Semiconductor

A semiconductor material has an electrical conductivity value falling between that of a metal, like copper, gold, etc. and an insulator, such as glass. Their resistance decreases as their temperature increases, which is behaviour opposite to that of a metal. Their conducting properties may be altered in useful ways by the deliberate, controlled introduction of impurities ("doping") into the crystal structure. Where two differently-doped regions exist in the same crystal, a semiconductor junction is created. The behavior of charge carriers which include electrons, ions and electron holes at these junctions is the basis of diodes, transistors and all modern electronics. Some examples of semiconductors are silicon, germanium, and gallium arsenide. After silicon, gallium arsenide is the second most common semiconductor used in laser diodes, solar cells, microwave frequency integrated circuits, and others. Silicon is a critical element for fabricating most electronic circuits.

Semiconductor devices can display a range of useful properties such as passing current more easily in one direction than the other, showing variable resistance, and sensitivity to light or heat. Because the electrical properties of a semiconductor material can be modified by doping, or by the application of electrical fields or light, devices made from semiconductors can be used for amplification, switching, and energy conversion.

The conductivity of silicon is increased by adding a small amount of pentavalent (antimony, phosphorus, or arsenic) or trivalent (boron, gallium, indium) atoms (part in 108). This process is known as doping and resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of a semiconductor can equally be improved by increasing its temperature. This is contrary to the behaviour of a metal in which conductivity decreases with increase in temperature.

The modern understanding of the properties of a semiconductor relies on quantum physics to explain the movement of charge carriers in a crystal lattice.[1] Doping greatly increases the number of charge carriers within the crystal. When a doped semiconductor contains mostly free holes it is called "p-type", and when it contains mostly free electrons it is known as "n-type". The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior.

Although some pure elements and many compounds display semiconductor properties, silicon, germanium, and compounds of gallium are the most widely used in electronic devices. Elements near the so-called "metalloid staircase", where the metalloids are located on the periodic table, are usually used as semiconductors.

Some of the properties of semiconductor materials were observed throughout the mid 19th and first decades of the 20th century. The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics in turn allowed the development of the transistor in 1947[2] and the integrated circuit in 1958.

Properties

Variable electrical conductivity
Semiconductors in their natural state are poor conductors because a current requires the flow of electrons, and semiconductors have their valence bands filled, preventing the entry flow of new electrons. There are several developed techniques that allow semiconducting materials to behave like conducting materials, such as doping or gating. These modifications have two outcomes: n-type and p-type. These refer to the excess or shortage of electrons, respectively. An unbalanced number of electrons would cause a current to flow through the material.[3]
Heterojunctions
Heterojunctions occur when two differently doped semiconducting materials are joined together. For example, a configuration could consist of p-doped and n-doped germanium. This results in an exchange of electrons and holes between the differently doped semiconducting materials. The n-doped germanium would have an excess of electrons, and the p-doped germanium would have an excess of holes. The transfer occurs until equilibrium is reached by a process called recombination, which causes the migrating electrons from the n-type to come in contact with the migrating holes from the p-type. A product of this process is charged ions, which result in an electric field.[1][3]
Excited electrons
A difference in electric potential on a semiconducting material would cause it to leave thermal equilibrium and create a non-equilibrium situation. This introduces electrons and holes to the system, which interact via a process called ambipolar diffusion. Whenever thermal equilibrium is disturbed in a semiconducting material, the number of holes and electrons changes. Such disruptions can occur as a result of a temperature difference or photons, which can enter the system and create electrons and holes. The process that creates and annihilates electrons and holes are called generation and recombination.[3]
Light emission
In certain semiconductors, excited electrons can relax by emitting light instead of producing heat.[4] These semiconductors are used in the construction of light-emitting diodes and fluorescent quantum dots.
High thermal conductivity

Semiconductors with high thermal conductivity can be used for heat dissipation and improving thermal management of electronics.[5]

Thermal energy conversion
Semiconductors have large thermoelectric power factors making them useful in thermoelectric generators, as well as high thermoelectric figures of merit making them useful in thermoelectric coolers.[6]

Materials

Silicon
Silicon crystals are the most common semiconducting materials used in microelectronics and photovoltaics.

A large number of elements and compounds have semiconducting properties, including:[7]

  • Certain pure elements are found in Group 14 of the periodic table; the most commercially important of these elements are silicon and germanium. Silicon and germanium are used here effectively because they have 4 valence electrons in their outermost shell which gives them the ability to gain or lose electrons equally at the same time.
  • Binary compounds, particularly between elements in Groups 13 and 15, such as gallium arsenide, Groups 12 and 16, groups 14 and 16, and between different group 14 elements, e.g. silicon carbide.
  • Certain ternary compounds, oxides and alloys.
  • Organic semiconductors, made of organic compounds.

Most common semiconducting materials are crystalline solids, but amorphous and liquid semiconductors are also known. These include hydrogenated amorphous silicon and mixtures of arsenic, selenium and tellurium in a variety of proportions. These compounds share with better known semiconductors the properties of intermediate conductivity and a rapid variation of conductivity with temperature, as well as occasional negative resistance. Such disordered materials lack the rigid crystalline structure of conventional semiconductors such as silicon. They are generally used in thin film structures, which do not require material of higher electronic quality, being relatively insensitive to impurities and radiation damage.

Preparation of semiconductor materials

Almost all of today's electronic technology involves the use of semiconductors, with the most important aspect being the integrated circuit (IC), which are found in laptops, scanners, cell-phones, etc. Semiconductors for ICs are mass-produced. To create an ideal semiconducting material, chemical purity is paramount. Any small imperfection can have a drastic effect on how the semiconducting material behaves due to the scale at which the materials are used.[3]

A high degree of crystalline perfection is also required, since faults in crystal structure (such as dislocations, twins, and stacking faults) interfere with the semiconducting properties of the material. Crystalline faults are a major cause of defective semiconductor devices. The larger the crystal, the more difficult it is to achieve the necessary perfection. Current mass production processes use crystal ingots between 100 and 300 mm (3.9 and 11.8 in) in diameter which are grown as cylinders and sliced into wafers.

There is a combination of processes that is used to prepare semiconducting materials for ICs. One process is called thermal oxidation, which forms silicon dioxide on the surface of the silicon. This is used as a gate insulator and field oxide. Other processes are called photomasks and photolithography. This process is what creates the patterns on the circuity in the integrated circuit. Ultraviolet light is used along with a photoresist layer to create a chemical change that generates the patterns for the circuit.[3]

Etching is the next process that is required. The part of the silicon that was not covered by the photoresist layer from the previous step can now be etched. The main process typically used today is called plasma etching. Plasma etching usually involves an etch gas pumped in a low-pressure chamber to create plasma. A common etch gas is chlorofluorocarbon, or more commonly known Freon. A high radio-frequency voltage between the cathode and anode is what creates the plasma in the chamber. The silicon wafer is located on the cathode, which causes it to be hit by the positively charged ions that are released from the plasma. The end result is silicon that is etched anisotropically.[1][3]

The last process is called diffusion. This is the process that gives the semiconducting material its desired semiconducting properties. It is also known as doping. The process introduces an impure atom to the system, which creates the p-n junction. In order to get the impure atoms embedded in the silicon wafer, the wafer is first put in a 1,100 degree Celsius chamber. The atoms are injected in and eventually diffuse with the silicon. After the process is completed and the silicon has reached room temperature, the doping process is done and the semiconducting material is ready to be used in an integrated circuit.[1][3]

Physics of semiconductors

Energy bands and electrical conduction

Band filling diagram
Filling of the electronic states in various types of materials at equilibrium. Here, height is energy while width is the density of available states for a certain energy in the material listed. The shade follows the Fermi–Dirac distribution (black = all states filled, white = no state filled). In metals and semimetals the Fermi level EF lies inside at least one band. In insulators and semiconductors the Fermi level is inside a band gap; however, in semiconductors the bands are near enough to the Fermi level to be thermally populated with electrons or holes.

Semiconductors are defined by their unique electric conductive behavior, somewhere between that of a conductor and an insulator.[8] The differences between these materials can be understood in terms of the quantum states for electrons, each of which may contain zero or one electron (by the Pauli exclusion principle). These states are associated with the electronic band structure of the material. Electrical conductivity arises due to the presence of electrons in states that are delocalized (extending through the material), however in order to transport electrons a state must be partially filled, containing an electron only part of the time.[9] If the state is always occupied with an electron, then it is inert, blocking the passage of other electrons via that state. The energies of these quantum states are critical, since a state is partially filled only if its energy is near the Fermi level (see Fermi–Dirac statistics).

High conductivity in a material comes from it having many partially filled states and much state delocalization. Metals are good electrical conductors and have many partially filled states with energies near their Fermi level. Insulators, by contrast, have few partially filled states, their Fermi levels sit within band gaps with few energy states to occupy. Importantly, an insulator can be made to conduct by increasing its temperature: heating provides energy to promote some electrons across the band gap, inducing partially filled states in both the band of states beneath the band gap (valence band) and the band of states above the band gap (conduction band). An (intrinsic) semiconductor has a band gap that is smaller than that of an insulator and at room temperature significant numbers of electrons can be excited to cross the band gap.[10]

A pure semiconductor, however, is not very useful, as it is neither a very good insulator nor a very good conductor. However, one important feature of semiconductors (and some insulators, known as semi-insulators) is that their conductivity can be increased and controlled by doping with impurities and gating with electric fields. Doping and gating move either the conduction or valence band much closer to the Fermi level, and greatly increase the number of partially filled states.

Some wider-band gap semiconductor materials are sometimes referred to as semi-insulators. When undoped, these have electrical conductivity nearer to that of electrical insulators, however they can be doped (making them as useful as semiconductors). Semi-insulators find niche applications in micro-electronics, such as substrates for HEMT. An example of a common semi-insulator is gallium arsenide.[11] Some materials, such as titanium dioxide, can even be used as insulating materials for some applications, while being treated as wide-gap semiconductors for other applications.

Charge carriers (electrons and holes)

The partial filling of the states at the bottom of the conduction band can be understood as adding electrons to that band. The electrons do not stay indefinitely (due to the natural thermal recombination) but they can move around for some time. The actual concentration of electrons is typically very dilute, and so (unlike in metals) it is possible to think of the electrons in the conduction band of a semiconductor as a sort of classical ideal gas, where the electrons fly around freely without being subject to the Pauli exclusion principle. In most semiconductors the conduction bands have a parabolic dispersion relation, and so these electrons respond to forces (electric field, magnetic field, etc.) much like they would in a vacuum, though with a different effective mass.[10] Because the electrons behave like an ideal gas, one may also think about conduction in very simplistic terms such as the Drude model, and introduce concepts such as electron mobility.

For partial filling at the top of the valence band, it is helpful to introduce the concept of an electron hole. Although the electrons in the valence band are always moving around, a completely full valence band is inert, not conducting any current. If an electron is taken out of the valence band, then the trajectory that the electron would normally have taken is now missing its charge. For the purposes of electric current, this combination of the full valence band, minus the electron, can be converted into a picture of a completely empty band containing a positively charged particle that moves in the same way as the electron. Combined with the negative effective mass of the electrons at the top of the valence band, we arrive at a picture of a positively charged particle that responds to electric and magnetic fields just as a normal positively charged particle would do in vacuum, again with some positive effective mass.[10] This particle is called a hole, and the collection of holes in the valence band can again be understood in simple classical terms (as with the electrons in the conduction band).

Carrier generation and recombination

When ionizing radiation strikes a semiconductor, it may excite an electron out of its energy level and consequently leave a hole. This process is known as electron–hole pair generation. Electron-hole pairs are constantly generated from thermal energy as well, in the absence of any external energy source.

Electron-hole pairs are also apt to recombine. Conservation of energy demands that these recombination events, in which an electron loses an amount of energy larger than the band gap, be accompanied by the emission of thermal energy (in the form of phonons) or radiation (in the form of photons).

In some states, the generation and recombination of electron–hole pairs are in equipoise. The number of electron-hole pairs in the steady state at a given temperature is determined by quantum statistical mechanics. The precise quantum mechanical mechanisms of generation and recombination are governed by conservation of energy and conservation of momentum.

As the probability that electrons and holes meet together is proportional to the product of their numbers, the product is in steady state nearly constant at a given temperature, providing that there is no significant electric field (which might "flush" carriers of both types, or move them from neighbour regions containing more of them to meet together) or externally driven pair generation. The product is a function of the temperature, as the probability of getting enough thermal energy to produce a pair increases with temperature, being approximately exp(−EG/kT), where k is Boltzmann's constant, T is absolute temperature and EG is band gap.

The probability of meeting is increased by carrier traps—impurities or dislocations which can trap an electron or hole and hold it until a pair is completed. Such carrier traps are sometimes purposely added to reduce the time needed to reach the steady state.[12]

Doping

The conductivity of semiconductors may easily be modified by introducing impurities into their crystal lattice. The process of adding controlled impurities to a semiconductor is known as doping. The amount of impurity, or dopant, added to an intrinsic (pure) semiconductor varies its level of conductivity. Doped semiconductors are referred to as extrinsic. By adding impurity to the pure semiconductors, the electrical conductivity may be varied by factors of thousands or millions.

A 1 cm3 specimen of a metal or semiconductor has of the order of 1022 atoms. In a metal, every atom donates at least one free electron for conduction, thus 1 cm3 of metal contains on the order of 1022 free electrons, whereas a 1 cm3 sample of pure germanium at 20 °C contains about 4.2×1022 atoms, but only 2.5×1013 free electrons and 2.5×1013 holes. The addition of 0.001% of arsenic (an impurity) donates an extra 1017 free electrons in the same volume and the electrical conductivity is increased by a factor of 10,000.

The materials chosen as suitable dopants depend on the atomic properties of both the dopant and the material to be doped. In general, dopants that produce the desired controlled changes are classified as either electron acceptors or donors. Semiconductors doped with donor impurities are called n-type, while those doped with acceptor impurities are known as p-type. The n and p type designations indicate which charge carrier acts as the material's majority carrier. The opposite carrier is called the minority carrier, which exists due to thermal excitation at a much lower concentration compared to the majority carrier.

For example, the pure semiconductor silicon has four valence electrons which bond each silicon atom to its neighbors. In silicon, the most common dopants are group III and group V elements. Group III elements all contain three valence electrons, causing them to function as acceptors when used to dope silicon. When an acceptor atom replaces a silicon atom in the crystal, a vacant state (an electron "hole") is created, which can move around the lattice and functions as a charge carrier. Group V elements have five valence electrons, which allows them to act as a donor; substitution of these atoms for silicon creates an extra free electron. Therefore, a silicon crystal doped with boron creates a p-type semiconductor whereas one doped with phosphorus results in an n-type material.

During manufacture, dopants can be diffused into the semiconductor body by contact with gaseous compounds of the desired element, or ion implantation can be used to accurately position the doped regions.

Amorphous semiconductors

Some materials, when rapidly cooled to a glassy amorphous state, have semiconducting properties. These include B, Si, Ge, Se, Te and there are multiple theories to explain them.[13][14]

Early history of semiconductors

The history of the understanding of semiconductors begins with experiments on the electrical properties of materials. The properties of negative temperature coefficient of resistance, rectification, and light-sensitivity were observed starting in the early 19th century.

Thomas Johann Seebeck was the first to notice an effect due to semiconductors, in 1821.[15] In 1833, Michael Faraday reported that the resistance of specimens of silver sulfide decreases when they are heated. This is contrary to the behavior of metallic substances such as copper. In 1839, Alexandre Edmond Becquerel reported observation of a voltage between a solid and a liquid electrolyte when struck by light, the photovoltaic effect. In 1873 Willoughby Smith observed that selenium resistors exhibit decreasing resistance when light falls on them. In 1874 Karl Ferdinand Braun observed conduction and rectification in metallic sulfides, although this effect had been discovered much earlier by Peter Munck af Rosenschold (sv) writing for the Annalen der Physik und Chemie in 1835,[16] and Arthur Schuster found that a copper oxide layer on wires has rectification properties that ceases when the wires are cleaned. William Grylls Adams and Richard Evans Day observed the photovoltaic effect in selenium in 1876.[17]

A unified explanation of these phenomena required a theory of solid-state physics which developed greatly in the first half of the 20th Century. In 1878 Edwin Herbert Hall demonstrated the deflection of flowing charge carriers by an applied magnetic field, the Hall effect. The discovery of the electron by J.J. Thomson in 1897 prompted theories of electron-based conduction in solids. Karl Baedeker, by observing a Hall effect with the reverse sign to that in metals, theorized that copper iodide had positive charge carriers. Johan Koenigsberger classified solid materials as metals, insulators and "variable conductors" in 1914 although his student Josef Weiss already introduced the term Halbleiter (semiconductor in modern meaning) in PhD thesis in 1910.[18][19] Felix Bloch published a theory of the movement of electrons through atomic lattices in 1928. In 1930, B. Gudden stated that conductivity in semiconductors was due to minor concentrations of impurities. By 1931, the band theory of conduction had been established by Alan Herries Wilson and the concept of band gaps had been developed. Walter H. Schottky and Nevill Francis Mott developed models of the potential barrier and of the characteristics of a metal–semiconductor junction. By 1938, Boris Davydov had developed a theory of the copper-oxide rectifier, identifying the effect of the p–n junction and the importance of minority carriers and surface states.[20]

Agreement between theoretical predictions (based on developing quantum mechanics) and experimental results was sometimes poor. This was later explained by John Bardeen as due to the extreme "structure sensitive" behavior of semiconductors, whose properties change dramatically based on tiny amounts of impurities.[20] Commercially pure materials of the 1920s containing varying proportions of trace contaminants produced differing experimental results. This spurred the development of improved material refining techniques, culminating in modern semiconductor refineries producing materials with parts-per-trillion purity.

Devices using semiconductors were at first constructed based on empirical knowledge, before semiconductor theory provided a guide to construction of more capable and reliable devices.

Alexander Graham Bell used the light-sensitive property of selenium to transmit sound over a beam of light in 1880. A working solar cell, of low efficiency, was constructed by Charles Fritts in 1883 using a metal plate coated with selenium and a thin layer of gold; the device became commercially useful in photographic light meters in the 1930s.[20] Point-contact microwave detector rectifiers made of lead sulfide were used by Jagadish Chandra Bose in 1904; the cat's-whisker detector using natural galena or other materials became a common device in the development of radio. However, it was somewhat unpredictable in operation and required manual adjustment for best performance. In 1906 H.J. Round observed light emission when electric current passed through silicon carbide crystals, the principle behind the light-emitting diode. Oleg Losev observed similar light emission in 1922 but at the time the effect had no practical use. Power rectifiers, using copper oxide and selenium, were developed in the 1920s and became commercially important as an alternative to vacuum tube rectifiers.[17][20]

In the years preceding World War II, infrared detection and communications devices prompted research into lead-sulfide and lead-selenide materials. These devices were used for detecting ships and aircraft, for infrared rangefinders, and for voice communication systems. The point-contact crystal detector became vital for microwave radio systems, since available vacuum tube devices could not serve as detectors above about 4000 MHz; advanced radar systems relied on the fast response of crystal detectors. Considerable research and development of silicon materials occurred during the war to develop detectors of consistent quality.[20]

Detector and power rectifiers could not amplify a signal. Many efforts were made to develop a solid-state amplifier and were successful in developing a device called the point contact transistor which could amplify 20db or more.[20] In 1922 Oleg Losev developed two-terminal, negative resistance amplifiers for radio, and he perished in the Siege of Leningrad after successful completion. In 1926 Julius Edgar Lilienfeld patented a device resembling a modern field-effect transistor, but it was not practical. R. Hilsch and R. W. Pohl in 1938 demonstrated a solid-state amplifier using a structure resembling the control grid of a vacuum tube; although the device displayed power gain, it had a cut-off frequency of one cycle per second, too low for any practical applications, but an effective application of the available theory.[20] At Bell Labs, William Shockley and A. Holden started investigating solid-state amplifiers in 1938. The first p–n junction in silicon was observed by Russell Ohl about 1941, when a specimen was found to be light-sensitive, with a sharp boundary between p-type impurity at one end and n-type at the other. A slice cut from the specimen at the p–n boundary developed a voltage when exposed to light.

In France, during the war, Herbert Mataré had observed amplification between adjacent point contacts on a germanium base. After the war, Mataré's group announced their "Transistron" amplifier only shortly after Bell Labs announced the "transistor".

See also

References

  1. ^ a b c d Feynman, Richard (1963). Feynman Lectures on Physics. Basic Books.
  2. ^ Shockley, William (1950). Electrons and holes in semiconductors : with applications to transistor electronics. R. E. Krieger Pub. Co. ISBN 978-0-88275-382-9.
  3. ^ a b c d e f g Neamen, Donald. "Semiconductor Physics and Devices" (PDF). Elizabeth A. Jones.
  4. ^ By Abdul Al-Azzawi. "Light and Optics: Principles and Practices." 2007. March 4, 2016.
  5. ^ Kang, Joon Sang; Li, Man; Wu, Huan; Nguyen, Huuduy; Hu, Yongjie (2018). "Experimental observation of high thermal conductivity in boron arsenide". Science. 361 (6402): 575–578. doi:10.1126/science.aat5522. PMID 29976798.
  6. ^ "How do thermoelectric coolers (TECs) work?". marlow.com. Retrieved 2016-05-07.
  7. ^ B.G. Yacobi, Semiconductor Materials: An Introduction to Basic Principles, Springer 2003 ISBN 0-306-47361-5, pp. 1–3
  8. ^ Yu, Peter (2010). Fundamentals of Semiconductors. Berlin: Springer-Verlag. ISBN 978-3-642-00709-5.
  9. ^ As in the Mott formula for conductivity, see Cutler, M.; Mott, N. (1969). "Observation of Anderson Localization in an Electron Gas". Physical Review. 181 (3): 1336. Bibcode:1969PhRv..181.1336C. doi:10.1103/PhysRev.181.1336.
  10. ^ a b c Charles Kittel (1995) Introduction to Solid State Physics, 7th ed. Wiley, ISBN 0-471-11181-3.
  11. ^ J. W. Allen (1960). "Gallium Arsenide as a semi-insulator". Nature. 187 (4735): 403–405. Bibcode:1960Natur.187..403A. doi:10.1038/187403b0.
  12. ^ Louis Nashelsky, Robert L.Boylestad. Electronic Devices and Circuit Theory (9th ed.). India: Prentice-Hall of India Private Limited. pp. 7–10. ISBN 978-81-203-2967-6.
  13. ^ Amorphous semiconductors 1968
  14. ^ Amorphous semiconductors: a review of current theories 1972
  15. ^ Kirj.ee
  16. ^ Google Books
  17. ^ a b Lidia Łukasiak & Andrzej Jakubowski (January 2010). "History of Semiconductors" (PDF). Journal of Telecommunication and Information Technology: 3.
  18. ^ Busch, G (1989). "Early history of the physics and chemistry of semiconductors-from doubts to fact in a hundred years". European Journal of Physics. 10 (4): 254–264. Bibcode:1989EJPh...10..254B. doi:10.1088/0143-0807/10/4/002.
  19. ^ Google Books
  20. ^ a b c d e f g Peter Robin Morris (1990) A History of the World Semiconductor Industry, IET, ISBN 0-86341-227-0, pp. 11–25

Further reading

  • A. A. Balandin & K. L. Wang (2006). Handbook of Semiconductor Nanostructures and Nanodevices (5-Volume Set). American Scientific Publishers. ISBN 978-1-58883-073-9.
  • Sze, Simon M. (1981). Physics of Semiconductor Devices (2nd ed.). John Wiley and Sons (WIE). ISBN 978-0-471-05661-4.
  • Turley, Jim (2002). The Essential Guide to Semiconductors. Prentice Hall PTR. ISBN 978-0-13-046404-0.
  • Yu, Peter Y.; Cardona, Manuel (2004). Fundamentals of Semiconductors : Physics and Materials Properties. Springer. ISBN 978-3-540-41323-3.
  • Sadao Adachi (2012). The Handbook on Optical Constants of Semiconductors: In Tables and Figures. World Scientific Publishing. ISBN 978-981-4405-97-3.
  • G. B. Abdullayev, T. D. Dzhafarov, S. Torstveit (Translator), Atomic Diffusion in Semiconductor Structures, Gordon & Breach Science Pub., 1987 ISBN 978-2-88124-152-9

External links

CMOS

Complementary metal–oxide–semiconductor (CMOS) is a technology for constructing integrated circuits. CMOS technology is used in microprocessors, microcontrollers, static RAM, and other digital logic circuits. CMOS technology is also used for several analog circuits such as image sensors (CMOS sensor), data converters, and highly integrated transceivers for many types of communication. Frank Wanlass patented CMOS in 1963 (US patent 3,356,858) while working for Fairchild Semiconductor.

CMOS is also sometimes referred to as complementary-symmetry metal–oxide–semiconductor (COS-MOS).

The words "complementary-symmetry" refer to the typical design style with CMOS using complementary and symmetrical pairs of p-type and n-type metal oxide semiconductor field effect transistors (MOSFETs) for logic functions.Two important characteristics of CMOS devices are high noise immunity and low static power consumption.

Since one transistor of the pair is always off, the series combination draws significant power only momentarily during switching between on and off states. Consequently, CMOS devices do not produce as much waste heat as other forms of logic, for example transistor–transistor logic (TTL) or N-type metal-oxide-semiconductor logic (NMOS) logic, which normally have some standing current even when not changing state. CMOS also allows a high density of logic functions on a chip. It was primarily for this reason that CMOS became the most used technology to be implemented in very-large-scale integration (VLSI) chips.

The phrase "metal–oxide–semiconductor" is a reference to the physical structure of certain field-effect transistors, having a metal gate electrode placed on top of an oxide insulator, which in turn is on top of a semiconductor material. Aluminium was once used but now the material is polysilicon. Other metal gates have made a comeback with the advent of high-κ dielectric materials in the CMOS process, as announced by IBM and Intel for the 45 nanometer node and smaller sizes.

Diode

A diode is a two-terminal electronic component that conducts current primarily in one direction (asymmetric conductance); it has low (ideally zero) resistance in one direction, and high (ideally infinite) resistance in the other. A diode vacuum tube or thermionic diode is a vacuum tube with two electrodes, a heated cathode and a plate, in which electrons can flow in only one direction, from cathode to plate. A semiconductor diode, the most common type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. Semiconductor diodes were the first semiconductor electronic devices. The discovery of asymmetric electrical conduction across the contact between a crystalline mineral and a metal was made by German physicist Ferdinand Braun in 1874. Today, most diodes are made of silicon, but other materials such as gallium arsenide and germanium are used.

Doping (semiconductor)

In semiconductor production, doping is the intentional introduction of impurities into an intrinsic semiconductor for the purpose of modulating its electrical, optical and structural properties. The doped material is referred to as an extrinsic semiconductor. A semiconductor doped to such high levels that it acts more like a conductor than a semiconductor is referred to as a degenerate semiconductor.

In the context of phosphors and scintillators, doping is better known as activation. Doping is also used to control the color in some pigments.

Fabless manufacturing

Fabless manufacturing is the design and sale of hardware devices and semiconductor chips while outsourcing the fabrication (or "fab") of the devices to a specialized manufacturer called a semiconductor foundry. Foundries are typically, but not exclusively, located in mainland China and Taiwan because of the generally low cost of labor. Thus, fabless companies can benefit from lower capital costs while concentrating their research and development resources on the end market.

The first fabless semiconductor company, LSI Computer Systems, Inc. (LSI/CSI) was founded in 1969.

Freescale Semiconductor

Freescale Semiconductor, Inc. was an American multinational corporation headquartered in Austin, Texas, with design, research and development, manufacturing and sales operations in more than 75 locations in 19 countries. The company employed 17,000 people worldwide.

On December 7, 2015, NXP Semiconductors completed its merger with Freescale for about $11.8 billion in cash and stock. Freescale shareholders received $6.25 billion in cash and 0.3521 of an NXP share for each Freescale common share. Including the assumption of Freescale's debt, the purchase price is about $16.7 billion.

Integrated circuit

An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material that is normally silicon. The integration of large numbers of tiny transistors into a small chip results in circuits that are orders of magnitude smaller, cheaper, and faster than those constructed of discrete electronic components. The IC's mass production capability, reliability and building-block approach to circuit design has ensured the rapid adoption of standardized ICs in place of designs using discrete transistors. ICs are now used in virtually all electronic equipment and have revolutionized the world of electronics. Computers, mobile phones, and other digital home appliances are now inextricable parts of the structure of modern societies, made possible by the small size and low cost of ICs.

Integrated circuits were made practical by mid-20th-century technology advancements in semiconductor device fabrication. Since their origins in the 1960s, the size, speed, and capacity of chips have progressed enormously, driven by technical advances that fit more and more transistors on chips of the same size – a modern chip may have many billions of transistors in an area the size of a human fingernail. These advances, roughly following Moore's law, make computer chips of today possess millions of times the capacity and thousands of times the speed of the computer chips of the early 1970s.

ICs have two main advantages over discrete circuits: cost and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography rather than being constructed one transistor at a time. Furthermore, packaged ICs use much less material than discrete circuits. Performance is high because the IC's components switch quickly and consume comparatively little power because of their small size and close proximity. The main disadvantage of ICs is the high cost to design them and fabricate the required photomasks. This high initial cost means ICs are only practical when high production volumes are anticipated.

Laser diode

A laser diode, (LD), injection laser diode (ILD), or diode laser is a semiconductor device similar to a light-emitting diode in which the laser beam is created at the diode's junction.

Laser diodes can directly convert electrical energy into light. Driven by voltage, the doped p-n-transition allows for recombination of an electron with a hole. Due to the drop of the electron from a higher energy level to a lower one, radiation, in the form of an emitted photon is generated. This is spontaneous emission. Stimulated emission can be produced when the process is continued and further generate light with the same phase, coherence and wavelength.

The choice of the semiconductor material determines the wavelength of the emitted beam, which in today's laser diodes range from infra-red to the UV spectrum. Laser diodes are the most common type of lasers produced, with a wide range of uses that include fiber optic communications, barcode readers, laser pointers, CD/DVD/Blu-ray disc reading/recording, laser printing, laser scanning and light beam illumination.

List of semiconductor materials

Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be doped with impurities that alter its electronic properties in a controllable way.Because of their application in the computer and photovoltaic industry—in devices such as transistors, lasers, and solar cells—the search for new semiconductor materials and the improvement of existing materials is an important field of study in materials science.

Most commonly used semiconductor materials are crystalline inorganic solids. These materials are classified according to the periodic table groups of their constituent atoms.

Different semiconductor materials differ in their properties. Thus, in comparison with silicon, compound semiconductors have both advantages and disadvantages. For example, gallium arsenide (GaAs) has six times higher electron mobility than silicon, which allows faster operation; wider band gap, which allows operation of power devices at higher temperatures, and gives lower thermal noise to low power devices at room temperature; its direct band gap gives it more favorable optoelectronic properties than the indirect band gap of silicon; it can be alloyed to ternary and quaternary compositions, with adjustable band gap width, allowing light emission at chosen wavelengths, and allowing e.g. matching to wavelengths with lowest losses in optical fibers. GaAs can be also grown in a semi-insulating form, which is suitable as a lattice-matching insulating substrate for GaAs devices. Conversely, silicon is robust, cheap, and easy to process, whereas GaAs is brittle and expensive, and insulation layers can not be created by just a few an oxide layer; GaAs is therefore used only where silicon is not sufficient.

By alloying multiple compounds, some semiconductor materials are tunable, e.g., in band gap or lattice constant. The result is ternary, quaternary, or even quinary compositions. Ternary compositions allow adjusting the band gap within the range of the involved binary compounds; however, in case of combination of direct and indirect band gap materials there is a ratio where indirect band gap prevails, limiting the range usable for optoelectronics; e.g. AlGaAs LEDs are limited to 660 nm by this. Lattice constants of the compounds also tend to be different, and the lattice mismatch against the substrate, dependent on the mixing ratio, causes defects in amounts dependent on the mismatch magnitude; this influences the ratio of achievable radiative/nonradiative recombinations and determines the luminous efficiency of the device. Quaternary and higher compositions allow adjusting simultaneously the band gap and the lattice constant, allowing increasing radiant efficiency at wider range of wavelengths; for example AlGaInP is used for LEDs. Materials transparent to the generated wavelength of light are advantageous, as this allows more efficient extraction of photons from the bulk of the material. That is, in such transparent materials, light production is not limited to just the surface. Index of refraction is also composition-dependent and influences the extraction efficiency of photons from the material.

MOSFET

The metal-oxide-semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor or MISFET is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

The basic principle of the field-effect transistor was first patented by Julius Edgar Lilienfeld in 1925.The main advantage of a MOSFET is that it requires almost no input current to control the load current, when compared with bipolar transistors. In an enhancement mode MOSFET, voltage applied to the gate terminal increases the conductivity of the device. In depletion mode transistors, voltage applied at the gate reduces the conductivity.The "metal" in the name MOSFET is sometimes a misnomer, because the gate material can be a layer of polysilicon (polycrystalline silicon). Similarly, "oxide" in the name can also be a misnomer, as different dielectric materials are used with the aim of obtaining strong channels with smaller applied voltages.

The MOSFET is by far the most common transistor in digital circuits, as billions may be included in a memory chip or microprocessor. Since MOSFETs can be made with either p-type or n-type semiconductors, complementary pairs of MOS transistors can be used to make switching circuits with very low power consumption, in the form of CMOS logic.

Motorola

Motorola, Inc. () was an American multinational telecommunications company founded on September 25, 1928, based in Schaumburg, Illinois. After having lost $4.3 billion from 2007 to 2009, the company was divided into two independent public companies, Motorola Mobility and Motorola Solutions on January 4, 2011. Motorola Solutions is generally considered to be the direct successor to Motorola, as the reorganization was structured with Motorola Mobility being spun off. Motorola Mobility was sold to Google in 2012, and acquired by Lenovo in 2014.Motorola designed and sold wireless network equipment such as cellular transmission base stations and signal amplifiers. Motorola's home and broadcast network products included set-top boxes, digital video recorders, and network equipment used to enable video broadcasting, computer telephony, and high-definition television. Its business and government customers consisted mainly of wireless voice and broadband systems (used to build private networks), and public safety communications systems like Astro and Dimetra. These businesses (except for set-top boxes and cable modems) are now part of Motorola Solutions. Google sold Motorola Home (the former General Instrument cable businesses) to the Arris Group in December 2012 for US$2.35 billion.Motorola's wireless telephone handset division was a pioneer in cellular telephones. Also known as the Personal Communication Sector (PCS) prior to 2004, it pioneered the "mobile phone" with DynaTAC, "flip phone" with the MicroTAC, as well as the "clam phone" with the StarTAC in the mid-1990s. It had staged a resurgence by the mid-2000s with the Razr, but lost market share in the second half of that decade. Later it focused on smartphones using Google's open-source Android mobile operating system. The first phone to use the newest version of Google's open source OS, Android 2.0, was released on November 2, 2009 as the Motorola Droid (the GSM version launched a month later, in Europe, as the Motorola Milestone).

The handset division (along with cable set-top boxes and cable modems divisions, which would later be sold to Arris Group) was later spun off into the independent Motorola Mobility. On May 22, 2012, Google CEO Larry Page announced that Google had closed on its deal to acquire Motorola Mobility. On January 29, 2014, Page announced that, pending closure of the deal, Motorola Mobility would be acquired by Chinese technology company Lenovo for US$2.91 billion (subject to certain adjustments). On October 30, 2014, Lenovo finalized its purchase of Motorola Mobility from Google.

NXP Semiconductors

NXP Semiconductors N.V. is a Dutch global semiconductor manufacturer headquartered in Eindhoven, Netherlands. The company employs approximately 31,000 people in more than 35 countries, including 11,200 engineers in 33 countries. NXP reported revenue of $6.1 billion in 2015, including one month of revenue contribution from recently merged Freescale Semiconductor.On October 27, 2016, it was announced that Qualcomm would try to buy NXP, but because the Chinese merger authority did not approve the acquisition before the deadline set by Qualcomm, it was effectively canceled on 26 July 2018.

National Semiconductor

National Semiconductor was an American semiconductor manufacturer which specialized in analog devices and subsystems, formerly with headquarters in Santa Clara, California, United States. The company produced power management integrated circuits, display drivers, audio and operational amplifiers, communication interface products and data conversion solutions. National's key markets included wireless handsets, displays and a variety of broad electronics markets, including medical, automotive, industrial and test and measurement applications.

On September 23, 2011, the company formally became part of Texas Instruments as the "Silicon Valley" division.

Semiconductor device

Semiconductor devices are electronic components that exploit the electronic properties of semiconductor material, principally silicon, germanium, and gallium arsenide, as well as organic semiconductors. Semiconductor devices have replaced thermionic devices (vacuum tubes) in most applications. They use electronic conduction in the solid state as opposed to the gaseous state or thermionic emission in a high vacuum.

Semiconductor devices are manufactured both as single discrete devices and as integrated circuits (ICs), which consist of a number – from a few (as low as two) to billions – of devices manufactured and interconnected on a single semiconductor substrate, or wafer.

Semiconductor materials are useful because their behavior can be easily manipulated by the addition of impurities, known as doping. Semiconductor conductivity can be controlled by the introduction of an electric or magnetic field, by exposure to light or heat, or by the mechanical deformation of a doped monocrystalline grid; thus, semiconductors can make excellent sensors. Current conduction in a semiconductor occurs via mobile or "free" electrons and holes, collectively known as charge carriers. Doping a semiconductor such as silicon with a small proportion of an atomic impurity, such as phosphorus or boron, greatly increases the number of free electrons or holes within the semiconductor. When a doped semiconductor contains excess holes it is called "p-type", and when it contains excess free electrons it is known as "n-type", where p (positive for holes) or n (negative for electrons) is the sign of the charge of the majority mobile charge carriers. The semiconductor material used in devices is doped under highly controlled conditions in a fabrication facility, or fab, to control precisely the location and concentration of p- and n-type dopants. The junctions which form where n-type and p-type semiconductors join together are called p–n junctions.

Semiconductor devices made per year have been growing by 9.1% on average since 1978, and shipments in 2018 are predicted for the first time to exceed 1 trillion, meaning that well over 7 trillion has been made to date, in just in the decade prior.

Semiconductor device fabrication

Semiconductor device fabrication is the process used to create the integrated circuits that are present in everyday electrical and electronic devices. It is a multiple-step sequence of photolithographic and chemical processing steps during which electronic circuits are gradually created on a wafer made of pure semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

The entire manufacturing process, from start to packaged chips ready for shipment, takes six to eight weeks and is performed in highly specialized facilities referred to as foundries or fabs. In more advanced semiconductor devices, such as modern 14/10/7 nm nodes, fabrication can take up to 15 weeks with 11–13 weeks being the industry average.By industry standard, each generation of the semiconductor manufacturing process, also known as "technology node", is designated by the process’s minimum feature size. Technology nodes, also known as "process technologies" or simply "nodes", are typically indicated by the size in nanometers (or historically micrometers) of the process's gate length.As of 2019, 14 nanometer and 10 nanometer process chips are commonly in mass production, with 7 nanometer process chips in mass production by TSMC, although their node definition is similar to Intel's 10 nanometer process.

Semiconductor industry

The semiconductor industry is the aggregate collection of companies engaged in the design and fabrication of semiconductor devices. It formed around 1960, once the fabrication of semiconductors became a viable business. It has since grown to be a $412.2 billion industry in 2017.

TSMC

Taiwan Semiconductor Manufacturing Company, Limited (TSMC; Chinese: 台灣積體電路製造公司; pinyin: Táiwān Jī Tǐ Diànlù Zhìzào Gōngsī), also known as Taiwan Semiconductor, is the world's largest dedicated independent (pure-play) semiconductor foundry, with its headquarters and main operations located in the Hsinchu Science and Industrial Park in Hsinchu, Taiwan.

Texas Instruments

Texas Instruments Inc. (TI) is an American technology company that designs and manufactures semiconductors and various integrated circuits, which it sells to electronics designers and manufacturers globally. Its headquarters are in Dallas, Texas, United States. TI is one of the top ten semiconductor companies worldwide, based on sales volume. Texas Instruments's focus is on developing analog chips and embedded processors, which accounts for more than 80% of their revenue. TI also produces TI digital light processing (DLP) technology and education technology products including calculators, microcontrollers and multi-core processors. To date, TI has more than 43,000 patents worldwide.Texas Instruments emerged in 1951 after a reorganization of Geophysical Service Incorporated, a company founded in 1930 that manufactured equipment for use in the seismic industry, as well as defense electronics. TI produced the world's first commercial silicon transistor in 1954, and designed and manufactured the first transistor radio in 1954. Jack Kilby invented the integrated circuit in 1958 while working at TI's Central Research Labs. TI also invented the hand-held calculator in 1967, and introduced the first single-chip microcontroller (MCU) in 1970, which combined all the elements of computing onto one piece of silicon.In 1987, TI invented the digital light processing device (also known as the DLP chip), which serves as the foundation for the company's award-winning DLP technology and DLP Cinema. In 1990, TI came out with the popular TI-81 calculator which made them a leader in the graphing calculator industry. In 1997, its defense business was sold to Raytheon, which allowed TI to strengthen its focus on digital solutions. After the acquisition of National Semiconductor in 2011, the company had a combined portfolio of nearly 45,000 analog products and customer design tools, making it the world's largest maker of analog technology components.

Transistor

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems. Julius Edgar Lilienfeld patented a field-effect transistor in 1926 but it was not possible to actually construct a working device at that time. The first practically implemented device was a point-contact transistor invented in 1947 by American physicists John Bardeen, Walter Brattain, and William Shockley. The transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The transistor is on the list of IEEE milestones in electronics, and Bardeen, Brattain, and Shockley shared the 1956 Nobel Prize in Physics for their achievement.Most transistors are made from very pure silicon or germanium, but certain other semiconductor materials can also be used. A transistor may have only one kind of charge carrier, in a field effect transistor, or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube, transistors are generally smaller, and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages. Many types of transistors are made to standardized specifications by multiple manufacturers.

Wafer (electronics)

A wafer, also called a slice or substrate, is a thin slice of semiconductor material, such as a crystalline silicon, used in electronics for the fabrication of integrated circuits and in photovoltaics for conventional, wafer-based solar cells. The wafer serves as the substrate for microelectronic devices built in and over the wafer and undergoes many microfabrication process steps such as doping or ion implantation, etching, deposition of various materials, and photolithographic patterning. Finally, the individual microcircuits are separated (dicing) and packaged.

Divisions
Classical
Modern
Interdisciplinary
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.