A seamount is a mountain rising from the ocean floor that does not reach to the water's surface (sea level), and thus is not an island, islet or cliff-rock. Seamounts are typically formed from extinct volcanoes that rise abruptly and are usually found rising from the seafloor to 1,000–4,000 m (3,300–13,100 ft) in height. They are defined by oceanographers as independent features that rise to at least 1,000 m (3,281 ft) above the seafloor, characteristically of conical form.[1] The peaks are often found hundreds to thousands of meters below the surface, and are therefore considered to be within the deep sea.[2] During their evolution over geologic time, the largest seamounts may reach the sea surface where wave action erodes the summit to form a flat surface. After they have subsided and sunk below the sea surface such flat-top seamounts are called "guyots" or "tablemounts".[1]

There are more than 14,500 seamounts,[3] of which 9,951 seamounts and 283 guyots, covering a total of 8,796,150 km2 (3,396,210 sq mi) have been mapped[4] but only a few have been studied in detail by scientists. Seamounts and guyots are most abundant in the North Pacific Ocean, and follow a distinctive evolutionary pattern of eruption, build-up, subsidence and erosion. In recent years, several active seamounts have been observed, for example Loihi in the Hawaiian Islands.

Because of their abundance, seamounts are one of the most common marine ecosystems in the world. Interactions between seamounts and underwater currents, as well as their elevated position in the water, attract plankton, corals, fish, and marine mammals alike. Their aggregational effect has been noted by the commercial fishing industry, and many seamounts support extensive fisheries. There are ongoing concerns on the negative impact of fishing on seamount ecosystems, and well-documented cases of stock decline, for example with the orange roughy (Hoplostethus atlanticus). 95% of ecological damage is done by bottom trawling, which scrapes whole ecosystems off seamounts.

Because of their large numbers, many seamounts remain to be properly studied, and even mapped. Bathymetry and satellite altimetry are two technologies working to close the gap. There have been instances where naval vessels have collided with uncharted seamounts; for example, Muirfield Seamount is named after the ship that struck it in 1973. However, the greatest danger from seamounts are flank collapses; as they get older, extrusions seeping in the seamounts put pressure on their sides, causing landslides that have the potential to generate massive tsunamis.


Seamounts can be found in every ocean basin in the world, distributed extremely widely both in space and in age. A seamount is technically defined as an isolated rise in elevation of 1,000 m (3,281 ft) or more from the surrounding seafloor, and with a limited summit area,[5] of conical form.[1] There are more than 14,500 seamounts.[3] In addition to seamounts, there are more than 80,000 small knolls, ridges and hills less than 1,000 m in height in the world's oceans.[4]

Most seamounts are volcanic in origin, and thus tend to be found on oceanic crust near mid-ocean ridges, mantle plumes, and island arcs. Overall, seamount and guyot coverage is greatest as a proportion of seafloor area in the North Pacific Ocean, equal to 4.39% of that ocean region. The Arctic Ocean has only 16 seamounts and no guyots, and the Mediterranean and Black seas together have only 23 seamounts and 2 guyots. The 9,951 seamounts mapped cover an area of 8,088,550 km2 (3,123,010 sq mi). Seamounts have an average area of 790 km2 (310 sq mi), with the smallest seamounts found in the Arctic Ocean and the Mediterranean and Black Seas, whilst the largest mean seamount size occurs in the Indian Ocean 890 km2 (340 sq mi). The largest seamount has an area of 15,500 km2 (6,000 sq mi) and it occurs in the North Pacific. Guyots cover a total area of 707,600 km2 (273,200 sq mi) and have an average area of 2,500 km2 (970 sq mi), more than twice the average size of seamounts. Nearly 50% of guyot area and 42% of the number of guyots occur in the North Pacific Ocean, covering 342,070 km2 (132,070 sq mi). The largest three guyots are all in the North Pacific: the Kuko Guyot (estimated 24,600 km2 (9,500 sq mi)), Suiko Guyot (estimated 20,220 km2 (7,810 sq mi)) and the Pallada Guyot (estimated 13,680 km2 (5,280 sq mi)).[4]


"Seamount chain" redirects here; for a broader coverage related to this topic, see Undersea mountain range.

Seamounts are often found in groupings or submerged archipelagos, a classic example being the Emperor Seamounts, an extension of the Hawaiian Islands. Formed millions of years ago by volcanism, they have since subsided far below sea level. This long chain of islands and seamounts extends thousands of kilometers northwest from the island of Hawaii.

Distribution of seamounts and guyots in the North Pacific.pdf
Distribution of seamounts and guyots in the North Pacific
N Atlantic seamounts (Converted).pdf
Distribution of seamounts and guyots in the North Atlantic

There are more seamounts in the Pacific Ocean than in the Atlantic, and their distribution can be described as comprising several elongate chains of seamounts superimposed on a more or less random background distribution.[6] Seamount chains occur in all three major ocean basins, with the Pacific having the most number and most extensive seamount chains. These include the Hawaiian (Emperor), Mariana, Gilbert, Tuomotu and Austral Seamounts (and island groups) in the north Pacific and the Louisville and Sala y Gomez ridges in the southern Pacific Ocean. In the North Atlantic Ocean, the New England Seamounts extend from the eastern coast of the United States to the mid-ocean ridge. Craig and Sandwell[6] noted that clusters of larger Atlantic seamounts tend to be associated with other evidence of hotspot activity, such as on the Walvis Ridge, Bermuda Islands and Cape Verde Islands. The mid-Atlantic ridge and spreading ridges in the Indian Ocean are also associated with abundant seamounts.[7] Otherwise, seamounts tend not to form distinctive chains in the Indian and Southern Oceans, but rather their distribution appears to be more or less random.

Isolated seamounts and those without clear volcanic origins are less common; examples include Bollons Seamount, Eratosthenes Seamount, Axial Seamount and Gorringe Ridge.[8]

If all known seamounts were collected into one area, they would make a landform the size of Europe.[9] Their overall abundance makes them one of the most common, and least understood, marine structures and biomes on Earth,[10] a sort of exploratory frontier.[11]


Geochemistry and evolution

Submarine Eruption-numbers
Diagram of a submarine eruption. (key: 1. Water vapor cloud 2. Water 3. Stratum 4. Lava flow 5. Magma conduit 6. Magma chamber 7. Dike 8. Pillow lava) Click to enlarge.

Most seamounts are built by one of two volcanic processes, although some, such as the Christmas Island Seamount Province near Australia, are more enigmatic.[12] Volcanoes near plate boundaries and mid-ocean ridges are built by decompression melting of rock in the upper mantle. The lower density magma rises through the crust to the surface. Volcanoes formed near or above subducting zones are created because the subducting tectonic plate adds volatiles to the overriding plate that lowers its melting point. Which of these two process involved in the formation of a seamount has a profound effect on its eruptive materials. Lava flows from mid-ocean ridge and plate boundary seamounts are mostly basaltic (both tholeiitic and alkalic), whereas flows from subducting ridge volcanoes are mostly calc-alkaline lavas. Compared to mid-ocean ridge seamounts, subduction zone seamounts generally have more sodium, alkali, and volatile abundances, and less magnesium, resulting in more explosive, viscous eruptions.[11]

All volcanic seamounts follow a particular pattern of growth, activity, subsidence and eventual extinction. The first stage of a seamount's evolution is its early activity, building its flanks and core up from the sea floor. This is followed by a period of intense volcanism, during which the new volcano erupts almost all (e.g. 98%) of its total magmatic volume. The seamount may even grow above sea level to become an oceanic island (for example, the 2009 eruption of Hunga Tonga). After a period of explosive activity near the ocean surface, the eruptions slowly die away. With eruptions becoming infrequent and the seamount losing its ability to maintain itself, the volcano starts to erode. After finally becoming extinct (possibly after a brief rejuvenated period), they are ground back down by the waves. Seamounts are built in a far more dynamic oceanic setting than their land counterparts, resulting in horizontal subsidence as the seamount moves with the tectonic plate towards a subduction zone. Here it is subducted under the plate margin and ultimately destroyed, but it may leave evidence of its passage by carving an indentation into the opposing wall of the subduction trench. The majority of seamounts have already completed their eruptive cycle, so access to early flows by researchers is limited by late volcanic activity.[11]

Ocean-ridge volcanoes in particular have been observed to follow a certain pattern in terms of eruptive activity, first observed with Hawaiian seamounts but now shown to be the process followed by all seamounts of the ocean-ridge type. During the first stage the volcano erupts basalt of various types, caused by various degrees of mantle melting. In the second, most active stage of its life, ocean-ridge volcanoes erupt tholeiitic to mildly alkalic basalt as a result of a larger area melting in the mantle. This is finally capped by alkalic flows late in its eruptive history, as the link between the seamount and its source of volcanism is cut by crustal movement. Some seamounts also experience a brief "rejuvenated" period after a hiatus of 1.5 to 10 million years, the flows of which are highly alkalic and produce many xenoliths.[11]

In recent years, geologists have confirmed that a number of seamounts are active undersea volcanoes; two examples are Lo‘ihi in the Hawaiian Islands and Vailulu'u in the Manu'a Group (Samoa).[8]

Lava types

Pillow basalt crop l
Pillow lava, a type of basalt flow that originates from lava-water interactions during submarine eruptions.[13]

The most apparent lava flows at a seamount are the eruptive flows that cover their flanks, however igneous intrusions, in the forms of dikes and sills, are also an important part of seamount growth. The most common type of flow is pillow lava, named so after its distinctive shape. Less common are sheet flows, which are glassy and marginal, and indicative of larger-scale flows. Volcaniclastic sedimentary rocks dominate shallow-water seamounts. They are the products of the explosive activity of seamounts that are near the water's surface, and can also form from mechanical wear of existing volcanic rock.[11]


Seamounts can form in a wide variety of tectonic settings, resulting in a very diverse structural bank. Seamounts come in a wide variety of structural shapes, from conical to flat-topped to complexly shaped.[11] Some are built very large and very low, such as Koko Guyot[14] and Detroit Seamount;[15] others are built more steeply, such as Loihi Seamount[16] and Bowie Seamount.[17] Some seamounts also have a carbonate or sediment cap.[11]

Many seamounts show signs of intrusive activity, which is likely to lead to inflation, steepening of volcanic slopes, and ultimately, flank collapse.[11] There are also several sub-classes of seamounts. The first are guyots, seamounts with a flat top. These tops must be 200 m (656 ft) or more below the surface of the sea; the diameters of these flat summits can be over 10 km (6.2 mi).[18] Knolls are isolated elevation spikes measuring less than 1,000 meters (3,281 ft). Lastly, pinnacles are small pillar-like seamounts.[5]


Ecological role of seamounts

Seamounts are exceptionally important to their biome ecologically, but their role in their environment is poorly understood. Because they project out above the surrounding sea floor, they disturb standard water flow, causing eddies and associated hydrological phenomena that ultimately result in water movement in an otherwise still ocean bottom. Currents have been measured at up to 0.9 knots, or 48 centimeters per second. Because of this upwelling seamounts often carry above-average plankton populations, seamounts are thus centers where the fish that feed on them aggregate, in turn falling prey to further predation, making seamounts important biological hotspots.[5]

Seamounts provide habitats and spawning grounds for these larger animals, including numerous fish. Some species, including black oreo (Allocyttus niger) and blackstripe cardinalfish (Apogon nigrofasciatus), have been shown to occur more often on seamounts than anywhere else on the ocean floor. Marine mammals, sharks, tuna, and cephalopods all congregate over seamounts to feed, as well as some species of seabirds when the features are particularly shallow.[5]

Bubblegum coral on davidson
Grenadier fish (Coryphaenoides sp.) and bubblegum coral (Paragorgia arborea) on the crest of Davidson Seamount. These are two species attracted to the seamount; Paragorgia arborea in particular grows in the surrounding area as well, but nowhere near as profusely.[19]

Seamounts often project upwards into shallower zones more hospitable to sea life, providing habitats for marine species that are not found on or around the surrounding deeper ocean bottom. Because seamounts are isolated from each other they form "undersea islands" creating the same biogeographical interest. As they are formed from volcanic rock, the substrate is much harder than the surrounding sedimentary deep sea floor. This causes a different type of fauna to exist than on the seafloor, and leads to a theoretically higher degree of endemism.[20] However, recent research especially centered at Davidson Seamount suggests that seamounts may not be especially endemic, and discussions are ongoing on the effect of seamounts on endemicity. They have, however, been confidently shown to provide a habitat to species that have difficulty surviving elsewhere.[21][22]

The volcanic rocks on the slopes of seamounts are heavily populated by suspension feeders, particularly corals, which capitalize on the strong currents around the seamount to supply them with food. This is in sharp contrast with the typical deep-sea habitat, where deposit-feeding animals rely on food they get off the ground.[5] In tropical zones extensive coral growth results in the formation of coral atolls late in the seamount's life.[22][23]

In addition soft sediments tend to accumulate on seamounts, which are typically populated by polychaetes (annelid marine worms) oligochaetes (microdrile worms), and gastropod mollusks (sea slugs). Xenophyophores have also been found. They tend to gather small particulates and thus form beds, which alters sediment deposition and creates a habitat for smaller animals.[5] Many seamounts also have hydrothermal vent communities, for example Suiyo[24] and Loihi seamounts.[25] This is helped by geochemical exchange between the seamounts and the ocean water.[11]

Seamounts may thus be vital stopping points for some migratory animals, specifically whales. Some recent research indicates whales may use such features as navigational aids throughout their migration.[26] For a long time it has been surmised that many pelagic animals visit seamounts as well, to gather food, but proof of this aggregating effect has been lacking. The first demonstration of this conjecture was published in 2008.[27]


The effect that seamounts have on fish populations has not gone unnoticed by the commercial fishing industry. Seamounts were first extensively fished in the second half of the 20th century, due to poor management practices and increased fishing pressure seriously depleting stock numbers on the typical fishing ground, the continental shelf. Seamounts have been the site of targeted fishing since that time.[28]

Nearly 80 species of fish and shellfish are commercially harvested from seamounts, including spiny lobster (Palinuridae), mackerel (Scombridae and others), red king crab (Paralithodes camtschaticus), red snapper (Lutjanus campechanus), tuna (Scombridae), Orange roughy (Hoplostethus atlanticus), and perch (Percidae).[5]


Orange roughy
Because of overfishing at their seamount spawning grounds, stocks of orange roughy (Hoplostethus atlanticus) have plummeted; experts say that it could take decades for the species to restore itself to its former numbers.[28]

The ecological conservation of seamounts is hurt by the simple lack of information available. Seamounts are very poorly studied, with only 350 of the estimated 100,000 seamounts in the world having received sampling, and fewer than 100 in depth.[29] Much of this lack of information can be attributed to a lack of technology, and to the daunting task of reaching these underwater structures; the technology to fully explore them has only been around the last few decades. Before consistent conservation efforts can begin, the seamounts of the world must first be mapped, a task that is still in progress.[5]

Overfishing is a serious threat to seamount ecological welfare. There are several well-documented cases of fishery exploitation, for example the orange roughy (Hoplostethus atlanticus) off the coasts of Australia and New Zealand and the pelagic armorhead (Pseudopentaceros richardsoni) near Japan and Russia.[5] The reason for this is that the fishes that are targeted over seamounts are typically long-lived, slow-growing, and slow-maturing. The problem is confounded by the dangers of trawling, which damages seamount surface communities, and the fact that many seamounts are located in international waters, making proper monitoring difficult.[28] Bottom trawling in particular is extremely devastating to seamount ecology, and is responsible for as much as 95% of ecological damage to seamounts.[30]

Coral earrings of this type are often made from coral harvested off seamounts.

Corals from seamounts are also vulnerable, as they are highly valued for making jewellery and decorative objects. Significant harvests have been produced from seamounts, often leaving coral beds depleted.[5]

Individual nations are beginning to note the effect of fishing on seamounts, and the European Commission has agreed to fund the OASIS project, a detailed study of the effects of fishing on seamount communities in the North Atlantic.[28] Another project working towards conservation is CenSeam, a Census of Marine Life project formed in 2005. CenSeam is intended to provide the framework needed to prioritise, integrate, expand and facilitate seamount research efforts in order to significantly reduce the unknown and build towards a global understanding of seamount ecosystems, and the roles they have in the biogeography, biodiversity, productivity and evolution of marine organisms.[29][31]

Possibly the best ecologically studied seamount in the world is Davidson Seamount, with six major expeditions recording over 60,000 species observations. The contrast between the seamount and the surrounding area was well-marked.[21] One of the primary ecological havens on the seamount is its deep sea coral garden, and many of the specimens noted were over a century old.[19] Following the expansion of knowledge on the seamount there was extensive support to make it a marine sanctuary, a motion that was granted in 2008 as part of the Monterey Bay National Marine Sanctuary.[32] Much of what is known about seamounts ecologically is based on observations from Davidson.[19][27] Another such seamount is Bowie Seamount, which has also been declared a marine protected area by Canada for its ecological richness.[33]


Sealevel chart
Graph showing the rise in global sea level (in mm) as measured by the NASA/CNES oceanic satellite altimeter TOPEX/Poseidon (left) and its follow-on mission Jason-1.

The study of seamounts has been stymied for a long time by the lack of technology. Although seamounts have been sampled as far back as the 19th century, their depth and position meant that the technology to explore and sample seamounts in sufficient detail did not exist until the last few decades. Even with the right technology available, only a scant 1% of the total number have been explored,[9] and sampling and information remains biased towards the top 500 m (1,640 ft).[5] New species are observed or collected and valuable information is obtained on almost every submersible dive at seamounts.[10]

Before seamounts and their oceanographic impact can be fully understood, they must be mapped, a daunting task due to their sheer number.[5] The most detailed seamount mappings are provided by multibeam echosounding (sonar), however after more than 5000 publicly held cruises, the amount of the sea floor that has been mapped remains minuscule. Satellite altimetry is a broader alternative, albeit not as detailed, with 13,000 catalogued seamounts; however this is still only a fraction of the total 100,000. The reason for this is that uncertainties in the technology limit recognition to features 1,500 m (4,921 ft) or larger. In the future, technological advances could allow for a larger and more detailed catalogue.[23]

Observations from CryoSat-2 combined with data from other satellites has shown thousands of previously uncharted seamounts, with more to come as data is interpreted.[34][35][36][37]

Deep-sea mining

Seamounts are a possible future source of economically important metals. Even though the ocean makes up 70% of Earth's surface area, technological challenges with deep sea mining have severely limited its extent. But with the constantly decreasing supply on land, many see oceanic mining as the destined future, and seamounts stand out as candidates.[38]

Seamounts are abundant, and all have metal resource potential because of various enrichment processes during the seamount's life. An example for epithermal gold mineralization on the seafloor is Conical Seamount, located about 8 km south of Lihir Island in Papua New Guinea. Conical Seamount has a basal diameter of about 2.8 km and rises about 600 m above the seafloor to a water depth of 1050 m. Grab samples from its summit contain the highest gold concentrations yet reported from the modern seafloor (max. 230 g/t Au, avg. 26 g/t, n=40).[39] Iron-manganese, hydrothermal iron oxide, sulfide, sulfate, sulfur, hydrothermal manganese oxide, and phosphorite[40] (the latter especially in parts of Micronesia) are all mineral resources that are deposited upon or within seamounts. However, only the first two have any potential of being targeted by mining in the next few decades.[38]


US Navy 050127-N-4658L-030 Submarine USS San Francisco in dry dock to assess damage Guam Jan 8 2005
USS San Francisco in dry dock in Guam in January 2005, following its collision with an uncharted seamount. The damage was extensive and the submarine was just barely salvaged.[41]

Some seamounts have not been mapped and thus pose a navigational danger. For instance, Muirfield Seamount is named after the ship that hit it in 1973.[42] More recently, the submarine USS San Francisco ran into an uncharted seamount in 2005 at a speed of 35 knots (40.3 mph; 64.8 km/h), sustaining serious damage and killing one seaman.[41]

One major seamount risk is that often, in the late of stages of their life, extrusions begin to seep in the seamount. This activity leads to inflation, over-extension of the volcano's flanks, and ultimately flank collapse, leading to submarine landslides with the potential to start major tsunamis, which can be among the largest natural disasters in the world. In an illustration of the potent power of flank collapses, a summit collapse on the northern edge of Vlinder Seamount resulted in a pronounced headwall scarp and a field of debris up to 6 km (4 mi) away.[11] A catastrophic collapse at Detroit Seamount flattened its whole structure extensively.[15] Lastly, in 2004, scientists found marine fossils 61 m (200 ft) up the flank of Kohala mountain in Hawaii (island). Subsidation analysis found that at the time of their deposition, this would have been 500 m (1,640 ft) up the flank of the volcano,[43] far too high for a normal wave to reach. The date corresponded with a massive flank collapse at the nearby Mauna Loa, and it was theorized that it was a massive tsunami, generated by the landslide, that deposited the fossils.[44]

See also


  1. ^ a b c IHO, 2008. Standardization of Undersea Feature Names: Guidelines Proposal form Terminology, 4th ed. International Hydrographic Organisation and Intergovernmental Oceanographic Commission, Monaco.
  2. ^ Nybakken, James W. and Bertness, Mark D., 2008. Marine Biology: An Ecological Approach. Sixth Edition. Benjamin Cummings, San Francisco
  3. ^ a b Watts, T. (2019). "Science, Seamounts and Society". Geoscientist. August 2019: 10–16.
  4. ^ a b c Harris, P.T., MacMillan-Lawler, M., Rupp, J., Baker, E.K., 2014. Geomorphology of the oceans. Marine Geology 352, 4–24
  5. ^ a b c d e f g h i j k l "Seamount". Encyclopedia of Earth. December 9, 2008. Retrieved 24 July 2010.
  6. ^ a b Craig, C.H.; Sandwell, D.T. (1988). "Global distribution of seamounts from Seasat profiles". Journal of Geophysical Research. 93 (B9): 10408–410, 420. Bibcode:1988JGR....9310408C. doi:10.1029/jb093ib09p10408.
  7. ^ Kitchingman, A., Lai, S., 2004. Inferences on Potential Seamount Locations from Mid-Resolution Bathymetric Data. in: Morato, T., Pauly, D. (Eds.), FCRR Seamounts: Biodiversity and Fisheries. Fisheries Centre Research Reports. University of British Columbia, Vanvouver, BC, pp. 7–12.
  8. ^ a b Keating, Barbara H.; Fryer, Patricia; Batiza, Rodey; Boehlert, George W. (1987), "Seamounts, Islands, and Atolls", Washington DC American Geophysical Union Geophysical Monograph Series, Geophysical Monograph Series, American Geophysical Union, 43, Bibcode:1987GMS....43.....K, doi:10.1029/GM043, ISBN 9781118664209
  9. ^ a b "Seamount Scientists Offer New Comprehensive View of Deep-Sea Mountains". ScienceDaily. 23 February 2010. Retrieved 25 July 2010.
  10. ^ a b "Seamounts Identified as Significant, Unexplored Territory". ScienceDirect. 30 April 2010. Retrieved 25 July 2010.
  11. ^ a b c d e f g h i j Hubert Straudigal & David A Clauge. "The Geological History of Deep-Sea Volcanoes: Biosphere, Hydrosphere, and Lithosphere Interactions" (PDF). Oceanography. Seamounts Special Issue. 32 (1). Archived from the original (PDF) on 13 June 2010. Retrieved 25 July 2010.
  12. ^ K. Hoernle; F. Hauff; R. Werner; P. van den Bogaard; A. D. Gibbons; S. Conrad & R. D. Müller (27 November 2011). "Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere". Nature Geoscience. 4 (12): 883–887. Bibcode:2011NatGe...4..883H. CiteSeerX doi:10.1038/ngeo1331.
  13. ^ "Pillow lava". NOAA. Retrieved 25 July 2010.
  14. ^ "SITE 1206". Ocean Drilling Program Database-Results of Site 1206. Ocean Drilling Program. Retrieved 26 July 2010.
  15. ^ a b Kerr, B. C., D. W. Scholl, and S. L. Klemperer (July 12, 2005). "Seismic stratigraphy of Detroit Seamount, Hawaiian–Emperor Seamount chain" (PDF). Stanford University. Retrieved 15 July 2010.CS1 maint: multiple names: authors list (link)
  16. ^ Rubin, Ken (January 19, 2006). "General Information About Loihi". Hawaii Center for Volcanology. SOEST. Retrieved 26 July 2010.
  17. ^ "The Bowie Seamount Area" (PDF). John F. Dower and Frances J. Fee. February 1999. Retrieved 26 July 2010.
  18. ^ "Guyots". Encyclopædia Britannica. Retrieved 24 July 2010.
  19. ^ a b c "Seamounts may serve as refuges for deep-sea animals that struggle to survive elsewhere". PhysOrg. February 11, 2009. Retrieved December 7, 2009.
  20. ^ "Davidson Seamount" (PDF). NOAA, Monterey Bay National Marine Sanctuary. 2006. Retrieved 2 December 2009.
  21. ^ a b McClain, Craig R.; Lundsten L., Ream M., Barry J., DeVogelaere A. (January 7, 2009). Rands, Sean (ed.). "Endemicity, Biogeography, Composition, and Community Structure On a Northeast Pacific Seamount". PLoS ONE. 4 (1): e4141. Bibcode:2009PLoSO...4.4141M. doi:10.1371/journal.pone.0004141. PMC 2613552. PMID 19127302.CS1 maint: multiple names: authors list (link)
  22. ^ a b Lundsten, L; J. P. Barry, G. M. Cailliet, D. A. Clague, A. DeVogelaere, J. B. Geller (January 13, 2009). "Benthic invertebrate communities on three seamounts off southern and central California". Marine Ecology Progress Series. 374: 23–32. Bibcode:2009MEPS..374...23L. doi:10.3354/meps07745.CS1 maint: multiple names: authors list (link)
  23. ^ a b Pual Wessel; David T. Sandwell; Seung-Sep Kim. "The Global Seamount Census" (PDF). Oceanography. Seamounts Special Issue. 23 (1). ISSN 1042-8275. Archived from the original (PDF) on 13 June 2010. Retrieved 25 June 2010.
  24. ^ Higashi, Y; et al. (2004). "Microbial diversity in hydrothermal surface to subsurface environments of Suiyo Seamount, Izu-Bonin Arc, using a catheter-type in situ growth chamber". FEMS Microbiology Ecology. 47 (3): 327–336. doi:10.1016/S0168-6496(04)00004-2. PMID 19712321.
  25. ^ "Introduction to the Biology and Geology of Lōʻihi Seamount". Lōʻihi Seamount. Fe-Oxidizing Microbial Observatory (FeMO). 2009-02-01. Retrieved 2009-03-02.
  26. ^ Kennedy, Jennifer. "Seamount: What is a Seamount?". Retrieved 25 July 2010.
  27. ^ a b Morato, T., Varkey, D.A., Damaso, C., Machete, M., Santos, M., Prieto, R., Santos, R.S. and Pitcher, T.J. (2008). "Evidence of a seamount effect on aggregating visitors". Marine Ecology Progress Series 357: 23–32.
  28. ^ a b c d "Seamounts – hotspots of marine life". International Council for the Exploration of the Sea. Archived from the original on 13 April 2010. Retrieved 24 July 2010.
  29. ^ a b "CenSeam Mission". CenSeam. Archived from the original on 24 May 2010. Retrieved 22 July 2010.
  30. ^ Report of the Secretary-General (2006) The Impacts of Fishing on Vulnerable Marine Ecosystems United Nations. 14 July 2006. Retrieved on 26 July 2010.
  31. ^ "CenSeam Science". CenSeam. Retrieved 22 July 2010.
  32. ^ "NOAA Releases Plans for Managing and Protecting Cordell Bank, Gulf of Farallones and Monterey Bay National Marine Sanctuaries" (PDF). Press release. NOAA. November 20, 2008. Retrieved 2 December 2009.
  33. ^ "Bowie Seamount Marine Protected Area". Fisheries and Oceans Canada. 1 October 2011. Retrieved 31 December 2011.
  34. ^ Amos, Jonathan. "Satellites detect 'thousands' of new ocean-bottom mountains" BBC News, 2 October 2014.
  35. ^ "New Map Exposes Previously Unseen Details of Seafloor"
  36. ^ Sandwell, David T.; Müller, R. Dietmar; Smith, Walter H. F.; Garcia, Emmanuel; Francis, Richard (2014). "New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure". Science. 346 (6205): 65–67. Bibcode:2014Sci...346...65S. doi:10.1126/science.1258213. PMID 25278606.
  37. ^ "Cryosat 4 Plus" DTU Space
  38. ^ a b James R. Hein; Tracy A. Conrad; Hubert Staudigel. "Seamount Mineral Deposits: A Source for Rare Minerals for High Technology Industries" (PDF). Oceanography. Seamounts Special Issue. 23 (1). ISSN 1042-8275. Archived from the original (PDF) on 13 June 2010. Retrieved 26 July 2010.
  39. ^ Muller, Daniel; Leander Franz; Sven Petersen; Peter Herzig; Mark Hannington (2003). "Comparison between magmatic activity and gold mineralization at Conical Seamount and Lihir Island, Papua New Guinea". Mineralogy and Petrology. 79 (3–4): 259–283. Bibcode:2003MinPe..79..259M. doi:10.1007/s00710-003-0007-3.
  40. ^ C.Michael Hogan. 2011. Phosphate. Encyclopedia of Earth. Topic ed. Andy Jorgensen. Ed.-in-Chief C.J.Cleveland. National Council for Science and the Environment. Washington DC
  41. ^ a b "USS San Francisco (SSN 711)". Archived from the original on 25 September 2009. Retrieved 25 July 2010.
  42. ^ Nigel Calder (2002). How to Read a Navigational Chart: A Complete Guide to the Symbols, Abbreviations, and Data Displayed on Nautical Charts. International Marine/Ragged Mountain Press.
  43. ^ Seach, John. "Kohala Volcano". Volcanism reference base. John Seach, vulcanologist. Retrieved 25 July 2010.
  44. ^ "Hawaiian tsunami left a gift at foot of volcano". New Scientist (2464): 14. 2004-09-11. Retrieved 25 July 2010.




External links

Geography and geology


Benham Rise

The Benham Rise, officially known as the Philippine Rise, is a seismically active undersea region and extinct volcanic ridge located in the Philippine Sea approximately 250 km (160 mi) east of the northern coastline of Dinapigue, Isabela. The Rise has been known to the people of Catanduanes as Kalipung-awan since pre-colonial times, which literally means 'loneliness from an isolated place'.Under the Philippine Sea lie a number of basins including the West Philippine Sea Basin, inside of which is located the Central Basin Fault (CBF). The Benham Plateau is located in the CBF and its basement probably is a micro-continent. Several scientific surveys have been made on the feature to study its nature and its impact on tectonic subduction, including one about its effects on the 1990 Luzon earthquake. The Philippines claimed this feature as part of its continental shelf in a claim filed with the United Nations Commission on the Limits of the Continental Shelf on April 8, 2009, and which was approved under the United Nations Convention on the Law of the Sea (UNCLOS) in 2012.It is designated as a "protected food supply exclusive zone" by the Philippine government in May 2017. Mining and oil exploration is banned in the Benham Plateau as a protected area. On May 16, 2017, Executive Order No. 25 was signed, renaming the feature to “Philippine Rise”.

Bowie Seamount

Bowie Seamount is a large submarine volcano in the northeastern Pacific Ocean, located 180 km (110 mi) west of Haida Gwaii, British Columbia, Canada.

The seamount is also known as Bowie Bank. In the Russian language, Bowie is called Гора Бауи (Gora Baui), which literally means Mount Bowie. In Haida language it is called SG̱aan Ḵinghlas, meaning Supernatural One Looking Outward. It is named after William Bowie of the U.S. Coast and Geodetic Survey.The volcano has a flat-topped summit rising about 3,000 m (10,000 ft) above the seabed, to 24 m (79 ft) below sea level. The seamount lies at the southern end of a long underwater volcanic mountain range called the Pratt-Welker or Kodiak-Bowie Seamount chain, stretching from the Aleutian Trench in the north almost to Haida Gwaii in the south.Bowie Seamount lies on the Pacific Plate, a large segment of the Earth's surface which moves in a northwestern direction under the Pacific Ocean. It is adjacent to two other submarine volcanoes; Hodgkins Seamount on its northern flank and Graham Seamount on its eastern flank.

Colahan Seamount

Colahan Seamount is a seamount lying within the Hawaiian-Emperor seamount chain in the northern Pacific Ocean. It erupted 37-40 million years ago.

Davidson Seamount

Davidson Seamount is a seamount (underwater volcano) located off the coast of Central California, 80 mi (129 km) southwest of Monterey and 75 mi (121 km) west of San Simeon. At 26 mi (42 km) long and 8 mi (13 km) wide, it is one of the largest known seamounts in the world. From base to crest, the seamount is 7,480 ft (2,280 m) tall, yet its summit is still 4,101 ft (1,250 m) below the sea surface. The seamount is biologically diverse, with 237 species and 27 types of deep-sea coral having been identified.Discovered during the mapping of California's coast in 1933, Davidson Seamount is named after geographer George Davidson of the U.S. National Geodetic Survey. Studied only sparsely for decades, NOAA expeditions to the seamount in 2002 and 2006 cast light upon its unique deep-sea coral ecosystem. Davidson Seamount is populated by a dense population of large, ancient corals, some of which are over 100 years of age. The data gathered during the studies fueled the making of Davidson Seamount into a part of the Monterey Bay National Marine Sanctuary in 2009.

Detroit Seamount

Detroit Seamount, which was formed around 76 million years ago, is one of the oldest seamounts of the Hawaiian-Emperor seamount chain (Meiji Seamount is the oldest, at 82 million years). It lies near the northernmost end of the chain and is south of Aleutian Islands (near Russia), at 51°28.80′N 167°36′E It is a seamount in the chain, located north of the hinge of the "V" in the image at right.Detroit Seamount is one of the few seamounts to break the naming scheme of the Emperor seamounts, which are named mostly after emperors or empresses of the Kofun period of Japanese history. It is instead named after the light cruiser USS Detroit.The Detroit Seamount is as big as the island of Hawaii.


In marine geology, a guyot (pronounced ), also known as a tablemount, is an isolated underwater volcanic mountain (seamount) with a flat top more than 200 m (660 ft) below the surface of the sea. The diameters of these flat summits can exceed 10 km (6.2 mi). Guyots are most commonly found in the Pacific Ocean, but they have been identified in all the oceans except the Arctic Ocean.

Hancock Seamount

Hancock Seamount is a seamount of the Hawaiian-Emperor seamount chain in the Pacific Ocean.

It was formed in the Eocene and Oligocene epochs of the Paleogene Period. The last eruption from Hancock Seamount is unknown.

Hawaiian–Emperor seamount chain

The Hawaiian–Emperor seamount chain is a mostly undersea mountain range in the Pacific Ocean that reaches above sea level in Hawaii. It is composed of the Hawaiian ridge, consisting of the islands of the Hawaiian chain northwest to Kure Atoll, and the Emperor Seamounts: together they form a vast underwater mountain region of islands and intervening seamounts, atolls, shallows, banks and reefs along a line trending southeast to northwest beneath the northern Pacific Ocean. The seamount chain, containing over 80 identified undersea volcanoes, stretches about 6,200 kilometres (3,900 mi) from the Aleutian Trench in the far northwest Pacific to the Loʻihi seamount, the youngest volcano in the chain, which lies about 35 kilometres (22 mi) southeast of the Island of Hawaiʻi.

Kammu Seamount

Kanmu Seamount is a seamount lying within the Hawaiian-Emperor seamount chain in the Pacific Ocean. The last eruption of Kanmu Seamount is unknown.

Koko Guyot

Koko Guyot (also sometimes known as Kinmei and Koko Seamount) is a 48.1-million-year-old guyot, a type of underwater volcano with a flat top, which lies near the southern end of the Emperor seamounts, about 200 km (124 mi) north of the "bend" in the volcanic Hawaiian-Emperor seamount chain. Pillow lava has been sampled on the north west flank of Koko Seamount, and the oldest dated lava is 40 million years old. Seismic studies indicate that it is built on a 9 km (6 mi) thick portion of the Pacific Plate. The oldest rock from the north side of Koko Seamount is dated at 52.6 and the south side of Koko at 50.4 million years ago. To the southeast of the bend is Kimmei Seamount at 47.9 million years ago and southeast of it, Daikakuji at 46.7.

List of seamounts in the Marshall Islands

The Marshall Islands are the site of a number of seamounts. These volcanoes form several groups, including the Ralik Chain, the Ratak Chain and some seamounts around Anewetak. These seamounts are in turn part of a larger province that extends from the South Pacific to the Mariana Trench and is characterized by unusually shallow ocean ground.These seamounts and volcanoes do not have simple hotspot-like age progressions, with some volcanoes being younger than one would expect from age progression and having more than one active episode. In some places, a middle Cretaceous and a late Cretaceous episode of volcanic activity have been determined by radiometric dating. Despite this, some hotspot-based genesis models have been formulated, often implying that French Polynesian hotspots are responsible for the formation of seamounts, with the Society hotspot, Rurutu hotspot, Rarotonga hotspot and the Macdonald hotspot being candidate hotspots responsible for the development of the Marshall Islands seamounts. Such linkages are in part supported by geochemical data. Some discrepancies between the age and position of such seamounts and the predictions of the hotspot model may reflect the activity of short-lived hotspots linked to large mantle plumes that produce more than one hotspot.

List of volcanoes in the Hawaiian – Emperor seamount chain

The Hawaiian–Emperor seamount chain is a series of volcanoes and seamounts extending about 6,200 km across the Pacific Ocean. The chain has been produced by the movement of the ocean crust over the Hawaiʻi hotspot, an upwelling of hot rock from the Earth's mantle. As the oceanic crust moves the volcanoes farther away from their source of magma, their eruptions become less frequent and less powerful until they eventually cease to erupt altogether. At that point, erosion of the volcano and subsidence of the seafloor cause the volcano to gradually diminish. As the volcano sinks and erodes, it first becomes an atoll island and then an atoll. Further subsidence causes the volcano to sink below the sea surface, becoming a seamount and/or a guyot. This list documents the most significant volcanoes in the chain, ordered by distance from the hotspot; however, there are many others that have yet to be properly studied.

The chain can be divided into three subsections. The first, the Hawaiian archipelago (also known as the Windward isles), consists of the islands comprising the U.S. state of Hawaiʻi (not to be confused with the island of Hawaiʻi). As it is the closest to the hotspot, this volcanically active region is the youngest part of the chain, with ages ranging from 400,000 years to 5.1 million years. The island of Hawaiʻi is comprised by five volcanoes, of which two (Kilauea and Mauna Loa) are still active. Lōʻihi Seamount continues to grow offshore, and is the only known volcano in the chain in the submarine pre-shield stage.The second part of the chain is composed of the Northwestern Hawaiian Islands, collectively referred to as the Leeward isles, the constituents of which are between 7.2 and 27.7 million years in age. Erosion has long since overtaken volcanic activity at these islands, and most of them are atolls, atoll islands, and extinct islands. They contain many of the most northerly atolls in the world; one of them, Kure Atoll, is the northern-most atoll in the world.The oldest and most heavily eroded part of the chain are the Emperor seamounts, which are 39 to 85 million years in age. The Emperor and Hawaiian chains are separated by a large L-shaped bend that causes the orientations of the chains to differ by about 60°. This bend was long attributed to a relatively sudden change in the direction of plate motion, but research conducted in 2003 suggests that it was the movement of the hotspot itself that caused the bend. The issue is still currently under debate. All of the volcanoes in this part of the chain have long since subsided below sea level, becoming seamounts and guyots (see also the seamount and guyot stages of Hawaiian volcanism). Many of the volcanoes are named after former emperors of Japan. The seamount chain extends to the West Pacific, and terminates at the Kuril–Kamchatka Trench, a subduction zone at the border of Russia.

Lōʻihi Seamount

Lōihi Seamount (also known as Lōʻihi) is an active submarine volcano about 35 km (22 mi) off the southeast coast of the island of Hawaii. The top of the seamount is about 975 m (3,000 ft) below sea level. This seamount is on the flank of Mauna Loa, the largest shield volcano on Earth. Lōihi, meaning "long" in Hawaiian, is the newest volcano in the Hawaiian–Emperor seamount chain, a string of volcanoes that stretches over 5,800 km (3,600 mi) northwest of Lōʻihi. Unlike most active volcanoes in the Pacific Ocean that make up the active plate margins on the Pacific Ring of Fire, Lōʻihi and the other volcanoes of the Hawaiian–Emperor seamount chain are hotspot volcanoes and formed well away from the nearest plate boundary. Volcanoes in the Hawaiian Islands arise from the Hawaii hotspot, and as the youngest volcano in the chain, Lōihi is the only Hawaiian volcano in the deep submarine preshield stage of development.

Lōihi began forming around 400,000 years ago and is expected to begin emerging above sea level about 10,000–100,000 years from now. At its summit, Lōʻihi Seamount stands more than 3,000 m (10,000 ft) above the seafloor, making it taller than Mount St. Helens was before its catastrophic 1980 eruption. A diverse microbial community resides around Lōihi's many hydrothermal vents.

In the summer of 1996, a swarm of 4,070 earthquakes was recorded at Lōʻihi. At the time this was the most energetic earthquake swarm in Hawaii recorded history. The swarm altered 10 to 13 square kilometres (4 to 5 sq mi) of the seamount's summit; one section, Pele's Vents, collapsed entirely upon itself and formed the renamed Pele's Pit. The volcano has remained relatively active since the 1996 swarm and is monitored by the United States Geological Survey (USGS). The Hawaii Undersea Geological Observatory (HUGO) provided real-time data on Lōʻihi between 1997 and 1998. Lōʻihi's last known eruption was in 1996, before the earthquake swarm of that summer.

Marie Byrd Land

Marie Byrd Land is the portion of West Antarctica lying east of the Ross Ice Shelf and the Ross Sea and south of the Pacific Ocean, extending eastward approximately to a line between the head of the Ross Ice Shelf and Eights Coast. It stretches between 158°W and 103°24'W. The inclusion of the area between the Rockefeller Plateau and Eights Coast is based upon the leading role of the American Rear Admiral Richard E. Byrd in the exploration of this area. The name was originally applied by Admiral Byrd in 1929, in honor of his wife, to the northwestern part of the area, the part that was explored in that year.

Nintoku Seamount

Nintoku Seamount or Nintoku Guyot is a seamount (underwater volcano) and guyot (flat top) in the Hawaiian-Emperor seamount chain. It is a large, irregularly shaped volcano that last erupted 66 million years ago. Three lava flows have been sampled at Nintoku Seamount; the flows are almost all alkalic (subaerial) lava. It is 56.2 million years old.Nintoku is positioned a roughly 41 degrees north latitude, approximately two-thirds the way southward along the north-northeast-south-southeast Emperor seamounts extending from Meiji Seamount (about 53°N) in the north to Kammu Seamount (about 32°N) at the chain's southern terminus. Nintoku Seamount was named after the 16th emperor of Japan, Emperor Nintoku, by geologist Robert Dietz in 1954.The seamount occupies a central position in the Emperor Seamount chain and is thus an important point in the paleolatitude history of the Hawaiian hotspot, instrumental to proving the scientific hunch that the Hawaii hotspot was a mobile entity. The structure of the seamount is elongate, aligned north-northwest along the Emperor trend, with two prominent ridges trending southwest and south-southwest as far as 100 km (62 mi) from the main crater. Nintoku Seamount is a plexus of coalesced volcanoes, much like many of the larger seamounts in this chain. The Nintoku system is, however, clearly isolated from Yomei Seamount, about 100 km (62 mi) to the north, and Jingu Seamount, about 200 km (124 mi) to south, by abyssal depths.

Orca Seamount

Orca Seamount is a seamount (underwater volcano) near King George Island in Antarctica, in the Bransfield Strait. While it is inactive. However last volcanic activity at Orca Seamount is judged to have occurred in the recent past as there are temperature anomalies in the seawater around at the seamount. Thermophilic and hyperthermophilic microorganisms organism have been fount at the seamount.The crater rim is about 3 km wide and about 500 m above the ocean floor.The seamount was first named by Professor O. González-Ferrán of Chile in 1987, after the orca (killer whale) often sighted in these waters. It was mapped and studied by the ship RV Polarstern during an Antarctic cruise (number ANT-XI/3) in 2005. The variant name of Viehoff Seamount (approved in 6/95 ACUF 263) was named for Dr. Thomas Viehoff, a remote sensing specialist in marine sciences. Name proposed by Dr. G.B. Udintsev, Vernadsky Institute of Geochemistry (VIG).

Wordie Seamount

Wordie Seamount is a seamount located in Bransfield Strait, Antarctica. The feature is named after James Wordie, geologist on Ernest Shackleton's 1914 expedition to Antarctica.

Yomei Seamount

Yomei Seamount is a seamount of the Hawaiian-Emperor seamount chain in the northern Pacific Ocean.

Its eruption ages are unknown, but the seamounts on either side are in the 56.2 to 59.6 million range during the Paleogene Period.


Zealandia (), also known as the New Zealand continent or Tasmantis, is an almost entirely submerged mass of continental crust that sank after breaking away from Australia 60–85 million years ago, having separated from Antarctica between 85 and 130 million years ago. It has variously been described as a continental fragment, a microcontinent, a submerged continent, and a continent. The name and concept for Zealandia was proposed by Bruce Luyendyk in 1995. Zealandia's status as a continent is not universally accepted, but New Zealand geologist Nick Mortimer has commented that "if it wasn't for the ocean" it would have been recognized as such long ago.The land mass may have been completely submerged about 23 million years ago, and most of it (93%) remains submerged beneath the Pacific Ocean. With a total area of approximately 4,920,000 km2 (1,900,000 sq mi), it is the world's largest current microcontinent, more than twice the size of the next-largest microcontinent and more than half the size of the Australian continent. As such, and due to other geological considerations, such as crustal thickness and density, it is arguably a continent in its own right. This was the argument which made news in 2017, when geologists from New Zealand, New Caledonia, and Australia concluded that Zealandia fulfills all the requirements to be considered a continent, rather than a microcontinent or continental fragment.Zealandia supports substantial inshore fisheries and contains gas fields, of which the largest known is New Zealand's Maui gas field, near Taranaki. Permits for oil exploration in the Great South Basin were issued in 2007. Offshore mineral resources include iron sands, volcanic massive sulfides and ferromanganese nodule deposits.

Ocean zones
Sea level


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.