31. ISBN 978-1-118-29217-4. Retrieved 13 August 2013.
  90. ^ a b Ullmann, pp. 63–65
  91. ^ "Current currency & funds code list – ISO Currency". SIX.
  92. ^ Current Silver Prices in US Dollars (USD)
  93. ^ "Buy Silver Bars Online – Silver | LPM". Retrieved 2017-10-14.
  94. ^ "China on gold: "Troy ounce no more" – Marketupdate". 16 October 2015.
  95. ^ a b Ullmann, pp. 65–67
  96. ^ a b Ullmann, pp. 67–71
  97. ^ Beattie, M.; Taylor, J. (2011). "Silver alloy vs. Uncoated urinary catheters: A systematic review of the literature". Journal of Clinical Nursing. 20 (15–16): 2098–108. doi:10.1111/j.1365-2702.2010.03561.x. PMID 21418360.
  98. ^ Bouadma, L.; Wolff, M.; Lucet, J.C. (August 2012). "Ventilator-associated pneumonia and its prevention". Current Opinion in Infectious Diseases. 25 (4): 395–404. doi:10.1097/QCO.0b013e328355a835. PMID 22744316.
  99. ^ Maillard, Jean-Yves; Hartemann, Philippe (2012). "Silver as an antimicrobial: Facts and gaps in knowledge". Critical Reviews in Microbiology. 39 (4): 373–83. doi:10.3109/1040841X.2012.713323. PMID 22928774.
  100. ^ a b c Ullmann, pp. 83–84
  101. ^ Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek (January 2018). "Bacterial resistance to silver nanoparticles and how to overcome it". Nature Nanotechnology. 13 (1): 65–71. doi:10.1038/s41565-017-0013-y. PMID 29203912.
  102. ^ Rosenblatt, A.; Stamford, T.C.M.; Niederman, R. (2009). "Silver diamine fluoride: a caries "silver-fluoride bullet"". Journal of Dental Research. 88 (2): 116–25. doi:10.1177/0022034508329406. PMID 19278981.CS1 maint: Uses authors parameter (link)
  103. ^ Nikitin, Pavel V.; Lam, Sander & Rao, K.V.S. (2005). "Low Cost Silver Ink RFID Tag Antennas" (PDF). 2005 IEEE Antennas and Propagation Society International Symposium. 2B. p. 353. doi:10.1109/APS.2005.1552015. ISBN 978-0-7803-8883-3. Archived from the original on 21 March 2016.CS1 maint: BOT: original-url status unknown (link)
  104. ^ Ullmann, pp. 71–78
  105. ^ Ullmann, pp. 78–81
  106. ^ a b Ullmann, pp. 81–82
  107. ^ Ullmann, p. 82
  108. ^ "A Big Source of Silver Bullion Demand Has Disappeared". BullionVault. Retrieved 2014-07-20.
  109. ^ "European Union Observatory for Nanomaterials pigments inventory".
  110. ^ "European Union Observatory for Nanomaterials catalogue of nano cosmetics ingredients".
  111. ^ Martínez-Abad, A.; Ocio, M.J.; Lagarón, J.M.; Sánchez, G. (2013). "Evaluation of silver-infused polylactide films for inactivation of Salmonella and feline calicivirus in vitro and on fresh-cut vegetables". International Journal of Food Microbiology. 162 (1): 89–94. doi:10.1016/j.ijfoodmicro.2012.12.024. PMID 23376782.
  112. ^ Sarvate, Sarita (4 April 2005). "Silver Coating". India Currents. Archived from the original on 14 February 2009. Retrieved 5 July 2009.CS1 maint: BOT: original-url status unknown (link)
  113. ^ Meisler, Andy (18 December 2005). "A Tempest on a Tea Cart". Los Angeles Times.
  114. ^ "Msds – 373249".
  115. ^ a b c d e Ullmann, pp. 88–91


External links

Berlin International Film Festival

The Berlin International Film Festival (German: Internationale Filmfestspiele Berlin), usually called the Berlinale, is a film festival held annually in Berlin, Germany. Founded in West Berlin in 1951, the festival has been held every February since 1978 and is one of the "Big Three" alongside the Venice Film Festival and Cannes Film Festival.

With around 300,000 tickets sold and 500,000 admissions each year, it has the largest public attendance of any annual film festival. Up to 400 films are shown in several sections across cinematic genres. Around twenty films compete for the festival's top awards, called the Golden Bear and several Silver Bears. Since 2001 the director of the festival has been Dieter Kosslick.The European Film Market (EFM), a film trade fair held simultaneously to the Berlinale, is a major industry meeting for the international film circuit. The trade fair serves distributors, film buyers, producers, financiers and co-production agents. The Berlinale Talents, a week-long series of lectures and workshops, is a gathering of young filmmakers held in partnership with the festival.The film festival, EFM, and other satellite events are attended by around 20,000 professionals from over 130 countries. More than 4200 journalists produce media coverage in over 110 countries. At some high-profile feature film premieres held during the festival, movie stars and celebrities are present on the red carpet.

Bob Seger

Robert Clark Seger (, born May 6, 1945) is an American singer-songwriter, guitarist and pianist. As a locally successful Detroit-area artist, he performed and recorded as Bob Seger and the Last Heard and Bob Seger System throughout the 1960s, breaking through with his first national hit and album in 1968. By the early 1970s, he had dropped the 'System' from his recordings and continued to strive for broader success with various other bands. In 1973, he put together the Silver Bullet Band, with a group of Detroit-area musicians, with whom he became most successful on the national level with the album Live Bullet (1976), recorded live with the Silver Bullet Band in 1975 at Cobo Hall in Detroit, Michigan. In 1976, he achieved a national breakout with the studio album Night Moves. On his studio albums, he also worked extensively with the Alabama-based Muscle Shoals Rhythm Section, which appeared on several of Seger's best-selling singles and albums.

A roots rocker with a classic raspy, shouting voice, Seger wrote and recorded songs that deal with love, women, and blue-collar themes and is an example of a heartland rock artist. Seger has recorded many hits, including "Ramblin' Gamblin' Man", "Night Moves", "Turn the Page", "Still the Same", "We've Got Tonight", "Against the Wind", "You'll Accomp'ny Me", "Shame on the Moon", "Like a Rock", and "Shakedown", which was written for Beverly Hills Cop II (1987). Seger also co-wrote the Eagles' number-one hit "Heartache Tonight", and his recording of "Old Time Rock and Roll" was named one of the Songs of the Century in 2001.

With a career spanning six decades, Seger has sold more than 75 million records worldwide, making him one of the world's best-selling artists of all time. Seger was inducted into the Rock and Roll Hall of Fame in 2004 and the Songwriters Hall of Fame in 2012. Seger was named Billboard's 2015 Legend of Live honoree at the 12th annual Billboard Touring Conference & Awards, held November 18–19 at the Roosevelt Hotel in New York. He announced his farewell tour in September 2018.


Galactus () is a fictional character appearing in American comic books published by Marvel Comics. Formerly a mortal man, Galactus is a cosmic entity who originally consumed planets to sustain his life force, and serves a functional role in the upkeep of the primary Marvel continuity. Galactus was created by Stan Lee and Jack Kirby and first appeared in the comic book Fantastic Four #48, published in March 1966.

Lee and Kirby wanted to introduce a character that broke away from the archetype of the standard villain. In the character's first appearance, Galactus was depicted as a god-like figure who feeds by draining living planets of their energy, and operates without regard to the morality and judgments of mortal beings. Galactus' initial origin was that of a space explorer named Galan who gained cosmic abilities by passing near a star, but writer Mark Gruenwald further developed the origin of the character, revealing that Galan lived during the previous universe that existed prior to the Big Bang which began the current universe. As Galan's universe came to an end, Galan merged with the "Sentience of the Universe" to become Galactus, an entity that wielded such cosmic power as to require devouring entire planets to sustain his existence. Additional material written by John Byrne, Jim Starlin, and Louise Simonson explored Galactus' role and purpose in the Marvel Universe, and examined the actions of the character through themes of genocide, manifest destiny, ethics, and natural/necessary existence. Frequently accompanied by a herald (such as the Silver Surfer), the character has appeared as both antagonist and protagonist in central and supporting roles. Since debuting in the Silver Age of Comic Books, Galactus has played a role in over five decades of Marvel continuity.

The character has been featured in other Marvel media, such as arcade games, video games, animated television series, and the 2007 film Fantastic Four: Rise of the Silver Surfer.

In 2009, Galactus ranked 5th on IGN's list of "Top 100 Comic Book Villains", citing the character's "larger than life presence" as making him one of the more important villains ever created. IGN also noted "Galactus is one of the few villains on our list to really defy the definition of an evil-doer" as the character is compelled to destroy worlds because of his hunger.


Gorillas are ground-dwelling, predominantly herbivorous apes that inhabit the forests of central Sub-Saharan Africa. The genus Gorilla is divided into two species: the eastern gorillas and the western gorillas (both critically endangered), and either four or five subspecies. They are the largest living primates. The DNA of gorillas is highly similar to that of humans, from 95 to 99% depending on what is included, and they are the next closest living relatives to humans after the chimpanzees and bonobos.

Gorillas' natural habitats cover tropical or subtropical forests in Sub-Saharan Africa. Although their range covers a small percentage of Sub-Saharan Africa, gorillas cover a wide range of elevations. The mountain gorilla inhabits the Albertine Rift montane cloud forests of the Virunga Volcanoes, ranging in altitude from 2,200 to 4,300 metres (7,200 to 14,100 ft). Lowland gorillas live in dense forests and lowland swamps and marshes as low as sea level, with western lowland gorillas living in Central West African countries and eastern lowland gorillas living in the Democratic Republic of the Congo near its border with Rwanda.

Indian rupee

The Indian rupee (sign: ₹; code: INR) is the official currency of India. The rupee is subdivided into 100 paise (singular paisa), though as of 2018, coins of denomination of 50 paise or half rupee is the lowest value in use. The issuance of the currency is controlled by the Reserve Bank of India. The Reserve Bank manages currency in India and derives its role in currency management on the basis of the Reserve Bank of India Act, 1934.

In 2012, a new rupee symbol '₹', was officially adopted. It was designed by D. Udaya Kumar. It was derived from the combination of the Devanagari consonant "र" (ra) and the Latin capital letter "R" without its vertical bar (similar to the R rotunda). The parallel lines at the top (with white space between them) are said to make an allusion to the tricolour Indian flag, and also depict an equality sign that symbolises the nation's desire to reduce economic disparity. The first series of coins with the new rupee symbol started in circulation on 8 July 2011. Before this India used to use Rs for plural and Re to depict one rupee.

On 8 November 2016 the Government of India announced the demonetisation of ₹500 and ₹1000 banknotes with effect from midnight of the same day, making these notes invalid. A newly redesigned series of ₹500 banknote, in addition to a new denomination of ₹2000 banknote is in circulation since 10 November 2016. ₹1000 has been suspended.On 25 August 2017, a new denomination of ₹200 banknote was added to Indian currency to fill the gap of notes due to high demand for this note after demonetisation.In July 2018, the Reserve Bank of India released the ₹100 banknote.

List of Jews in sports

This list of Jewish athletes in sports contains athletes who are Jewish and have attained outstanding achievements in sports. The criteria for inclusion in this list are:

1–3 places winners at major international tournaments;

for team sports, winning in preliminary competitions of finals at major international tournaments, or playing for several seasons for clubs of major national leagues; or

holders of past and current world records.Boldface denotes a current competitor.

The topic of Jewish participation in sports is discussed extensively in academic and popular literature. Scholars believe that sports have been a historical avenue for Jewish people to overcome obstacles toward their participation in secular society (especially before the mid-20th century in Europe and the United States).

List of Sonic the Hedgehog characters

The Sonic the Hedgehog video game franchise began in 1991 with the game Sonic the Hedgehog for the Sega Genesis, which pitted a blue anthropomorphic hedgehog named Sonic against a rotund male human villain named Doctor Eggman (or Doctor Ivo Robotnik). The sequel, Sonic 2, gave Sonic a fox friend named Tails. Shortly afterward, Sonic CD introduced Amy Rose, a female hedgehog with a persistent crush on Sonic, and Sonic 3 introduced Knuckles the Echidna, Sonic's rival and, later, friend. All five of these have remained major characters and appeared in dozens of games.

The series has introduced dozens of additional recurring characters over the years. These have ranged from anthropomorphic animal characters like Shadow the Hedgehog and Cream the Rabbit to robots created by Eggman like Metal Sonic and E-123 Omega, as well as human characters like Eggman's grandfather Gerald Robotnik. The series also features two fictional species: Chao, which have usually functioned as digital pets and minor gameplay and plot elements, and more recently, Wisps, which have been used as power-ups.

The Sonic games keep a separate continuity from the Sonic the Hedgehog comics published by Archie Comics and other Sonic media and, as a result, feature a distinct yet overlapping array of characters.

Marc Gasol

Marc Gasol Sáez (Catalan pronunciation: [ˈmaɾɡ ɡəˈzɔl]; born 29 January 1985) is a Spanish professional basketball player for the Toronto Raptors of the National Basketball Association (NBA). He was drafted 48th overall by the Los Angeles Lakers in the 2007 NBA draft. After having his rights traded to the Grizzlies in 2008, he signed with the team and remained with the franchise until being traded to Toronto in 2019. He is a two-time All-NBA Team member and a three-time NBA All-Star. In 2013, he was named the NBA Defensive Player of the Year.

Gasol has been a regular member of the Spanish national basketball team since 2006. He has won two Olympic silver medals and a FIBA Basketball World Cup title. In the EuroBasket, he was won two titles, a silver medal, and two bronze medals. The 7'1" center is the younger brother of fellow NBA player Pau Gasol.

Music recording certification

Music recording certification is a system of certifying that a music recording has shipped, sold, or streamed a certain number of units. The threshold quantity varies by type (such as album, single, music video) and by nation or territory (see List of music recording certifications).

Almost all countries follow variations of the RIAA certification categories, which are named after precious materials (gold, platinum and diamond).

The threshold required for these awards depends upon the population of the territory where the recording is released. Typically, they are awarded only to international releases and are awarded individually for each country where the album is sold. Different sales levels, some perhaps 10 times lower than others, may exist for different music media (for example: videos versus albums, singles, or downloads).

National Film Awards

The National Film Awards is the most prominent film award ceremonies in India. Established in 1954, it has been administered, along with the International Film Festival of India and the Indian Panorama, by the Indian government's Directorate of Film Festivals since 1973.Every year, a national panel appointed by the government selects the winning entry, and the award ceremony is held in New Delhi, where the President of India presents the awards. This is followed by the inauguration of the National Film Festival, where the award-winning films are screened for the public. Declared for films produced in the previous year across the country, they hold the distinction of awarding merit to the best of Indian cinema overall, as well as presenting awards for the best films in each region and language of the country. Due to the national scale of the National Film Awards, it is considered the Indian equivalent of the American Academy Awards.


Nevada () is a state in the Western United States. It is bordered by Oregon to the northwest, Idaho to the northeast, California to the west, Arizona to the southeast and Utah to the east. Nevada is the 7th most extensive, the 34th most populous, but the 9th least densely populated of the U.S. states. Nearly three-quarters of Nevada's people live in Clark County, which contains the Las Vegas–Paradise metropolitan area where three of the state's four largest incorporated cities are located. Nevada's capital, however, is Carson City.

Nevada is officially known as the "Silver State" because of the importance of silver to its history and economy. It is also known as the "Battle Born State", because it achieved statehood during the Civil War (the words "Battle Born" also appear on the state flag); as the "Sagebrush State", for the native plant of the same name; and as the "Sage-hen State".Nevada is largely desert and semi-arid, much of it within the Great Basin. Areas south of the Great Basin are within the Mojave Desert, while Lake Tahoe and the Sierra Nevada lie on the western edge. About 86% of the state's land is managed by various jurisdictions of the U.S. federal government, both civilian and military.Before European contact, Native Americans of the Paiute, Shoshone, and Washoe tribes inhabited the land that is now Nevada. The first Europeans to explore the region were Spanish. They called the region Nevada (snowy) because of the snow which covered the mountains in winter. The area formed part of the Viceroyalty of New Spain, and became part of Mexico when it gained independence in 1821. The United States annexed the area in 1848 after its victory in the Mexican–American War, and it was incorporated as part of Utah Territory in 1850. The discovery of silver at the Comstock Lode in 1859 led to a population boom that became an impetus to the creation of Nevada Territory out of western Utah Territory in 1861. Nevada became the 36th state on October 31, 1864, as the second of two states added to the Union during the Civil War (the first being West Virginia).Nevada has a reputation for its libertarian laws. In 1940, with a population of just over 110,000 people, Nevada was by far the least-populated state, with less than half the population of the next least-populated state. However, legalized gambling and lenient marriage and divorce laws transformed Nevada into a major tourist destination in the 20th century. Nevada is the only U.S. state where prostitution is legal, though it is illegal in Clark County (Las Vegas), Washoe County (Reno) and Carson City (which, as an independent city, is not within the boundaries of any county). The tourism industry remains Nevada's largest employer, with mining continuing as a substantial sector of the economy: Nevada is the fourth-largest producer of gold in the world.

Pound sterling

The pound sterling (symbol: £; ISO code: GBP), commonly known as the pound and less commonly referred to as sterling, is the official currency of the United Kingdom, Jersey, Guernsey, the Isle of Man, South Georgia and the South Sandwich Islands, the British Antarctic Territory, and Tristan da Cunha. It is subdivided into 100 pence (singular: penny, abbreviated: p). A number of nations that do not use sterling also have currencies called the pound.

Sterling is the third most-traded currency in the foreign exchange market, after the United States dollar, and the euro. Together with those two currencies and the Chinese yuan, it forms the basket of currencies which calculate the value of IMF special drawing rights. Sterling is also the third most-held reserve currency in global reserves (about 4%).The British Crown dependencies of Guernsey, Jersey and the Isle of Man produce their own local issues of sterling (the Guernsey pound, the Jersey pound and the Manx pound) which are considered fully equivalent to UK sterling in their respective regions. The pound sterling is also used in Gibraltar (alongside the Gibraltar pound), the Falkland Islands (alongside the Falkland Islands pound), Saint Helena and Ascension Island in Saint Helena, Ascension and Tristan da Cunha (alongside the Saint Helena pound). The Bank of England is the central bank for the pound sterling, issuing its own coins and banknotes, and regulating issuance of banknotes by private banks in Scotland and Northern Ireland. Banknotes issued by other jurisdictions are not regulated by the Bank of England; local governments use Bank of England notes as backing for local issuance by allowing them to be exchanged 1:1 at face value.

Silver Linings Playbook

Silver Linings Playbook is a 2012 American romantic comedy-drama film written and directed by David O. Russell. It was adapted from Matthew Quick’s 2008 novel The Silver Linings Playbook. The film stars Bradley Cooper and Jennifer Lawrence, with Robert De Niro, Jacki Weaver, Chris Tucker, Anupam Kher, and Julia Stiles in supporting roles.

Cooper plays Patrizio "Pat" Solitano, Jr., a man with bipolar disorder who is released from a psychiatric hospital and moves back in with his parents, played by Robert De Niro and Jacki Weaver. Determined to win back his estranged wife, Pat meets recently widowed Tiffany Maxwell, portrayed by Jennifer Lawrence, who offers to help him get his wife back if he enters a dance competition with her. The two become closer as they train and Pat, his father, and Tiffany examine their relationships with each other as they cope with their problems.

Silver Linings Playbook premiered at the 2012 Toronto International Film Festival on September 8, 2012, and was released in the United States on November 16, 2012. The film opened to major critical success and earned numerous accolades. It received eight Academy Award nominations, including for Best Picture, Best Director, and Best Adapted Screenplay. It became the first film since 1981's Reds to be Oscar-nominated for the four acting categories and the first since 2004's Million Dollar Baby to be nominated for the Big Five Oscars, with Lawrence winning the Academy Award for Best Actress. It also achieved four Golden Globe Award nominations, with Lawrence winning Best Actress; three BAFTA nominations, with Russell winning for Best Adapted Screenplay; four Screen Actors Guild nominations; and five Independent Spirit Award nominations, winning in four categories, including Best Feature. The film was a success at the box office, grossing over $236 million worldwide, more than eleven times its budget.

Silver Star

The Silver Star Medal, unofficially the Silver Star, is the United States Armed Forces's third-highest personal decoration for valor in combat. The Silver Star Medal is awarded primarily to members of the United States Armed Forces for gallantry in action against an enemy of the United States.

Silver Surfer

The Silver Surfer is a fictional superhero appearing in American comic books published by Marvel Comics. The character also appears in a number of movies, television, and video game adaptations. The character was created by Jack Kirby, and first appeared in the comic book Fantastic Four #48, published in 1966.

The Silver Surfer is a humanoid with metallic skin who can travel through space with the aid of his surfboard-like craft. Originally a young astronomer named Norrin Radd on the planet Zenn-La, he saved his homeworld from the planet devourer, Galactus, by serving as his herald. Imbued in return with a tiny portion of Galactus's Power Cosmic, Radd acquired vast power, a new body and a surfboard-like craft on which he could travel faster than light. Now known as the Silver Surfer, Radd roamed the cosmos searching for planets for Galactus to consume. When his travels took him to Earth, he met the Fantastic Four, who helped him rediscover his humanity and nobility of spirit. Betraying Galactus, the Surfer saved Earth but was exiled there as punishment.In 2011, IGN ranked Silver Surfer 41st in its "Top 100 Comic Heroes" list. He was portrayed by Doug Jones and voiced by Laurence Fishburne in the 2007 film Fantastic Four: Rise of the Silver Surfer.

The Beatles

The Beatles were an English rock band formed in Liverpool in 1960. With members John Lennon, Paul McCartney, George Harrison and Ringo Starr, they became regarded as the foremost and most influential music band in history. Rooted in skiffle, beat and 1950s rock and roll, the group were integral to pop music's evolution into an art form and to the development of the counterculture of the 1960s. They often incorporated classical elements, older pop forms and unconventional recording techniques in innovative ways, and later experimented with several musical styles ranging from pop ballads and Indian music to psychedelia and hard rock. As the members continued to draw influences from a variety of cultural sources, their musical and lyrical sophistication grew, and they were seen as an embodiment of the era's sociocultural movements.

Led by primary songwriters Lennon and McCartney, the Beatles built their reputation playing clubs in Liverpool and Hamburg over a three-year period from 1960, with Stuart Sutcliffe initially serving as bass player. The core trio of Lennon, McCartney and Harrison, together since 1958, went through a succession of drummers, including Pete Best, before asking Starr to join them in 1962. Manager Brian Epstein moulded them into a professional act, and producer George Martin guided and developed their recordings, greatly expanding the group's homeland success after their first hit, "Love Me Do", in late 1962. As their popularity grew into the intense fan frenzy dubbed "Beatlemania", they acquired the nickname "the Fab Four", with Epstein, Martin, and other members of the band's entourage sometimes given the informal title of "fifth Beatle".

By early 1964, the Beatles were international stars, leading the "British Invasion" of the United States pop market and breaking numerous sales records. They soon made their motion picture debut with the mock-documentary A Hard Day's Night (1964). From 1965 onwards, they produced increasingly innovative recordings, including the albums Rubber Soul (1965), Revolver (1966), Sgt. Pepper's Lonely Hearts Club Band (1967), The Beatles (also known as the "White Album", 1968) and Abbey Road (1969). In 1968, they founded Apple Corps, a multi-armed multimedia corporation that remains active. After disbanding in 1970, the four members each enjoyed success as solo artists. Lennon was shot and killed in December 1980, and Harrison died of lung cancer in November 2001. McCartney and Starr remain musically active.

The Beatles are the best-selling band in history, with estimated sales of over 800 million records worldwide. They are the best-selling music artists in the United States, with 178 million certified units. The group was inducted into the Rock and Roll Hall of Fame in 1988, and all four main members were inducted individually from 1994 to 2015. They have also had more number-one albums on the British charts and sold more singles in the UK than any other act. In 2008, the group topped Billboard magazine's list of the all-time most successful artists; as of 2017, they hold the record for most number-one hits on the Hot 100 chart with twenty. They have received seven Grammy Awards, an Academy Award for Best Original Song Score and fifteen Ivor Novello Awards. They were also collectively included in Time magazine's compilation of the twentieth century's 100 most influential people.

The Chronicles of Narnia (film series)

The Chronicles of Narnia is a series of films based on The Chronicles of Narnia, a series of novels by C. S. Lewis. From the seven books, there have been three film adaptations so far—The Lion, the Witch and the Wardrobe (2005), Prince Caspian (2008) and The Voyage of the Dawn Treader (2010)—which have grossed over $1.5 billion worldwide among them.

The series revolves around the adventures of children in the world of Narnia, guided by Aslan, a wise and powerful lion that can speak and is the true king of Narnia. The children heavily featured in the films are the Pevensie siblings, and a prominent antagonist is the White Witch (also known as Jadis).

The first two films were directed by Andrew Adamson and the third film was directed by Michael Apted. The fourth film was to be directed by Joe Johnston, but it was announced in 2018 that new adaptations of the series would be made for Netflix.

United States dollar

The United States dollar (sign: $; code: USD; also abbreviated US$ and referred to as the dollar, U.S. dollar, or American dollar) is the official currency of the United States and its territories per the United States Constitution since 1792. In practice, the dollar is divided into 100 smaller cent (¢) units, but is occasionally divided into 1000 mills (₥) for accounting. The circulating paper money consists of Federal Reserve Notes that are denominated in United States dollars (12 U.S.C. § 418).

Since the suspension in 1971 of convertibility of paper U.S. currency into any precious metal, the U.S. dollar is, de facto, fiat money. As it is the most used in international transactions, the U.S. dollar is the world's primary reserve currency. Several countries use it as their official currency, and in many others it is the de facto currency. Besides the United States, it is also used as the sole currency in two British Overseas Territories in the Caribbean: the British Virgin Islands and Turks and Caicos Islands. A few countries use the Federal Reserve Notes for paper money, while still minting their own coins, or also accept U.S. dollar coins (such as the Sacagawea or presidential dollar). As of June 27, 2018, there are approximately $1.67 trillion in circulation, of which $1.62 trillion is in Federal Reserve notes (the remaining $50 billion is in the form of coins).

Wedding anniversary

A wedding anniversary is the anniversary of the date a wedding took place. Traditional names exist for some of them: for instance, fifty years of marriage is called a "golden wedding anniversary" or simply a "golden anniversary" or "golden wedding".

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.