Scientific theory

A scientific theory is an explanation of an aspect of the natural world that can be repeatedly tested and verified in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment.[1][2] In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.[3]

The meaning of the term scientific theory (often contracted to theory for brevity) as used in the disciplines of science is significantly different from the common vernacular usage of theory.[4][Note 1] In everyday speech, theory can imply an explanation that represents an unsubstantiated and speculative guess,[4] whereas in science it describes an explanation that has been tested and widely accepted as valid. These different usages are comparable to the opposing usages of prediction in science versus common speech, where it denotes a mere hope.

The strength of a scientific theory is related to the diversity of phenomena it can explain and its simplicity. As additional scientific evidence is gathered, a scientific theory may be modified and ultimately rejected if it cannot be made to fit the new findings; in such circumstances, a more accurate theory is then required. That doesn’t mean that all theories can be fundamentally changed (for example, well established foundational scientific theories such as evolution, heliocentric theory, cell theory, theory of plate tectonics etc). In certain cases, the less-accurate unmodified scientific theory can still be treated as a theory if it is useful (due to its sheer simplicity) as an approximation under specific conditions. A case in point is Newton's laws of motion, which can serve as an approximation to special relativity at velocities that are small relative to the speed of light.

Scientific theories are testable and make falsifiable predictions.[5] They describe the causes of a particular natural phenomenon and are used to explain and predict aspects of the physical universe or specific areas of inquiry (for example, electricity, chemistry, and astronomy). Scientists use theories to further scientific knowledge, as well as to facilitate advances in technology or medicine.

As with other forms of scientific knowledge, scientific theories are both deductive and inductive,[6] aiming for predictive and explanatory power.

The paleontologist Stephen Jay Gould wrote that "...facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts."[7]

Types

Albert Einstein described two types of scientific theories: "Constructive theories" and "principle theories". Constructive theories are constructive models for phenomena: for example, kinetic energy. Principle theories are empirical generalisations such as Newton's laws of motion.[8]

Characteristics

Essential criteria

Typically for any theory to be accepted within most academia there is one simple criterion. The essential criterion is that the theory must be observable and repeatable. The aforementioned criterion is essential to prevent fraud and perpetuate science itself.

Plates tect2 en
The tectonic plates of the world were mapped in the second half of the 20th century. Plate tectonic theory successfully explains numerous observations about the Earth, including the distribution of earthquakes, mountains, continents, and oceans.

The defining characteristic of all scientific knowledge, including theories, is the ability to make falsifiable or testable predictions. The relevance and specificity of those predictions determine how potentially useful the theory is. A would-be theory that makes no observable predictions is not a scientific theory at all. Predictions not sufficiently specific to be tested are similarly not useful. In both cases, the term "theory" is not applicable.

A body of descriptions of knowledge can be called a theory if it fulfills the following criteria:

  • It makes falsifiable predictions with consistent accuracy across a broad area of scientific inquiry (such as mechanics).
  • It is well-supported by many independent strands of evidence, rather than a single foundation.
  • It is consistent with preexisting experimental results and at least as accurate in its predictions as are any preexisting theories.

These qualities are certainly true of such established theories as special and general relativity, quantum mechanics, plate tectonics, the modern evolutionary synthesis, etc.

Other criteria

In addition, scientists prefer to work with a theory that meets the following qualities:

  • It can be subjected to minor adaptations to account for new data that do not fit it perfectly, as they are discovered, thus increasing its predictive capability over time.
  • It is among the most parsimonious explanations, economical in the use of proposed entities or explanatory steps as per Occam's razor. This is because for each accepted explanation of a phenomenon, there may be an extremely large, perhaps even incomprehensible, number of possible and more complex alternatives, because one can always burden failing explanations with ad hoc hypotheses to prevent them from being falsified; therefore, simpler theories are preferable to more complex ones because they are more testable.[9][10][11]

Definitions from scientific organizations

The United States National Academy of Sciences defines scientific theories as follows:

The formal scientific definition of theory is quite different from the everyday meaning of the word. It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence. Many scientific theories are so well established that no new evidence is likely to alter them substantially. For example, no new evidence will demonstrate that the Earth does not orbit around the sun (heliocentric theory), or that living things are not made of cells (cell theory), that matter is not composed of atoms, or that the surface of the Earth is not divided into solid plates that have moved over geological timescales (the theory of plate tectonics)...One of the most useful properties of scientific theories is that they can be used to make predictions about natural events or phenomena that have not yet been observed.[12]

From the American Association for the Advancement of Science:

A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment. Such fact-supported theories are not "guesses" but reliable accounts of the real world. The theory of biological evolution is more than "just a theory". It is as factual an explanation of the universe as the atomic theory of matter or the germ theory of disease. Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact.

Note that the term theory would not be appropriate for describing untested but intricate hypotheses or even scientific models.

Formation

RobertHookeMicrographia1665
The first observation of cells, by Robert Hooke, using an early microscope.[13] This led to the development of cell theory.

The scientific method involves the proposal and testing of hypotheses, by deriving predictions from the hypotheses about the results of future experiments, then performing those experiments to see whether the predictions are valid. This provides evidence either for or against the hypothesis. When enough experimental results have been gathered in a particular area of inquiry, scientists may propose an explanatory framework that accounts for as many of these as possible. This explanation is also tested, and if it fulfills the necessary criteria (see above), then the explanation becomes a theory. This can take many years, as it can be difficult or complicated to gather sufficient evidence.

Once all of the criteria have been met, it will be widely accepted by scientists (see scientific consensus) as the best available explanation of at least some phenomena. It will have made predictions of phenomena that previous theories could not explain or could not predict accurately, and it will have resisted attempts at falsification. The strength of the evidence is evaluated by the scientific community, and the most important experiments will have been replicated by multiple independent groups.

Theories do not have to be perfectly accurate to be scientifically useful. For example, the predictions made by classical mechanics are known to be inaccurate in the relatistivic realm, but they are almost exactly correct at the comparatively low velocities of common human experience.[14] In chemistry, there are many acid-base theories providing highly divergent explanations of the underlying nature of acidic and basic compounds, but they are very useful for predicting their chemical behavior.[15] Like all knowledge in science, no theory can ever be completely certain, since it is possible that future experiments might conflict with the theory's predictions.[16] However, theories supported by the scientific consensus have the highest level of certainty of any scientific knowledge; for example, that all objects are subject to gravity or that life on Earth evolved from a common ancestor.[17]

Acceptance of a theory does not require that all of its major predictions be tested, if it is already supported by sufficiently strong evidence. For example, certain tests may be unfeasible or technically difficult. As a result, theories may make predictions that have not yet been confirmed or proven incorrect; in this case, the predicted results may be described informally with the term "theoretical". These predictions can be tested at a later time, and if they are incorrect, this may lead to the revision or rejection of the theory.

Modification and improvement

If experimental results contrary to a theory's predictions are observed, scientists first evaluate whether the experimental design was sound, and if so they confirm the results by independent replication. A search for potential improvements to the theory then begins. Solutions may require minor or major changes to the theory, or none at all if a satisfactory explanation is found within the theory's existing framework.[18] Over time, as successive modifications build on top of each other, theories consistently improve and greater predictive accuracy is achieved. Since each new version of a theory (or a completely new theory) must have more predictive and explanatory power than the last, scientific knowledge consistently becomes more accurate over time.

If modifications to the theory or other explanations seem to be insufficient to account for the new results, then a new theory may be required. Since scientific knowledge is usually durable, this occurs much less commonly than modification.[16] Furthermore, until such a theory is proposed and accepted, the previous theory will be retained. This is because it is still the best available explanation for many other phenomena, as verified by its predictive power in other contexts. For example, it has been known since 1859 that the observed perihelion precession of Mercury violates Newtonian mechanics,[19] but the theory remained the best explanation available until relativity was supported by sufficient evidence. Also, while new theories may be proposed by a single person or by many, the cycle of modifications eventually incorporates contributions from many different scientists.[20]

After the changes, the accepted theory will explain more phenomena and have greater predictive power (if it did not, the changes would not be adopted); this new explanation will then be open to further replacement or modification. If a theory does not require modification despite repeated tests, this implies that the theory is very accurate. This also means that accepted theories continue to accumulate evidence over time, and the length of time that a theory (or any of its principles) remains accepted often indicates the strength of its supporting evidence.

Unification

HAtomOrbitals
In quantum mechanics, the electrons of an atom occupy orbitals around the nucleus. This image shows the orbitals of a hydrogen atom (s, p, d) at three different energy levels (1, 2, 3). Brighter areas correspond to higher probability density.

In some cases, two or more theories may be replaced by a single theory that explains the previous theories as approximations or special cases, analogous to the way a theory is a unifying explanation for many confirmed hypotheses; this is referred to as unification of theories.[21] For example, electricity and magnetism are now known to be two aspects of the same phenomenon, referred to as electromagnetism.[22]

When the predictions of different theories appear to contradict each other, this is also resolved by either further evidence or unification. For example, physical theories in the 19th century implied that the Sun could not have been burning long enough to allow certain geological changes as well as the evolution of life. This was resolved by the discovery of nuclear fusion, the main energy source of the Sun.[23] Contradictions can also be explained as the result of theories approximating more fundamental (non-contradictory) phenomena. For example, atomic theory is an approximation of quantum mechanics. Current theories describe three separate fundamental phenomena of which all other theories are approximations;[24] the potential unification of these is sometimes called the Theory of Everything.[21]

Example: Relativity

In 1905, Albert Einstein published the principle of special relativity, which soon became a theory.[25] Special relativity predicted the alignment of the Newtonian principle of Galilean invariance, also termed Galilean relativity, with the electromagnetic field.[26] By omitting from special relativity the luminiferous aether, Einstein stated that time dilation and length contraction measured in an object in relative motion is inertial—that is, the object exhibits constant velocity, which is speed with direction, when measured by its observer. He thereby duplicated the Lorentz transformation and the Lorentz contraction that had been hypothesized to resolve experimental riddles and inserted into electrodynamic theory as dynamical consequences of the aether's properties. An elegant theory, special relativity yielded its own consequences,[27] such as the equivalence of mass and energy transforming into one another and the resolution of the paradox that an excitation of the electromagnetic field could be viewed in one reference frame as electricity, but in another as magnetism.

Einstein sought to generalize the invariance principle to all reference frames, whether inertial or accelerating.[28] Rejecting Newtonian gravitation—a central force acting instantly at a distance—Einstein presumed a gravitational field. In 1907, Einstein's equivalence principle implied that a free fall within a uniform gravitational field is equivalent to inertial motion.[28] By extending special relativity's effects into three dimensions, general relativity extended length contraction into space contraction, conceiving of 4D space-time as the gravitational field that alters geometrically and sets all local objects' pathways. Even massless energy exerts gravitational motion on local objects by "curving" the geometrical "surface" of 4D space-time. Yet unless the energy is vast, its relativistic effects of contracting space and slowing time are negligible when merely predicting motion. Although general relativity is embraced as the more explanatory theory via scientific realism, Newton's theory remains successful as merely a predictive theory via instrumentalism. To calculate trajectories, engineers and NASA still uses Newton's equations, which are simpler to operate.[16]

Theories and laws

Both scientific laws and scientific theories are produced from the scientific method through the formation and testing of hypotheses, and can predict the behavior of the natural world. Both are typically well-supported by observations and/or experimental evidence.[29] However, scientific laws are descriptive accounts of how nature will behave under certain conditions.[30] Scientific theories are broader in scope, and give overarching explanations of how nature works and why it exhibits certain characteristics. Theories are supported by evidence from many different sources, and may contain one or several laws.[31]

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence have been accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. A theory will always remain a theory; a law will always remain a law.[29][32][33] Both theories and laws could potentially be falsified by countervailing evidence.[34]

Theories and laws are also distinct from hypotheses. Unlike hypotheses, theories and laws may be simply referred to as scientific fact.[35][36] However, in science, theories are different from facts even when they are well supported.[37] For example, evolution is both a theory and a fact.[4]

About theories

Theories as axioms

The logical positivists thought of scientific theories as statements in a formal language. First-order logic is an example of a formal language. The logical positivists envisaged a similar scientific language. In addition to scientific theories, the language also included observation sentences ("the sun rises in the east"), definitions, and mathematical statements. The phenomena explained by the theories, if they could not be directly observed by the senses (for example, atoms and radio waves), were treated as theoretical concepts. In this view, theories function as axioms: predicted observations are derived from the theories much like theorems are derived in Euclidean geometry. However, the predictions are then tested against reality to verify the theories, and the "axioms" can be revised as a direct result.

The phrase "the received view of theories" is used to describe this approach. Terms commonly associated with it are "linguistic" (because theories are components of a language) and "syntactic" (because a language has rules about how symbols can be strung together). Problems in defining this kind of language precisely, e.g., are objects seen in microscopes observed or are they theoretical objects, led to the effective demise of logical positivism in the 1970s.

Theories as models

The semantic view of theories, which identifies scientific theories with models rather than propositions, has replaced the received view as the dominant position in theory formulation in the philosophy of science.[38][39][40] A model is a logical framework intended to represent reality (a "model of reality"), similar to the way that a map is a graphical model that represents the territory of a city or country.[41][42]

Perihelio
Precession of the perihelion of Mercury (exaggerated). The deviation in Mercury's position from the Newtonian prediction is about 43 arc-seconds (about two-thirds of 1/60 of a degree) per century.[43][44]

In this approach, theories are a specific category of models that fulfill the necessary criteria (see above). One can use language to describe a model; however, the theory is the model (or a collection of similar models), and not the description of the model. A model of the solar system, for example, might consist of abstract objects that represent the sun and the planets. These objects have associated properties, e.g., positions, velocities, and masses. The model parameters, e.g., Newton's Law of Gravitation, determine how the positions and velocities change with time. This model can then be tested to see whether it accurately predicts future observations; astronomers can verify that the positions of the model's objects over time match the actual positions of the planets. For most planets, the Newtonian model's predictions are accurate; for Mercury, it is slightly inaccurate and the model of general relativity must be used instead.

The word "semantic" refers to the way that a model represents the real world. The representation (literally, "re-presentation") describes particular aspects of a phenomenon or the manner of interaction among a set of phenomena. For instance, a scale model of a house or of a solar system is clearly not an actual house or an actual solar system; the aspects of an actual house or an actual solar system represented in a scale model are, only in certain limited ways, representative of the actual entity. A scale model of a house is not a house; but to someone who wants to learn about houses, analogous to a scientist who wants to understand reality, a sufficiently detailed scale model may suffice.

Differences between theory and model

Several commentators[45] have stated that the distinguishing characteristic of theories is that they are explanatory as well as descriptive, while models are only descriptive (although still predictive in a more limited sense). Philosopher Stephen Pepper also distinguished between theories and models, and said in 1948 that general models and theories are predicated on a "root" metaphor that constrains how scientists theorize and model a phenomenon and thus arrive at testable hypotheses.

Engineering practice makes a distinction between "mathematical models" and "physical models"; the cost of fabricating a physical model can be minimized by first creating a mathematical model using a computer software package, such as a computer aided design tool. The component parts are each themselves modelled, and the fabrication tolerances are specified. An exploded view drawing is used to lay out the fabrication sequence. Simulation packages for displaying each of the subassemblies allow the parts to be rotated, magnified, in realistic detail. Software packages for creating the bill of materials for construction allows subcontractors to specialize in assembly processes, which spreads the cost of manufacturing machinery among multiple customers. See: Computer-aided engineering, Computer-aided manufacturing, and 3D printing

Assumptions in formulating theories

An assumption (or axiom) is a statement that is accepted without evidence. For example, assumptions can be used as premises in a logical argument. Isaac Asimov described assumptions as follows:

...it is incorrect to speak of an assumption as either true or false, since there is no way of proving it to be either (If there were, it would no longer be an assumption). It is better to consider assumptions as either useful or useless, depending on whether deductions made from them corresponded to reality...Since we must start somewhere, we must have assumptions, but at least let us have as few assumptions as possible.[46]

Certain assumptions are necessary for all empirical claims (e.g. the assumption that reality exists). However, theories do not generally make assumptions in the conventional sense (statements accepted without evidence). While assumptions are often incorporated during the formation of new theories, these are either supported by evidence (such as from previously existing theories) or the evidence is produced in the course of validating the theory. This may be as simple as observing that the theory makes accurate predictions, which is evidence that any assumptions made at the outset are correct or approximately correct under the conditions tested.

Conventional assumptions, without evidence, may be used if the theory is only intended to apply when the assumption is valid (or approximately valid). For example, the special theory of relativity assumes an inertial frame of reference. The theory makes accurate predictions when the assumption is valid, and does not make accurate predictions when the assumption is not valid. Such assumptions are often the point with which older theories are succeeded by new ones (the general theory of relativity works in non-inertial reference frames as well).

The term "assumption" is actually broader than its standard use, etymologically speaking. The Oxford English Dictionary (OED) and online Wiktionary indicate its Latin source as assumere ("accept, to take to oneself, adopt, usurp"), which is a conjunction of ad- ("to, towards, at") and sumere (to take). The root survives, with shifted meanings, in the Italian assumere and Spanish sumir. The first sense of "assume" in the OED is "to take unto (oneself), receive, accept, adopt". The term was originally employed in religious contexts as in "to receive up into heaven", especially "the reception of the Virgin Mary into heaven, with body preserved from corruption", (1297 CE) but it was also simply used to refer to "receive into association" or "adopt into partnership". Moreover, other senses of assumere included (i) "investing oneself with (an attribute)", (ii) "to undertake" (especially in Law), (iii) "to take to oneself in appearance only, to pretend to possess", and (iv) "to suppose a thing to be" (all senses from OED entry on "assume"; the OED entry for "assumption" is almost perfectly symmetrical in senses). Thus, "assumption" connotes other associations than the contemporary standard sense of "that which is assumed or taken for granted; a supposition, postulate" (only the 11th of 12 senses of "assumption", and the 10th of 11 senses of "assume").

Descriptions

From philosophers of science

Karl Popper described the characteristics of a scientific theory as follows:[5]

  1. It is easy to obtain confirmations, or verifications, for nearly every theory—if we look for confirmations.
  2. Confirmations should count only if they are the result of risky predictions; that is to say, if, unenlightened by the theory in question, we should have expected an event which was incompatible with the theory—an event which would have refuted the theory.
  3. Every "good" scientific theory is a prohibition: it forbids certain things to happen. The more a theory forbids, the better it is.
  4. A theory which is not refutable by any conceivable event is non-scientific. Irrefutability is not a virtue of a theory (as people often think) but a vice.
  5. Every genuine test of a theory is an attempt to falsify it, or to refute it. Testability is falsifiability; but there are degrees of testability: some theories are more testable, more exposed to refutation, than others; they take, as it were, greater risks.
  6. Confirming evidence should not count except when it is the result of a genuine test of the theory; and this means that it can be presented as a serious but unsuccessful attempt to falsify the theory. (I now speak in such cases of "corroborating evidence".)
  7. Some genuinely testable theories, when found to be false, might still be upheld by their admirers—for example by introducing post hoc (after the fact) some auxiliary hypothesis or assumption, or by reinterpreting the theory post hoc in such a way that it escapes refutation. Such a procedure is always possible, but it rescues the theory from refutation only at the price of destroying, or at least lowering, its scientific status, by tampering with evidence. The temptation to tamper can be minimized by first taking the time to write down the testing protocol before embarking on the scientific work.

Popper summarized these statements by saying that the central criterion of the scientific status of a theory is its "falsifiability, or refutability, or testability".[5] Echoing this, Stephen Hawking states, "A theory is a good theory if it satisfies two requirements: It must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations." He also discusses the "unprovable but falsifiable" nature of theories, which is a necessary consequence of inductive logic, and that "you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory".[47]

Several philosophers and historians of science have, however, argued that Popper's definition of theory as a set of falsifiable statements is wrong[48] because, as Philip Kitcher has pointed out, if one took a strictly Popperian view of "theory", observations of Uranus when first discovered in 1781 would have "falsified" Newton's celestial mechanics. Rather, people suggested that another planet influenced Uranus' orbit—and this prediction was indeed eventually confirmed.

Kitcher agrees with Popper that "There is surely something right in the idea that a science can succeed only if it can fail."[49] He also says that scientific theories include statements that cannot be falsified, and that good theories must also be creative. He insists we view scientific theories as an "elaborate collection of statements", some of which are not falsifiable, while others—those he calls "auxiliary hypotheses", are.

According to Kitcher, good scientific theories must have three features:[49]

  1. Unity: "A science should be unified…. Good theories consist of just one problem-solving strategy, or a small family of problem-solving strategies, that can be applied to a wide range of problems."
  2. Fecundity: "A great scientific theory, like Newton's, opens up new areas of research…. Because a theory presents a new way of looking at the world, it can lead us to ask new questions, and so to embark on new and fruitful lines of inquiry…. Typically, a flourishing science is incomplete. At any time, it raises more questions than it can currently answer. But incompleteness is not vice. On the contrary, incompleteness is the mother of fecundity…. A good theory should be productive; it should raise new questions and presume those questions can be answered without giving up its problem-solving strategies."
  3. Auxiliary hypotheses that are independently testable: "An auxiliary hypothesis ought to be testable independently of the particular problem it is introduced to solve, independently of the theory it is designed to save." (For example, the evidence for the existence of Neptune is independent of the anomalies in Uranus's orbit.)

Like other definitions of theories, including Popper's, Kitcher makes it clear that a theory must include statements that have observational consequences. But, like the observation of irregularities in the orbit of Uranus, falsification is only one possible consequence of observation. The production of new hypotheses is another possible and equally important result.

Analogies and metaphors

The concept of a scientific theory has also been described using analogies and metaphors. For instance, the logical empiricist Carl Gustav Hempel likened the structure of a scientific theory to a "complex spatial network:"

Its terms are represented by the knots, while the threads connecting the latter correspond, in part, to the definitions and, in part, to the fundamental and derivative hypotheses included in the theory. The whole system floats, as it were, above the plane of observation and is anchored to it by the rules of interpretation. These might be viewed as strings which are not part of the network but link certain points of the latter with specific places in the plane of observation. By virtue of these interpretive connections, the network can function as a scientific theory: From certain observational data, we may ascend, via an interpretive string, to some point in the theoretical network, thence proceed, via definitions and hypotheses, to other points, from which another interpretive string permits a descent to the plane of observation.[50]

Michael Polanyi made an analogy between a theory and a map:

A theory is something other than myself. It may be set out on paper as a system of rules, and it is the more truly a theory the more completely it can be put down in such terms. Mathematical theory reaches the highest perfection in this respect. But even a geographical map fully embodies in itself a set of strict rules for finding one's way through a region of otherwise uncharted experience. Indeed, all theory may be regarded as a kind of map extended over space and time.[51]

A scientific theory can also be thought of as a book that captures the fundamental information about the world, a book that must be researched, written, and shared. In 1623, Galileo Galilei wrote:

Philosophy [i.e. physics] is written in this grand book—I mean the universe—which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth.[52]

The book metaphor could also be applied in the following passage, by the contemporary philosopher of science Ian Hacking:

I myself prefer an Argentine fantasy. God did not write a Book of Nature of the sort that the old Europeans imagined. He wrote a Borgesian library, each book of which is as brief as possible, yet each book of which is inconsistent with every other. No book is redundant. For every book there is some humanly accessible bit of Nature such that that book, and no other, makes possible the comprehension, prediction and influencing of what is going on…Leibniz said that God chose a world which maximized the variety of phenomena while choosing the simplest laws. Exactly so: but the best way to maximize phenomena and have simplest laws is to have the laws inconsistent with each other, each applying to this or that but none applying to all.[53]

In physics

In physics, the term theory is generally used for a mathematical framework—derived from a small set of basic postulates (usually symmetries—like equality of locations in space or in time, or identity of electrons, etc.)—that is capable of producing experimental predictions for a given category of physical systems. A good example is classical electromagnetism, which encompasses results derived from gauge symmetry (sometimes called gauge invariance) in a form of a few equations called Maxwell's equations. The specific mathematical aspects of classical electromagnetic theory are termed "laws of electromagnetism," reflecting the level of consistent and reproducible evidence that supports them. Within electromagnetic theory generally, there are numerous hypotheses about how electromagnetism applies to specific situations. Many of these hypotheses are already considered to be adequately tested, with new ones always in the making and perhaps untested. An example of the latter might be the radiation reaction force. As of 2009, its effects on the periodic motion of charges are detectable in synchrotrons, but only as averaged effects over time. Some researchers are now considering experiments that could observe these effects at the instantaneous level (i.e. not averaged over time).[54][55]

Examples

Note that many fields of inquiry do not have specific named theories, e.g. developmental biology. Scientific knowledge outside a named theory can still have a high level of certainty, depending on the amount of evidence supporting it. Also note that since theories draw evidence from many different fields, the categorization is not absolute.

Notes

  1. ^ Per NAS 2008: "The formal scientific definition of theory is quite different from the everyday meaning of the word. It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence."

References

  1. ^ National Academy of Sciences (US) (1999). Science and Creationism: A View from the National Academy of Sciences (2nd ed.). National Academies Press. p. 2. doi:10.17226/6024. ISBN 978-0-309-06406-4. PMID 25101403.
  2. ^ The Structure of Scientific Theories. The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2016.
  3. ^ Schafersman, Steven D. "An Introduction to Science".
  4. ^ a b c "Is Evolution a Theory or a Fact?". National Academy of Sciences. 2008.
  5. ^ a b c Popper, Karl (1963), Conjectures and Refutations, Routledge and Kegan Paul, London, UK. Reprinted in Theodore Schick (ed., 2000), Readings in the Philosophy of Science, Mayfield Publishing Company, Mountain View, Calif.
  6. ^ Andersen, Hanne; Hepburn, Brian (2015). Edward N. Zalta (ed.). Scientific Method. The Stanford Encyclopedia of Philosophy.
  7. ^ The Devil in Dover, p. 98
  8. ^ Howard, Don A. (23 June 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy.
  9. ^ Alan Baker (2010) [2004]. "Simplicity". Stanford Encyclopedia of Philosophy. California: Stanford University. ISSN 1095-5054.
  10. ^ Courtney A, Courtney M (2008). "Comments Regarding "On the Nature Of Science"". Physics in Canada. 64 (3): 7–8. arXiv:0812.4932.
  11. ^ Elliott Sober, Let's Razor Occam's Razor, pp. 73–93, from Dudley Knowles (ed.) Explanation and Its Limits, Cambridge University Press (1994).
  12. ^ National Academy of Sciences (2008), Science, Evolution, and Creationism.
  13. ^ Hooke, Robert (1635–1703). Micrographia, Observation XVIII.
  14. ^ Misner, Charles W.; Thorne, Kip S.; Wheeler, John Archibald (1973). Gravitation, p. 1049. New York: W. H.Freeman and Company. ISBN 0-7167-0344-0.
  15. ^ See Acid–base reaction.
  16. ^ a b c "Chapter 1: The Nature of Science". www.project2061.org.
  17. ^ See, for example, Common descent and Evidence for common descent.
  18. ^ For example, see the article on the discovery of Neptune; the discovery was based on an apparent violation of the orbit of Uranus as predicted by Newtonian mechanics. This explanation did not require any modification of the theory, but rather modification of the hypothesis that there were only seven planets in the Solar System.
  19. ^ U. Le Verrier (1859), (in French), "Lettre de M. Le Verrier à M. Faye sur la théorie de Mercure et sur le mouvement du périhélie de cette planète", Comptes rendus hebdomadaires des séances de l'Académie des sciences (Paris), vol. 49 (1859), pp. 379–83.
  20. ^ For example, the modern theory of evolution (the modern evolutionary synthesis) incorporates significant contributions from R. A. Fisher, Ernst Mayr, J. B. S. Haldane, and many others.
  21. ^ a b Weinberg S (1993). Dreams of a Final Theory: The Scientist's Search for the Ultimate Laws of Nature.
  22. ^ Maxwell, J. C., & Thompson, J. J. (1892). A treatise on electricity and magnetism. Clarendon Press series. Oxford: Clarendon.
  23. ^ "How the Sun Shines". www.nobelprize.org.
  24. ^ The strong force, the electroweak force, and gravity. The electroweak force is the unification of electromagnetism and the weak force. All observed causal interactions are understood to take place through one or more of these three mechanisms, although most systems are far too complicated to account for these except through the successive approximations offered by other theories.
  25. ^ Albert Einstein (1905) "Zur Elektrodynamik bewegter Körper Archived 2009-12-29 at the Wayback Machine", Annalen der Physik 17: 891; English translation On the Electrodynamics of Moving Bodies by George Barker Jeffery and Wilfrid Perrett (1923); Another English translation On the Electrodynamics of Moving Bodies by Megh Nad Saha (1920).
  26. ^ Schwarz, John H (Mar 1998). "Recent developments in superstring theory". Proceedings of the National Academy of Sciences of the United States of America. 95 (6): 2750–57. Bibcode:1998PNAS...95.2750S. doi:10.1073/pnas.95.6.2750. PMC 19640. PMID 9501161.
  27. ^ See Tests of special relativity. Also, for example: Sidney Coleman, Sheldon L. Glashow, Cosmic Ray and Neutrino Tests of Special Relativity, Phys. Lett. B405 (1997) 249–52, found here [1]. An overview can be found here.
  28. ^ a b Roberto Torretti, The Philosophy of Physics (Cambridge: Cambridge University Press, 1999), pp. 289–90.
  29. ^ a b "Scientific Laws and Theories".
  30. ^ See the article on Physical law, for example.
  31. ^ "Definitions of Fact, Theory, and Law in Scientific Work". 16 March 2016.
  32. ^ "Harding (1999)".
  33. ^ William F. McComas (30 December 2013). The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning. Springer Science & Business Media. p. 107. ISBN 978-94-6209-497-0.
  34. ^ "What's the Difference Between a Scientific Hypothesis, Theory and Law?".
  35. ^ Gould, Stephen Jay (1981-05-01). "Evolution as Fact and Theory". Discover. 2 (5): 34–37.
  36. ^ Further examples are here [2], and in the article on Evolution as fact and theory.
  37. ^ "Essay". ncse.com. Retrieved 25 March 2015.
  38. ^ Suppe, Frederick (1998). "Understanding Scientific Theories: An Assessment of Developments, 1969–1998" (PDF). Philosophy of Science. 67: S102–S115. doi:10.1086/392812. Retrieved 14 February 2013.
  39. ^ Halvorson, Hans (2012). "What Scientific Theories Could Not Be" (PDF). Philosophy of Science. 79 (2): 183–206. CiteSeerX 10.1.1.692.8455. doi:10.1086/664745. Retrieved 14 February 2013.
  40. ^ Frigg, Roman (2006). "Scientific Representation and the Semantic View of Theories" (PDF). Theoria. 55 (2): 183–206. Retrieved 14 February 2013.
  41. ^ Hacking, Ian (1983). Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press.
  42. ^ Box, George E.P. & Draper, N.R. (1987). Empirical Model-Building and Response Surfaces. Wiley. p. 424
  43. ^ Lorenzo Iorio (2005). "On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging". Astronomy and Astrophysics. 433 (1): 385–93. arXiv:gr-qc/0406041. Bibcode:2005A&A...433..385I. doi:10.1051/0004-6361:20047155.
  44. ^ Myles Standish, Jet Propulsion Laboratory (1998)
  45. ^ For example, Reese & Overto (1970); Lerner (1998); also Lerner & Teti (2005), in the context of modeling human behavior.
  46. ^ Isaac Asimov, Understanding Physics (1966) pp. 4–5.
  47. ^ Hawking, Stephen (1988). A Brief History of Time. Bantam Books. ISBN 978-0-553-38016-3.
  48. ^ Hempel. C.G. 1951 "Problems and Changes in the Empiricist Criterion of Meaning" in Aspects of Scientific Explanation. Glencoe: the Free Press. Quine, W.V.O 1952 "Two Dogmas of Empiricism" reprinted in From a Logical Point of View. Cambridge: Harvard University Press
  49. ^ a b Philip Kitcher 1982 Abusing Science: The Case Against Creationism, pp. 45–48. Cambridge: The MIT Press
  50. ^ Hempel CG 1952. Fundamentals of Concept Formation in Empirical Science. (Volume 2, #7 of Foundations of the Unity of Science. Toward an International Encyclopedia of Unified Science). University of Chicago Press, p. 36.
  51. ^ Polanyi M. 1958. Personal Knowledge. Towards a Post-Critical Philosophy. London: Routledge & Kegan Paul, p. 4.
  52. ^ Galileo Galilei, The Assayer, as translated by Stillman Drake (1957), Discoveries and Opinions of Galileo pp. 237–38.
  53. ^ Hacking I. 1983. Representing and Intervening. Cambridge University Press, p. 219.
  54. ^ Koga J and Yamagiwa M (2006). Radiation reaction effects in ultrahigh irradiance laser pulse interactions with multiple electrons.
  55. ^ [3]
  56. ^ Plass, G.N., 1956, The Carbon Dioxide Theory of Climatic Change, Tellus VIII, 2. (1956), pp. 140–54.

Further reading

Animal breeding

Animal breeding is a branch of animal science that addresses the evaluation (using best linear unbiased prediction and other methods) of the genetic value (estimated breeding value, EBV) of livestock. Selecting for breeding animals with superior EBV in growth rate, egg, meat, milk, or wool production, or with other desirable traits has revolutionized livestock production throughout the world. The scientific theory of animal breeding incorporates population genetics, quantitative genetics, statistics, and recently molecular genomics and is based on the pioneering work of Sewall Wright, Jay Lush, and Charles Henderson.

Approximation

An approximation is anything that is similar but not exactly equal to something else.

Biologist

A biologist is a scientist who has specialized knowledge in the field of biology, the scientific study of life. Biologists involved in fundamental research attempt to explore and further explain the underlying mechanisms that govern the functioning of living matter. Biologists involved in applied research attempt to develop or improve more specific processes and understanding, in fields such as medicine and industry.

Biologists are interested in understanding the underlying mechanisms that govern the functioning of living matter as well as the complex properties that emerge from the biophysical, biochemical, cellular and systemic interactions of living systems. Biologists conduct research using the scientific method to test the validity of a theory in a rational, unbiased and reproducible manner. This consists of hypothesis formation, experimentation and data analysis to establish the validity or invalidity of a scientific theory.

There are different types of biologists. Theoretical biologists use mathematical methods and develop models to understand phenomena and ideally predict future experimental results, while experimental biologists conceive experiments to test those predictions. Some biologists work on microorganisms, while others study multicellular organisms (including humans). Some investigate the nano or micro-scale, others emergent properties such as ecological interactions or cognition. There is much overlap between different fields of biology (e.g. zoology, microbiology, genetics and evolutionary biology) and due to the interdisciplinary nature of the field it is often difficult to classify a life scientist as only one of them. Many biological scientists work in research and development. Some conduct fundamental research to advance human knowledge of life. Furthermore, applied biological research often aids the development of solutions to problems in areas such as human health and the natural environment. Biological scientists mostly work in government, university, and private industry laboratories.

Caloric theory

The caloric theory is an obsolete scientific theory that heat consists of a self-repellent fluid called caloric that flows from hotter bodies to colder bodies. Caloric was also thought of as a weightless gas that could pass in and out of pores in solids and liquids. The "caloric theory" was superseded by the mid-19th century in favor of the mechanical theory of heat, but nevertheless persisted in some scientific literature—particularly in more popular treatments—until the end of the 19th century.

Cell theory

In biology, cell theory is the historic scientific theory, now universally accepted, that living organisms are made up of cells, that they are the basic structural/organizational unit of all organisms, and that all cells come from pre-existing cells. Cells are the basic unit of structure in all organisms and also the basic unit of reproduction. With continual improvements made to microscopes over time, magnification technology advanced enough to discover cells in the 17th century. This discovery is largely attributed to Robert Hooke, and began the scientific study of cells, also known as cell biology. Over a century later, many debates about cells began amongst scientists. Most of these debates involved the nature of cellular regeneration, and the idea of cells as a fundamental unit of life. Cell theory was eventually formulated in 1839. This is usually credited to Matthias Schleiden and Theodor Schwann. However, many other scientists like Rudolf Virchow contributed to the theory. It was an important step in the movement away from spontaneous generation.

The three tenets to the cell theory are as described below:

All living organisms are composed of one or more cells.

The cell is the basic unit of structure and organization in organisms.

Cells arise from pre-existing cells.The first of these tenets is disputed, as non-cellular entities such as viruses are sometimes considered life-forms.

Construct (philosophy)

A construct in the philosophy of science is an ideal object, where the existence of the thing may be said to depend upon a subject's mind. This contrasts with a real object, where existence does not seem to depend on the existence of a mind.In a scientific theory, particularly within psychology, a hypothetical construct is an explanatory variable which is not directly observable. For example, the concepts of intelligence and motivation are used to explain phenomena in psychology, but neither is directly observable. A hypothetical construct differs from an intervening variable in that it has properties and implications which have not been demonstrated in empirical research. These serve as a guide to further research. An intervening variable, on the other hand, is a summary of observed empirical findings.

The creation of constructs is a part of operationalization, especially the creation of theoretical definitions. The usefulness of one conceptualization over another depends largely on construct validity. To address the non-observability of constructs, U.S. federal agencies such as the National Institutes of Health National Cancer Institute has created a construct database termed Grid-Enabled Measures (GEM) to improve construct use and reuse.

Evolution

Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes that are passed on from parent to offspring during reproduction. Different characteristics tend to exist within any given population as a result of mutation, genetic recombination and other sources of genetic variation. Evolution occurs when evolutionary processes such as natural selection (including sexual selection) and genetic drift act on this variation, resulting in certain characteristics becoming more common or rare within a population. It is this process of evolution that has given rise to biodiversity at every level of biological organisation, including the levels of species, individual organisms and molecules.The scientific theory of evolution by natural selection was proposed by Charles Darwin and Alfred Russel Wallace in the mid-19th century and was set out in detail in Darwin's book On the Origin of Species (1859). Evolution by natural selection was first demonstrated by the observation that more offspring are often produced than can possibly survive. This is followed by three observable facts about living organisms: 1) traits vary among individuals with respect to their morphology, physiology and behaviour (phenotypic variation), 2) different traits confer different rates of survival and reproduction (differential fitness) and 3) traits can be passed from generation to generation (heritability of fitness). Thus, in successive generations members of a population are more likely to be replaced by the progenies of parents with favourable characteristics that have enabled them to survive and reproduce in their respective environments. In the early 20th century, other competing ideas of evolution such as mutationism and orthogenesis were refuted as the modern synthesis reconciled Darwinian evolution with classical genetics, which established adaptive evolution as being caused by natural selection acting on Mendelian genetic variation.All life on Earth shares a last universal common ancestor (LUCA) that lived approximately 3.5–3.8 billion years ago. The fossil record includes a progression from early biogenic graphite, to microbial mat fossils, to fossilised multicellular organisms. Existing patterns of biodiversity have been shaped by repeated formations of new species (speciation), changes within species (anagenesis) and loss of species (extinction) throughout the evolutionary history of life on Earth. Morphological and biochemical traits are more similar among species that share a more recent common ancestor, and can be used to reconstruct phylogenetic trees.Evolutionary biologists have continued to study various aspects of evolution by forming and testing hypotheses as well as constructing theories based on evidence from the field or laboratory and on data generated by the methods of mathematical and theoretical biology. Their discoveries have influenced not just the development of biology but numerous other scientific and industrial fields, including agriculture, medicine and computer science.

Hypothesis

A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained with the available scientific theories. Even though the words "hypothesis" and "theory" are often used synonymously, a scientific hypothesis is not the same as a scientific theory. A working hypothesis is a provisionally accepted hypothesis proposed for further research, in a process beginning with an educated guess or thought.A different meaning of the term hypothesis is used in formal logic, to denote the antecedent of a proposition; thus in the proposition "If P, then Q", P denotes the hypothesis (or antecedent); Q can be called a consequent. P is the assumption in a (possibly counterfactual) What If question.

The adjective hypothetical, meaning "having the nature of a hypothesis", or "being assumed to exist as an immediate consequence of a hypothesis", can refer to any of these meanings of the term "hypothesis".

Instrumentalism

In philosophy of science and in epistemology, Instrumentalism is a methodological view that ideas are useful instruments, and that the worth of an idea is based on how effective it is in explaining and predicting phenomena. Instrumentalism is a pragmatic philosophy of John Dewey that thought is an instrument for solving practical problems, and that truth is not fixed but changes as problems change. Instrumentalism is the view that scientific theories are useful tools for predicting phenomena instead of true or approximately true descriptions.The truth of an idea is determined by its success in the active solution of a problem. A successful scientific theory reveals nothing known either true or false about nature's unobservable objects, properties or processes. Scientific theories are assessed on their usefulness in generating predictions and in confirming those predictions in data and observations, and not on their ability to explain the truth value of some unobservable phenomenon. The question of "truth" is not taken into account one way or the other. According to instrumentalists, scientific theory is merely a tool whereby humans predict observations in a particular domain of nature by formulating laws, which state or summarize regularities, while theories themselves do not reveal supposedly hidden aspects of nature that somehow explain these laws. Initially a novel perspective introduced by Pierre Duhem in 1906, instrumentalism is largely the prevailing theory that underpins the practice of physicists today.Rejecting scientific realism's ambitions to uncover metaphysical truth about nature, instrumentalism is usually categorized as an antirealism, although its mere lack of commitment to scientific theory's realism can be termed nonrealism. Instrumentalism merely bypasses debate concerning whether, for example, a particle spoken about in particle physics is a discrete entity enjoying individual existence, or is an excitation mode of a region of a field, or is something else altogether. Instrumentalism holds that theoretical terms need only be useful to predict the phenomena, the observed outcomes.There are multiple versions of instrumentalism. Instrumentalism is a variety of scientific anti-realism.

Intelligent design

Intelligent design (ID) is a pseudoscientific argument for the existence of God, presented by its proponents as "an evidence-based scientific theory about life's origins". Proponents claim that "certain features of the universe and of living things are best explained by an intelligent cause, not an undirected process such as natural selection." ID is a form of creationism that lacks empirical support and offers no testable or tenable hypotheses, so it is not science. The leading proponents of ID are associated with the Discovery Institute, a fundamentalist Christian and politically conservative think tank based in the United States.Though the phrase "intelligent design" had featured previously in theological discussions of the argument from design, the first publication of the term intelligent design in its present use as an alternative term for creationism was in Of Pandas and People, a 1989 creationist textbook intended for high school biology classes. The term was substituted into drafts of the book, directly replacing references to creation science and creationism, after the 1987 United States Supreme Court's Edwards v. Aguillard decision, which barred the teaching of creation science in public schools on constitutional grounds. From the mid-1990s, the intelligent design movement (IDM), supported by the Discovery Institute, advocated inclusion of intelligent design in public school biology curricula. This led to the 2005 Kitzmiller v. Dover Area School District trial in which U.S. District Judge John E. Jones III found that intelligent design was not science, that it "cannot uncouple itself from its creationist, and thus religious, antecedents," and that the school district's promotion of it therefore violated the Establishment Clause of the First Amendment to the United States Constitution.ID presents two main arguments against evolutionary explanations: irreducible complexity and specified complexity. These arguments assert that certain features (biological and informational, respectively) are too complex to be the result of natural processes. As a positive argument against evolution, ID proposes an analogy between natural systems and human artifacts, a version of the theological argument from design for the existence of God. ID proponents then conclude by analogy that the complex features, as defined by ID, are evidence of design.Detailed scientific examination has rebutted the claims that evolutionary explanations are inadequate, and this premise of intelligent design—that evidence against evolution constitutes evidence for design—is a false dichotomy. It is asserted that ID challenges the methodological naturalism inherent in modern science though proponents concede that they have yet to produce a scientific theory.

Lemuria (continent)

Lemuria or Limuria is a hypothetical lost land located either in the Indian or the Pacific Ocean, as postulated by a now-discredited 19th-century scientific theory. The idea was then adopted by the occultists of the time and consequently has been incorporated into pop culture. Some Tamil writers have associated it with Kumari Kandam, a mythical lost continent with an ancient Tamil civilization located south of present-day India in the Indian Ocean.

Natan Slifkin

Natan Slifkin also Nosson Slifkin (Hebrew: נתן סליפקין‎; born 25 June 1975 in Manchester, England), popularly known as the "Zoo Rabbi", is a British-born Israeli Orthodox rabbi (non-pulpit serving) and director of the Biblical Museum of Natural History in Beit Shemesh, Israel. He is best known for his interest in zoology, science and for his books on these topics, which are controversial to Haredi Jews.

Phlogiston theory

The phlogiston theory is a superseded scientific theory that postulated that a fire-like element called phlogiston () is contained within combustible bodies and released during combustion. The name comes from the Ancient Greek φλογιστόν phlogistón (burning up), from φλόξ phlóx (flame). It was first stated in 1667 by Johann Joachim Becher and then put together more formally by Georg Ernst Stahl. The theory attempted to explain processes such as combustion and rusting, which are now collectively known as oxidation.

Received view of theories

The received view of theories is a position in the philosophy of science that identifies a scientific theory with a set of propositions which are considered to be linguistic objects, such as axioms. Frederick Suppe describes the position of the received view by saying that it identifies scientific theories with an "axiomatic calculi in which theoretical terms are given a partial observation interpretation by mean of correspondence rules." The received view is generally associated with the logical empiricists.

Recently, the received view of theories has been displaced by the semantic view of theories as the dominant position in theory formulation in the philosophy of science.

Scientific evidence

Scientific evidence is evidence which serves to either support or counter a scientific theory or hypothesis. Such evidence is expected to be empirical evidence and interpretation in accordance with scientific method. Standards for scientific evidence vary according to the field of inquiry, but the strength of scientific evidence is generally based on the results of statistical analysis and the strength of scientific controls.

Scientific realism

Scientific realism is the view that the universe described by science is real regardless of how it may be interpreted.

Within philosophy of science, this view is often an answer to the question "how is the success of science to be explained?" The discussion on the success of science in this context centers primarily on the status of unobservable entities apparently talked about by scientific theories. Generally, those who are scientific realists assert that one can make valid claims about unobservables (viz., that they have the same ontological status) as observables, as opposed to instrumentalism.

Semantic view of theories

The semantic view of theories is a position in the philosophy of science that holds that a scientific theory can be identified with a collection of models. The semantic view of theories was originally proposed by Patrick Suppes in “A Comparison of the Meaning and Uses of Models in Mathematics and the Empirical Sciences” as a reaction against the received view of theories popular among the logical positivists. Many varieties of the semantic view propose identifying theories with a class of set-theoretic models in the Tarskian sense, while others specify models in the mathematical language stipulated by the field of which the theory is a member.

Superseded theories in science

In science, a theory is superseded or becomes obsolete when a scientific consensus once widely accepted it, but current science considers it an inadequate, incomplete, or simply false description of reality. Such labels do not cover protoscientific or fringe science theories that have never had broad support within the scientific community. Furthermore, superseded or obsolete theories exclude theories that were never widely accepted by the scientific community. Some theories that were only supported under specific political authorities, such as Lysenkoism, may also be described as obsolete or superseded.

All of Newtonian physics is so satisfactory for most purposes that it is more widely used except at velocities that are a significant fraction of the speed of light, and simpler Newtonian but not relativistic mechanics is usually taught in schools. Another case is the belief that the Earth is approximately flat. For centuries, people have known that a flat Earth model produces errors in long-distance calculations, but considering local-scale areas as flat for the purposes of mapping and surveying does not introduce significant errors.

In some cases, a theory or idea is found baseless and is simply discarded. For example, the phlogiston theory was entirely replaced by the quite different concept of energy and related laws. In other cases an existing theory is replaced by a new theory that retains significant elements of the earlier theory; in these cases, the older theory is often still useful for many purposes, and may be more easily understood than the complete theory and lead to simpler calculations. An example of this is the use of Newtonian physics, which differs from the currently accepted relativistic physics by a factor that is negligibly small at velocities much lower than that of light.

Underdetermination

In the philosophy of science, underdetermination is the idea that evidence available to us at given time may be insufficient to determine what beliefs we should hold in response to it. Underdetermination says that all evidence necessarily underdetermines any scientific theory Underdetermination exists when available evidence is insufficient to identify which belief one should hold about that evidence. For example, if all that was known was that exactly $10 was spent on apples and oranges, and that apples cost $1 and oranges $2, then one would know enough to eliminate some possibilities (e.g., 6 oranges could not have been purchased), but one would not have enough evidence to know which specific combination of apples and oranges was purchased. In this example, one would say that belief in what combination was purchased is underdetermined by the available evidence.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.