Salt (chemistry)

In chemistry, a salt is a solid chemical compound consisting of an ionic assembly of cations and anions.[1] Salts are composed of related numbers of cations (positively charged ions) and anions (negative ions) so that the product is electrically neutral (without a net charge). These component ions can be inorganic, such as chloride (Cl), or organic, such as acetate (CH
3
CO
2
); and can be monatomic, such as fluoride (F), or polyatomic, such as sulfate (SO2−
4
).

Potassium-dichromate-sample
The salt potassium dichromate has the bright orange color characteristic of the dichromate anion.

Types of salts

Salts can be classified in a variety of ways. Salts that produce hydroxide ions when dissolved in water are called alkali salts. Salts that produce acidic solutions are acid salts. Neutral salts are those salts that are neither acidic nor basic. Zwitterions contain an anionic and a cationic centres in the same molecule, but are not considered to be salts. Examples of zwitterions include amino acids, many metabolites, peptides, and proteins.[2]

Properties

Color

Solid salts tend to be transparent as illustrated by sodium chloride. In many cases, the apparent opacity or transparency are only related to the difference in size of the individual monocrystals. Since light reflects from the grain boundaries (boundaries between crystallites), larger crystals tend to be transparent, while the polycrystalline aggregates look like white powders.

Salts exist in many different colors, which arise either from the anions or cations. For example:

Few minerals are salts because they would be solubilized by water. Similarly inorganic pigments tend not to be salts, because insolubility is required for fastness. Some organic dyes are salts, but they are virtually insoluble in water.

Taste

Different salts can elicit all five basic tastes, e.g., salty (sodium chloride), sweet (lead diacetate, which will cause lead poisoning if ingested), sour (potassium bitartrate), bitter (magnesium sulfate), and umami or savory (monosodium glutamate).

Odor

Salts of strong acids and strong bases ("strong salts") are non-volatile and often odorless, whereas salts of either weak acids or weak bases ("weak salts") may smell like the conjugate acid (e.g., acetates like acetic acid (vinegar) and cyanides like hydrogen cyanide (almonds)) or the conjugate base (e.g., ammonium salts like ammonia) of the component ions. That slow, partial decomposition is usually accelerated by the presence of water, since hydrolysis is the other half of the reversible reaction equation of formation of weak salts.

Solubility

Many ionic compounds exhibit significant solubility in water or other polar solvents. Unlike molecular compounds, salts dissociate in solution into anionic and cationic components. The lattice energy, the cohesive forces between these ions within a solid, determines the solubility. The solubility is dependent on how well each ion interacts with the solvent, so certain patterns become apparent. For example, salts of sodium, potassium and ammonium are usually soluble in water. Notable exceptions include ammonium hexachloroplatinate and potassium cobaltinitrite. Most nitrates and many sulfates are water-soluble. Exceptions include barium sulfate, calcium sulfate (sparingly soluble), and lead(II) sulfate, where the 2+/2− pairing leads to high lattice energies. For similar reasons, most alkali metal carbonates are not soluble in water. Some soluble carbonate salts are: sodium carbonate, potassium carbonate and ammonium carbonate.

Conductivity

Salts are characteristically insulators. Molten salts or solutions of salts conduct electricity. For this reason, liquified (molten) salts and solutions containing dissolved salts (e.g., sodium chloride in water) are called electrolytes.

SegStackEdgeOnHMTFCQ
Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt.[3]

Melting point

Salts characteristically have high melting points. For example, sodium chloride melts at 801 °C. Some salts with low lattice energies are liquid at or near room temperature. These include molten salts, which are usually mixtures of salts, and ionic liquids, which usually contain organic cations. These liquids exhibit unusual properties as solvents.

Nomenclature

The name of a salt starts with the name of the cation (e.g., sodium or ammonium) followed by the name of the anion (e.g., chloride or acetate). Salts are often referred to only by the name of the cation (e.g., sodium salt or ammonium salt) or by the name of the anion (e.g., chloride salt or acetate salt).

Common salt-forming cations include:

Common salt-forming anions (parent acids in parentheses where available) include:

Salts with varying number of hydrogen atoms, with respect to the parent acid, replaced by cations can be referred to as monobasic, dibasic or tribasic salts (polybasic salts refer to those with more than one hydrogen atom replaced):

Formation

Lead(II) sulfate
Solid lead(II) sulfate (PbSO4)

Salts are formed by a chemical reaction between:

Strong salt

Strong salts or strong electrolyte salts are chemical salts composed of strong electrolytes. These ionic compounds dissociate completely in water. They are generally odourless and nonvolatile.

Strong salts start with Na__, K__, NH4__, or they end with __NO3, __ClO4, or __CH3COO. Most group 1 and 2 metals form strong salts. Strong salts are especially useful when creating conductive compounds as their constituent ions allow for greater conductivity.[4]

Weak salts

Weak salts or "weak electrolyte salts" are, as the name suggests, composed of weak electrolytes. They are generally more volatile than strong salts. They may be similar in odor to the acid or base they are derived from. For example, sodium acetate, NaCH3COO, smells similar to acetic acid CH3COOH.

See also

References

  1. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "salt". doi:10.1351/goldbook.S05447
  2. ^ Voet, D. & Voet, J, G. (2005). Biochemistry (3rd ed.). Hoboken, NJ: John Wiley & Sons Inc. p. 68. ISBN 9780471193500. Archived from the original on 2007-09-11.CS1 maint: multiple names: authors list (link)
  3. ^ D. Chasseau; G. Comberton; J. Gaultier; C. Hauw (1978). "Réexamen de la structure du complexe hexaméthylène-tétrathiafulvalène-tétracyanoquinodiméthane". Acta Crystallographica Section B. 34: 689. doi:10.1107/S0567740878003830.
  4. ^ "Archived copy". Archived from the original on 2016-12-13. Retrieved 2017-04-16.CS1 maint: archived copy as title (link)
  • Mark Kurlansky (2002). Salt: A World History. Walker Publishing Company. ISBN 0-14-200161-9.
Acid salt

Acid salts are a class of salts that produce an acidic solution after being dissolved in a solvent. Its formation as a substance has a greater electrical conductivity than that of the pure solvent. An acidic solution formed by acid salt is made during partial neutralization of diprotic or polyprotic acids. A half-neutralization occurs due to the remaining of replaceable hydrogen atoms from the partial dissociation of weak acids that have not been reacted with hydroxide ions (OH−) to create water molecules. Acid salt is an ionic compound consisted of an anion, contributed from a weak parent acid, and a cation, contributed from a strong parent base.

Conjugate acid

A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed by the reception of a proton (H+) by a base—in other words, it is a base with a hydrogen ion added to it. On the other hand, a conjugate base is what is left over after an acid has donated a proton during a chemical reaction. Hence, a conjugate base is a species formed by the removal of a proton from an acid. Because some acids are capable of releasing multiple protons, the conjugate base of an acid may itself be acidic.

In summary, this can be represented as the following chemical reaction:

Acid + Base ⇌ Conjugate Base + Conjugate Acid

Johannes Nicolaus Brønsted and Martin Lowry introduced the Brønsted–Lowry theory,

which proposed that any compound that can transfer a proton to any other compound is an acid, and the compound that accepts the proton is a base. A proton is a nuclear particle with a unit positive electrical charge; it is represented by the symbol H+ because it constitutes the nucleus of a hydrogen atom, that is, a hydrogen cation.

A cation can be a conjugate acid, and an anion can be a conjugate base, depending on which substance is involved and which acid–base theory is the viewpoint. The simplest anion which can be a conjugate base is the solvated electron whose conjugate acid is the atomic hydrogen.

Håkon Flood

Håkon Flood (25 September 1905 – 9 October 2001) was a professor of inorganic chemistry at the Norwegian Institute of Technology in Trondheim, Norway, from 1953 to 1975. He also worked as the director of the Institute of Silicate Research (Institutt for Silikatforskning) at NTH. Professor Flood was one of the pioneers of molten salt chemistry and, together with Hermann Lux, is known for the Lux-Flood theory of acid-base reactions.

Lithium

Lithium (from Greek: λίθος, romanized: lithos, lit. 'stone') is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the lightest metal and the lightest solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in mineral oil. When cut, it exhibits a metallic luster, but moist air corrodes it quickly to a dull silvery gray, then black tarnish. It never occurs freely in nature, but only in (usually ionic) compounds, such as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the solar system than 25 of the first 32 chemical elements even though its nuclei are very light: it is an exception to the trend that heavier nuclei are less common. For related reasons, lithium has important uses in nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully man-made nuclear reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.Lithium and its compounds have several industrial applications, including heat-resistant glass and ceramics, lithium grease lubricants, flux additives for iron, steel and aluminium production, lithium batteries, and lithium-ion batteries. These uses consume more than three quarters of lithium production.

Lithium is present in biological systems in trace amounts; its functions are uncertain. Lithium salts have proven to be useful as a mood-stabilizing drug in the treatment of bipolar disorder in humans.

Molten salt reactor

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. MSRs offer multiple advantages over conventional nuclear power plants, although for historical reasons, they have not been deployed.

The concept was first established in the 1950s. The early Aircraft Reactor Experiment was primarily motivated by the small size that the technique offered, while the Molten-Salt Reactor Experiment was a prototype for a thorium fuel cycle breeder nuclear power plant. The increased research into Generation IV reactor designs renewed interest in the technology.

Organic salt

Organic salt may refer to:

In chemistry, an organic salt is a salt (chemistry) containing an organic ion

In marketing, organic salt is a term for table salt (sodium chloride, NaCl) that is without additives like iodine or anti-caking agents

Pastos Grandes

Pastos Grandes is the name of a caldera and its crater lake in Bolivia. The caldera is part of the Altiplano-Puna volcanic complex, a large ignimbrite province that is part of the Central Volcanic Zone of the Andes. Pastos Grandes has erupted a number of ignimbrites through its history, some of which exceeded a volume of 1,000 cubic kilometres (240 cu mi). After the ignimbrite phase, the lava domes of the Cerro Chascon-Runtu Jarita complex were erupted close to the caldera and along faults.

The caldera is the site of a few lakes, some of which are fed by hot springs. A number of minerals, including lithium, are dissolved in the lakes.

Pentazole

Pentazole is an aromatic chemical molecule consisting of a five-membered ring with all nitrogen atoms, one of which is bonded to a hydrogen atom. It has a molecular formula HN5. Although strictly speaking a homocyclic, inorganic compound, pentazole has historically been classed as the last in a series of heterocyclic azole compounds containing one to five nitrogen atoms. This set contains pyrrole, imidazole, pyrazole, triazoles, tetrazole, and pentazole.

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.