Shale is a fine-grained, clastic sedimentary rock composed of mud that is a mix of flakes of clay minerals and tiny fragments (silt-sized particles) of other minerals, especially quartz and calcite.[1] Shale is characterized by breaks along thin laminae or parallel layering or bedding less than one centimeter in thickness, called fissility.[1] It is the most common sedimentary rock.[2]

Sedimentary rock
Clay minerals and quartz


Shale typically exhibits varying degrees of fissility, breaking into thin layers, often splintery and usually parallel to the otherwise indistinguishable bedding plane because of the parallel orientation of clay mineral flakes.[1] Non-fissile rocks of similar composition but made of particles smaller than 0.06 mm are described as mudstones (1/3 to 2/3 silt particles) or claystones (less than 1/3 silt). Rocks with similar particle sizes but with less clay (greater than 2/3 silt) and therefore grittier are siltstones.[1][2]

Drill cuttings - Annotated - 2004
Sample of drill cuttings of shale while drilling an oil well in Louisiana, United States. Sand grain = 2 mm in diameter

Composition and color

Shales are typically composed of clay minerals and quartz grain, and are typically grey. Addition of variable amounts of minor constituents alters the color of the rock. Black shale results from the presence of greater than one percent carbonaceous material and indicates a reducing environment.[1] Black shale can also be referred to as black metal.[3] Red, brown and green colors are indicative of ferric oxide (hematite – reds), iron hydroxide (goethite – browns and limonite – yellow), or micaceous minerals (chlorite, biotite and illite – greens).[1]

Clays are the major constituent of shales and other mudrocks. The clay minerals represented are largely kaolinite, montmorillonite and illite. Clay minerals of Late Tertiary mudstones are expandable smectites whereas in older rocks especially in mid- to early Paleozoic shales illites predominate. The transformation of smectite to illite produces silica, sodium, calcium, magnesium, iron and water. These released elements form authigenic quartz, chert, calcite, dolomite, ankerite, hematite and albite, all trace to minor (except quartz) minerals found in shales and other mudrocks.[1]

Shales and mudrocks contain roughly 95 percent of the organic matter in all sedimentary rocks. However, this amounts to less than one percent by mass in an average shale. Black shales, which form in anoxic conditions, contain reduced free carbon along with ferrous iron (Fe2+) and sulfur (S2−). Pyrite and amorphous iron sulfide along with carbon produce the black coloration.[1]


Limey shale overlaid by limestone, Cumberland Plateau, Tennessee

The process in the rock cycle which forms shale is called compaction. The fine particles that compose shale can remain suspended in water long after the larger particles of sand have deposited. Shales are typically deposited in very slow moving water and are often found in lakes and lagoonal deposits, in river deltas, on floodplains and offshore from beach sands. They can also be deposited in sedimentary basins and on the continental shelf, in relatively deep, quiet water.

'Black shales' are dark, as a result of being especially rich in unoxidized carbon. Common in some Paleozoic and Mesozoic strata, black shales were deposited in anoxic, reducing environments, such as in stagnant water columns. Some black shales contain abundant heavy metals such as molybdenum, uranium, vanadium, and zinc.[4][5][6] The enriched values are of controversial origin, having been alternatively attributed to input from hydrothermal fluids during or after sedimentation or to slow accumulation from sea water over long periods of sedimentation.[5][7][8]

Splitting shale with a large knife to reveal fossils
Shale 8040
Weathering shale at a road cut in southeastern Kentucky

Fossils, animal tracks/burrows and even raindrop impact craters are sometimes preserved on shale bedding surfaces. Shales may also contain concretions consisting of pyrite, apatite, or various carbonate minerals.

Shales that are subject to heat and pressure of metamorphism alter into a hard, fissile, metamorphic rock known as slate. With continued increase in metamorphic grade the sequence is phyllite, then schist and finally gneiss.

Historical mining terminology

Before the mid-19th century, the terms slate, shale and schist were not sharply distinguished.[9] In the context of underground coal mining, shale was frequently referred to as slate well into the 20th century.[10]

See also


  1. ^ a b c d e f g h Blatt, Harvey and Robert J. Tracy (1996) Petrology: Igneous, Sedimentary and Metamorphic, 2nd ed., Freeman, pp. 281–292 ISBN 0-7167-2438-3
  2. ^ a b "Rocks: Materials of the Lithosphere – Summary". Retrieved 2007-07-31.
  3. ^ Herbert, Bucksch (1996). Dictionary geotechnical engineering: English German. Springer. p. 61. ISBN 978-3540581642.
  4. ^ R. Zangerl and E. S. Richardson (1963) The paleoecologic history of two Pennsylvanian shales, Fieldiana Memoirs v. 4, Field Museum of Natural History, Chicago
  5. ^ a b J.D. Vine and E.B. Tourtelot (1970). "Geochemistry of black shale deposits – A summary report". Economic Geology. 65 (3): 253–273. doi:10.2113/gsecongeo.65.3.253.
  6. ^ R.M. Coveney (1979). "Zinc concentrations in mid-continent Pennsylvanian black shales of Missouri and Kansas". Economic Geology. 74: 131–140. doi:10.2113/gsecongeo.74.1.131.
  7. ^ R.M. Coveney (2003) "Metalliferous Paleozoic black shales and associated strata" in D.R. Lenz (ed.) Geochemistry of Sediments and Sedimentary Rocks, Geotext 4, Geological Association of Canada pp. 135–144
  8. ^ H.D. Holland (1979). "Metals in black shales – A reassessment". Economic Geology. 70 (7): 1676–1680. doi:10.2113/gsecongeo.74.7.1676.
  9. ^ R. W. Raymond (1881) "Slate" in A Glossary of Mining and Metallurigical Terms, American Institute of Mining Engineers. p. 78.
  10. ^ Albert H. Fay (1920) "Slate" in A Glossary of the Mining and Mineral Industry, United States Bureau of Mines. p. 622.

External links

Media related to Shale at Wikimedia Commons

Antrim Shale

The Antrim Shale is a formation of Upper Devonian age in the Michigan Basin, in the US state of Michigan, and extending into Ohio and Indiana. It is a major source of natural gas in the northern part of the basin.

The Antrim Shale was defined by A. C. Lane in 1901, and named for type-section exposures in Antrim County, Michigan. The formation was previously known as the St. Cleric Shale in Michigan, and the Genessee Shale in Indiana.

Burgess Shale

The Burgess Shale is a fossil-bearing deposit exposed in the Canadian Rockies of British Columbia, Canada. It is famous for the exceptional preservation of the soft parts of its fossils. At 508 million years (middle Cambrian) old, it is one of the earliest fossil beds containing soft-part imprints.

The rock unit is a black shale and crops out at a number of localities near the town of Field in Yoho National Park and the Kicking Horse Pass. Another outcrop is in Kootenay National Park 42 km to the south.

Environmental impact of the oil shale industry

Environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, and water and air pollution caused by the extraction and processing of oil shale. Surface mining of oil shale deposits causes the usual environmental impacts of open-pit mining. In addition, the combustion and thermal processing generate waste material, which must be disposed of, and harmful atmospheric emissions, including carbon dioxide, a major greenhouse gas. Experimental in-situ conversion processes and carbon capture and storage technologies may reduce some of these concerns in future, but may raise others, such as the pollution of groundwater.

Hydraulic fracturing

Hydraulic fracturing (also fracking, fraccing, frac'ing, hydrofracturing or hydrofracking) is a well stimulation technique in which rock is fractured by a pressurized liquid. The process involves the high-pressure injection of 'fracking fluid' (primarily water, containing sand or other proppants suspended with the aid of thickening agents) into a wellbore to create cracks in the deep-rock formations through which natural gas, petroleum, and brine will flow more freely. When the hydraulic pressure is removed from the well, small grains of hydraulic fracturing proppants (either sand or aluminium oxide) hold the fractures open.Hydraulic fracturing began as an experiment in 1947, and the first commercially successful application followed in 1950. As of 2012, 2.5 million "frac jobs" had been performed worldwide on oil and gas wells; over one million of those within the U.S. Such treatment is generally necessary to achieve adequate flow rates in shale gas, tight gas, tight oil, and coal seam gas wells. Some hydraulic fractures can form naturally in certain veins or dikes.Hydraulic fracturing is highly controversial in many countries. Its proponents advocate the economic benefits of more extensively accessible hydrocarbons,

as well as replacing coal with gas, which is cleaner and emits less carbon dioxide (CO2). Opponents argue that these are outweighed by the potential environmental impacts, which include risks of ground and surface water contamination, air and noise pollution, and the triggering of earthquakes, along with the consequential hazards to public health and the environment.Methane leakage is also a problem directly associated with hydraulic fracturing, as a Environmental Defense Fund (EDF) report in the US highlights, where the leakage rate in Pennsylvania during extensive testing and analysis was found to be approximately 10%, or over five times the reported figures. This leakage rate is considered representative of the hydraulic fracturing industry in the US generally. The EDF have recently announced a satellite mission to further locate and measure methane emissions.Increases in seismic activity following hydraulic fracturing along dormant or previously unknown faults are sometimes caused by the deep-injection disposal of hydraulic fracturing flowback (a byproduct of hydraulically fractured wells), and produced formation brine (a byproduct of both fractured and nonfractured oil and gas wells). For these reasons, hydraulic fracturing is under international scrutiny, restricted in some countries, and banned altogether in others. The European Union is drafting regulations that would permit the controlled application of hydraulic fracturing.

List of countries by natural gas proven reserves

This is a list of countries by natural gas proven reserves based on The World Factbook (when no citation is given). or other authoritative third-party sources (as cited). Based on data from BP, at the end of 2009, proved gas reserves were dominated by three countries: Iran, Russia, and Qatar, which together held nearly half the world's proven reserves.There is some disagreement on which country has the largest proven gas reserves. Sources that consider that Russia has by far the largest proven reserves include the US CIA (47.6 trillion cubic meters), the US Energy Information Administration (49 tcm), and OPEC (48.81 tcm). However, BP credits Russia with only 32.9 tcm, which would place it in second place, slightly behind Iran (33.1 to 33.8 tcm, depending on the source).

Due to constant announcements of shale gas recoverable reserves, as well as drilling in Central Asia, South America and Africa, deepwater drilling, estimates are undergoing frequent updates, mostly increasing. Since 2000, some countries, notably the US and Canada, have seen large increases in proved gas reserves due to development of shale gas, but shale gas deposits in most countries are yet to be added to reserve calculations.

Star denotes includes "recoverable portion of shale reserves"Comparison of proven natural gas reserves from different sources (billions of cubic meters, as of 31 Dec. 2014/1 Jan. 2015)

Marcellus Formation

The Marcellus Formation (also classified as the Marcellus Subgroup of the Hamilton Group, Marcellus Member of the Romney Formation, or simply the Marcellus Shale) is a Middle Devonian age unit of sedimentary rock found in eastern North America. Named for a distinctive outcrop near the village of Marcellus, New York, in the United States,

it extends throughout much of the Appalachian Basin.The unit name usage by the U.S. Geological Survey (USGS) includes Marcellus Shale and Marcellus Formation. The term "Marcellus Shale" is the preferred name throughout most of the Appalachian region, although the term "Marcellus Formation" is also acceptable within the State of Pennsylvania. The unit was first described and named as the "Marcellus shales" by J. Hall in 1839.

Metamorphic rock

Metamorphic rocks arise from the transformation of existing rock types, in a process called metamorphism, which means "change in form". The original rock (protolith) is subjected to heat (temperatures greater than 150 to 200 °C) and pressure (100 megapascals (1,000 bar) or more), causing profound physical or chemical change. The protolith may be a sedimentary, igneous, or existing metamorphic rock.

Metamorphic rocks make up a large part of the Earth's crust and form 12% of the Earth's land surface. They are classified by texture and by chemical and mineral assemblage (metamorphic facies). They may be formed simply by being deep beneath the Earth's surface, subjected to high temperatures and the great pressure of the rock layers above it. They can form from tectonic processes such as continental collisions, which cause horizontal pressure, friction and distortion. They are also formed when rock is heated by the intrusion of hot molten rock called magma from the Earth's interior. The study of metamorphic rocks (now exposed at the Earth's surface following erosion and uplift) provides information about the temperatures and pressures that occur at great depths within the Earth's crust.

Some examples of metamorphic rocks are gneiss, slate, marble, schist, and quartzite.


Mudstone, a type of mudrock, is a fine-grained sedimentary rock whose original constituents were clays or muds. Grain size is up to 0.063 millimetres (0.0025 in) with individual grains too small to be distinguished without a microscope. With increased pressure over time, the platy clay minerals may become aligned, with the appearance of fissility or parallel layering. This finely bedded material that splits readily into thin layers is called shale, as distinct from mudstone. The lack of fissility or layering in mudstone may be due to either original texture or the disruption of layering by burrowing organisms in the sediment prior to lithification. Mud rocks such as mudstone and shale account for some 65% of all sedimentary rocks. Mudstone looks like hardened clay and, depending upon the circumstances under which it was formed, it may show cracks or fissures, like a sun-baked clay deposit.Mudstone can be separated into these categories:

Siltstone — more than half of the composition is silt-sized particles.

Claystone — more than half of the composition is clay-sized particles.

Mudstone — hardened mud; a mix of silt and clay sized particles. Mudstone can include:

Shale — exhibits lamination or fissility.

Argillite — has undergone low-grade metamorphism.

Natural gas

Natural gas, also called "Fossil Gas" is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly including varying amounts of other higher alkanes, and sometimes a small percentage of carbon dioxide, nitrogen, hydrogen sulfide, or helium. It is formed when layers of decomposing plant and animal matter are exposed to intense heat and pressure under the surface of the Earth over millions of years. The energy that the plants originally obtained from the sun is stored in the form of chemical bonds in the gas.Natural (fossil) gas is a non-renewable hydrocarbon used as a source of energy for heating, cooking, and electricity generation. It is also used as a fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals. Natural gas is called a non-renewable resource.Natural (fossil) gas is found in deep underground rock formations or associated with other hydrocarbon reservoirs in coal beds and as methane clathrates. Petroleum is another resource and fossil fuel found in close proximity to and with natural gas. Most natural gas was created over time by two mechanisms: biogenic and thermogenic. Biogenic gas is created by methanogenic organisms in marshes, bogs, landfills, and shallow sediments. Deeper in the earth, at greater temperature and pressure, thermogenic gas is created from buried organic material.In petroleum production gas is often burnt as flare gas. The World Bank estimates that over 150 cubic kilometers of natural gas are flared or vented annually. Before natural gas can be used as a fuel, most, but not all, must be processed to remove impurities, including water, to meet the specifications of marketable natural gas. The by-products of this processing include: ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons, hydrogen sulfide (which may be converted into pure sulfur), carbon dioxide, water vapor, and sometimes helium and nitrogen.

Natural gas is often informally referred to simply as "gas", especially when compared to other energy sources such as oil or coal. However, it is not to be confused with gasoline, especially in North America, where the term gasoline is often shortened in colloquial usage to gas.

Oil shale

Oil shale is an organic-rich fine-grained sedimentary rock containing kerogen (a solid mixture of organic chemical compounds) from which liquid hydrocarbons can be produced, called shale oil (not to be confused with tight oil—crude oil occurring naturally in shales). Shale oil is a substitute for conventional crude oil; however, extracting shale oil from oil shale is more costly than the production of conventional crude oil both financially and in terms of its environmental impact. Deposits of oil shale occur around the world, including major deposits in the United States. A 2016 estimate of global deposits set the total world resources of oil shale equivalent of 6.05 trillion barrels (962 billion cubic metres) of oil in place.Heating oil shale to a sufficiently high temperature causes the chemical process of pyrolysis to yield a vapor. Upon cooling the vapor, the liquid shale oil—an unconventional oil—is separated from combustible oil-shale gas (the term shale gas can also refer to gas occurring naturally in shales). Oil shale can also be burned directly in furnaces as a low-grade fuel for power generation and district heating or used as a raw material in chemical and construction-materials processing.Oil shale gains attention as a potential abundant source of oil whenever the price of crude oil rises. At the same time, oil-shale mining and processing raise a number of environmental concerns, such as land use, waste disposal, water use, waste-water management, greenhouse-gas emissions and air pollution. Estonia and China have well-established oil shale industries, and Brazil, Germany, and Russia also utilize oil shale.General composition of oil shales constitutes inorganic matrix, bitumens, and kerogen. Oil shales differ from oil-bearing shales, shale deposits that contain petroleum (tight oil) that is sometimes produced from drilled wells. Examples of oil-bearing shales are the Bakken Formation, Pierre Shale, Niobrara Formation, and Eagle Ford Formation.

Oil shale gas

Oil shale gas (also: retort gas or retorting gas) is a synthetic non-condensable gas mixture (syngas) produced by oil shale thermal processing (pyrolysis). Although often referred to as shale gas, it differs from the natural gas produced from shale, which is also known as shale gas.

Oil shale in Estonia

Oil shale (Estonian: põlevkivi) is a strategic energy resource that constitutes about 4% of Estonia's gross domestic product. The oil shale industry in Estonia is one of the most developed in the world. In 2012, the country's oil shale industry employed 6,500 people – about 1% of the national workforce. Of all the oil shale fired power stations in the world, the two largest are in this country. In 2012, 70% of mined oil shale was used for electricity generation, accounting for about 85% of Estonia's total electricity production. A smaller proportion of the mined oil shale is used to produce shale oil, a type of synthetic oil extracted from shale by pyrolysis, which is sufficient to keep Estonia as the second largest shale oil producer in the world after China. In addition, oil shale and its products are used in Estonia for district heating and as a feedstock material for the cement industry.

There are two kinds of oil shale in Estonia, both of which are sedimentary rocks laid down during the Ordovician geologic period. Graptolitic argillite is the larger resource, but, because its organic matter content is relatively low, it is not used industrially. The other one is kukersite, which has been mined for almost a hundred years and is expected to last for another 25–30 years. By the end of 2012, the total kukersite resource was 4.8 billion tonnes, of which up to 650 million tonnes was recoverable. Kukersite deposits in Estonia account for 1.1% of global oil shale deposits.In the 18th and 19th centuries, Estonian oil shale was described by several scientists and used as a low-grade fuel. Its use in industry commenced in 1916. Production of shale oil began in 1921 and oil shale was first used to generate electrical power in 1924. Shortly thereafter, systematic research into oil shale and its products began, and in 1938 a department of mining was established at Tallinn Technical University. After World War II, Estonian oil shale gas was used in Saint Petersburg (then called Leningrad) and in northern cities in Estonia as a substitute for natural gas. Increased need for electricity in the north-west of the Soviet Union led to the construction of large oil shale-fired power stations. Oil shale extraction peaked in 1980. Subsequently, the launch of nuclear reactors in Russia, particularly the Leningrad Nuclear Power Station, reduced demand for electricity produced from oil shale, and, along with a post-Soviet restructuring of the industry in the 1990s, led to a decrease in oil shale mining. After decreasing for two decades, oil shale mining started to increase again at the beginning of the 21st century.

The industry continues to have a serious impact on the environment. In 2012, it produced about 70% of Estonia's ordinary waste, 82% of its hazardous waste, and more than 70% of its greenhouse gas emissions. Its activities lower groundwater levels, alter water circulation, and spoil water quality. Water pumped from the mines and used by oil shale-fired power stations exceeds 90% of all water used in Estonia. Leachates from waste heaps pollute surface and groundwater. Former and current oil shale mines cover about one percent of Estonia's territory.

Shale, California

Shale is a former settlement in Kern County, California. It was located on the railroad 1 mile (1.6 km) northwest of Vernette.A post office operated at Shale from 1912 to 1923.

Shale gas

Shale gas is natural gas that is found trapped within shale formations. Shale gas has become an increasingly important source of natural gas in the United States since the start of this century, and interest has spread to potential gas shales in the rest of the world. In 2000 shale gas provided only 1% of U.S. natural gas production; by 2010 it was over 20% and the U.S. government's Energy Information Administration predicts that by 2035, 46% of the United States' natural gas supply will come from shale gas.Some analysts expect that shale gas will greatly expand worldwide energy supply. China is estimated to have the world's largest shale gas reserves.The Obama administration believed that increased shale gas development would help reduce greenhouse gas emissions. In 2012, US carbon dioxide emissions dropped to a 20-year low.A 2013 review by the United Kingdom Department of Energy and Climate Change noted that most studies of the subject have estimated that life-cycle greenhouse gas (GHG) emissions from shale gas are similar to those of conventional natural gas, and are much less than those from coal, usually about half the greenhouse gas emissions of coal; the noted exception was a 2011 study by Howarth and others of Cornell University, which concluded that shale GHG emissions were as high as those of coal. More recent studies have also concluded that life-cycle shale gas GHG emissions are much less than those of coal, among them, studies by Natural Resources Canada (2012), and a consortium formed by the US National Renewable Energy Laboratory with a number of universities (2012).Some 2011 studies pointed to high rates of decline of some shale gas wells as an indication that shale gas production may ultimately be much lower than is currently projected. But shale-gas discoveries are also opening up substantial new resources of tight oil / "shale oil".

Shale oil

Shale oil is an unconventional oil produced from oil shale rock fragments by pyrolysis, hydrogenation, or thermal dissolution. These processes convert the organic matter within the rock (kerogen) into synthetic oil and gas. The resulting oil can be used immediately as a fuel or upgraded to meet refinery feedstock specifications by adding hydrogen and removing impurities such as sulfur and nitrogen. The refined products can be used for the same purposes as those derived from crude oil.

The term "shale oil" is also used for crude oil produced from shales of other very low permeability formations. However, to reduce the risk of confusion of shale oil produced from oil shale with crude oil in oil-bearing shales, the term "tight oil" is preferred for the latter. The International Energy Agency recommends to use the term "light tight oil" and World Energy Resources 2013 report by the World Energy Council uses the term "tight oil" for crude oil in oil-bearing shales.

Shale oil extraction

Shale oil extraction is an industrial process for unconventional oil production. This process converts kerogen in oil shale into shale oil by pyrolysis, hydrogenation, or thermal dissolution. The resultant shale oil is used as fuel oil or upgraded to meet refinery feedstock specifications by adding hydrogen and removing sulfur and nitrogen impurities.

Shale oil extraction is usually performed above ground (ex situ processing) by mining the oil shale and then treating it in processing facilities. Other modern technologies perform the processing underground (on-site or in situ processing) by applying heat and extracting the oil via oil wells.

The earliest description of the process dates to the 10th century. In 1684, Great Britain granted the first formal extraction process patent. Extraction industries and innovations became widespread during the 19th century. The industry shrank in the mid-20th century following the discovery of large reserves of conventional oil, but high petroleum prices at the beginning of the 21st century have led to renewed interest, accompanied by the development and testing of newer technologies.

As of 2010, major long-standing extraction industries are operating in Estonia, Brazil, and China. Its economic viability usually requires a lack of locally available crude oil. National energy security issues have also played a role in its development. Critics of shale oil extraction pose questions about environmental management issues, such as waste disposal, extensive water use, waste water management, and air pollution.


Slate is a fine-grained, foliated, homogeneous metamorphic rock derived from an original shale-type sedimentary rock composed of clay or volcanic ash through low-grade regional metamorphism. It is the finest grained foliated metamorphic rock. Foliation may not correspond to the original sedimentary layering, but instead is in planes perpendicular to the direction of metamorphic compression.The foliation in slate is called "slaty cleavage". It is caused by strong compression causing fine grained clay flakes to regrow in planes perpendicular to the compression. When expertly "cut" by striking parallel to the foliation, with a specialized tool in the quarry, many slates will display a property called fissility, forming smooth flat sheets of stone which have long been used for roofing, floor tiles, and other purposes. Slate is frequently grey in color, especially when seen, en masse, covering roofs. However, slate occurs in a variety of colors even from a single locality; for example, slate from North Wales can be found in many shades of grey, from pale to dark, and may also be purple, green or cyan. Slate is not to be confused with shale, from which it may be formed, or schist.

The word "slate" is also used for certain types of object made from slate rock. It may mean a single roofing tile made of slate, or a writing slate. They were traditionally a small, smooth piece of the rock, often framed in wood, used with chalk as a notepad or noticeboard, and especially for recording charges in pubs and inns. The phrases "clean slate" and "blank slate" come from this usage.

Tight oil

For another use of the term "shale oil", meaning synthetic crude oil derived from oil shale, see shale oil.Tight oil (also known as shale oil, shale-hosted oil or light tight oil, abbreviated LTO) is light crude oil contained in petroleum-bearing formations of low permeability, often shale or tight sandstone. Economic production from tight oil formations requires the same hydraulic fracturing and often uses the same horizontal well technology used in the production of shale gas. While sometimes called "shale oil", tight oil should not be confused with oil shale, which is shale rich in kerogen, or shale oil, which is oil produced from oil shales. Therefore, the International Energy Agency recommends using the term "light tight oil" for oil produced from shales or other very low permeability formations, while the World Energy Resources 2013 report by the World Energy Council uses the terms "tight oil" and "shale-hosted oil".

In May 2013 the International Energy Agency in its Medium-Term Oil Market Report (MTOMR) said that the North American oil production surge led by unconventional oils - US light tight oil (LTO) and Canadian oil sands - had produced a global supply shock that would reshape the way oil is transported, stored, refined and marketed.

Unconventional oil

Unconventional oil is petroleum produced or extracted using techniques other than the conventional (oil well) method. Oil industries and governments across the globe are investing in unconventional oil sources due to the increasing scarcity of conventional oil reserves. Unconventional oil and gas have already made a dent in international energy linkages by reducing US energy import dependency

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.