Salmonella

Salmonella is a genus of rod-shaped (bacillus) Gram-negative bacteria of the family Enterobacteriaceae. The two species of Salmonella are Salmonella enterica and Salmonella bongori. S. enterica is the type species and is further divided into six subspecies[2] that include over 2,600 serotypes.[3]

Salmonella species are non-spore-forming, predominantly motile enterobacteria with cell diameters between about 0.7 and 1.5 µm, lengths from 2 to 5 µm, and peritrichous flagella (all around the cell body).[4] They are chemotrophs, obtaining their energy from oxidation and reduction reactions using organic sources. They are also facultative aerobes, capable of generating ATP with oxygen ("aerobically") when it is available, or when oxygen is not available, using other electron acceptors or fermentation ("anaerobically").[4] S. enterica subspecies are found worldwide in all warm-blooded animals and in the environment. S. bongori is restricted to cold-blooded animals, particularly reptiles.[5]

Salmonella species are intracellular pathogens;[6] certain serotypes cause illness. Nontyphoidal serotypes can be transferred from animal-to-human and from human-to-human. They usually invade only the gastrointestinal tract and cause salmonellosis, the symptoms of which can be resolved without antibiotics. However, in sub-Saharan Africa, nontyphoidal Salmonella can be invasive and cause paratyphoid fever, which requires immediate treatment with antibiotics. Typhoidal serotypes can only be transferred from human-to-human, and can cause food-borne infection, typhoid fever, and paratyphoid fever.[7] Typhoid fever is caused by Salmonella invading the bloodstream (the typhoidal form), or in addition spreads throughout the body, invades organs, and secretes endotoxins (the septic form). This can lead to life-threatening hypovolemic shock and septic shock, and requires intensive care including antibiotics.

The collapse of the Aztec society in Mesoamerica is linked to a catastrophic Salmonella outbreak, one of humanity's deadliest, that occurred after the Spanish conquest.[8]

Salmonella
SalmonellaNIAID
Color-enhanced scanning electron micrograph showing Salmonella Typhimurium (red) invading cultured human cells
Scientific classification
Domain: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Enterobacteriales
Family: Enterobacteriaceae
Genus: Salmonella
Lignières 1900
Species and subspecies[1]

Taxonomy

The genus Salmonella is part of the family of Enterobacteriaceae. Its taxonomy has been revised and has the potential to confuse. The genus comprises two species, S. bongori and S. enterica, the latter of which is divided into six subspecies: S. e. enterica, S. e. salamae, S. e. arizonae, S. e. diarizonae, S. e. houtenae, and S. e. indica.[9][10] The taxonomic group contains more than 2500 serotypes (also serovars) defined on the basis of the somatic O (lipopolysaccharide) and flagellar H antigens (the Kauffman–White classification). The full name of a serotype is given as, for example, Salmonella enterica subsp. enterica serotype Typhimurium, but can be abbreviated to Salmonella Typhimurium. Further differentiation of strains to assist clinical and epidemiological investigation may be achieved by antibiotic sensitivity testing and by other molecular biology techniques such as pulsed-field gel electrophoresis, multilocus sequence typing, and, increasingly, whole genome sequencing. Historically, salmonellae have been clinically categorized as invasive (typhoidal) or noninvasive (nontyphoidal salmonellae) based on host preference and disease manifestations in humans.[11]

History

Salmonella was first visualized in 1880 by Karl Eberth in the Peyer's patches and spleens of typhoid patients.[12] Four years later, Georg Theodor Gaffky was able to successfully grow the pathogen in pure culture.[13] A year after that, medical research scientist Theobald Smith discovered what would be later known as Salmonella enterica (var. Choleraesuis). At the time, Smith was working as a research laboratory assistant in the Veterinary Division of the United States Department of Agriculture. The department was under the administration of Daniel Elmer Salmon, a veterinary pathologist.[14] Initially, Salmonella Choleraesuis was thought to be the causative agent of hog cholera, so Salmon and Smith named it "Hog-cholerabacillus". The name Salmonella was not used until 1900, when Joseph Leon Lignières proposed that the pathogen discovered by Salmon's group be called Salmonella in his honor.[15]:16

Serotyping

Serotyping is done by mixing cells with antibodies for a particular antigen. It can give some idea about risk. For example, in 2014, a study showed that S. Reading is very common among young turkey samples, but it is not a significant contributor to human salmonellosis.[16] Serotyping can assist identify the source of contamination. For example, if we have a case of food illness. There are two ways to figure out the source of contamination. One of them is serotyping the Salmonella in infected people, and serotyping Salmonella found at possible source of contamination (e.g. where food was prepared), and then determining if the serotypes match. The other way is to serotype the Salmonella in infected people, see the result and if the result matches with a particular kind of serotype of Salmonella that can only found in a particular species of animals or at particular place, then we can know our source of contamination.[17]  Moreover, serotyping may suggest adequate treatment by giving us the idea about the antibiotic resistance of salmonella species. For example, sulfonamides are antibiotics which are appropriate for treatment of Salmonella enterica serotype Typhi (normally it is just shortened to S.Typhi).[18] Serotyping is a faster method than antibiotic sensitivity testing culture methods.

Detection, culture, and growth conditions

FDA Lab 3000 (4494152579)
US Food and Drug Administration scientist tests for presence of Salmonella

Most subspecies of Salmonella produce hydrogen sulfide,[19] which can readily be detected by growing them on media containing ferrous sulfate, such as is used in the triple sugar iron test. Most isolates exist in two phases, a motile phase I and a nonmotile phase II. Cultures that are nonmotile upon primary culture may be switched to the motile phase using a Craigie tube or ditch plate.[20] RVS broth can be used to enrich for Salmonella species for detection in a clinical sample.[21]

Salmonella can also be detected and subtyped using multiplex[22] or real-time polymerase chain reactions (PCR)[23] from extracted Salmonella DNA.

Mathematical models of Salmonella growth kinetics have been developed for chicken, pork, tomatoes, and melons.[24][25][26][27][28] Salmonella reproduce asexually with a cell division interval of 40 minutes.[15]:16

Salmonella species lead predominantly host-associated lifestyles, but the bacteria were found to be able to persist in a bathroom setting for weeks following contamination, and are frequently isolated from water sources, which act as bacterial reservoirs and may help to facilitate transmission between hosts.[29] Salmonella is notorious for its ability to survive desiccation and can persist for years in dry environments and foods.[30]

The bacteria are not destroyed by freezing,[31][32] but UV light and heat accelerate their destruction. They perish after being heated to 55 °C (131 °F) for 90 min, or to 60 °C (140 °F) for 12 min.[33] To protect against Salmonella infection, heating food for at least 10 minutes to an internal temperature of 75 °C (167 °F) is recommended.[34][35]

Salmonella species can be found in the digestive tracts of humans and animals, especially reptiles. Salmonella on the skin of reptiles or amphibians can be passed to people who handle the animals.[36] Food and water can also be contaminated with the bacteria if they come in contact with the feces of infected people or animals.[37]

Nomenclature

Initially, each Salmonella "species" was named according to clinical considerations,[38] for example Salmonella typhi-murium (mouse typhoid fever), S. cholerae-suis. After host specificity was recognized to not exist for many species, new strains received species names according to the location at which the new strain was isolated. Later, molecular findings led to the hypothesis that Salmonella consisted of only one species,[39] S. enterica, and the serotypes were classified into six groups,[40] two of which are medically relevant. As this now-formalized nomenclature[41][42] is not in harmony with the traditional usage familiar to specialists in microbiology and infectologists, the traditional nomenclature is still common. Currently, the two recognized species are S. enterica, and S. bongori. In 2005, a third species, Salmonella subterranean, was proposed, but according to the World Health Organization, the bacterium reported does not belong in the genus Salmonella.[43] The six main recognised subspecies are: enterica (serotype I), salamae (serotype II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV), and indica (VI).[44] The former serotype (V) was bongori, which is now considered its own species.

The serotype or serovar, is a classification of Salmonella into subspecies based on antigens that the organism presents. It is based on the Kauffman-White classification scheme that differentiates serological varieties from each other. Serotypes are usually put into subspecies groups after the genus and species, with the serotypes/serovars capitalized, but not italicized: An example is Salmonella enterica serovar Typhimurium. More modern approaches for typing and subtyping Salmonella include DNA-based methods such as pulsed field gel electrophoresis, multiple-loci VNTR analysis, multilocus sequence typing, and multiplex-PCR-based methods.[45][46]

Pathogenicity

Salmonella species are facultative intracellular pathogens.[6] A facultative organism uses oxygen to make ATP; when it is not available, it "exercises its option"—the literal meaning of the term—and makes ATP by fermentation, or by substituting one or more of four less efficient electron acceptors as oxygen at the end of the electron transport chain: sulfate, nitrate, sulfur, or fumarate.

Most infections are due to ingestion of food contaminated by animal feces, or by human feces, such as by a food-service worker at a commercial eatery. Salmonella serotypes can be divided into two main groups—typhoidal and nontyphoidal. Nontyphoidal serotypes are more common, and usually cause self-limiting gastrointestinal disease. They can infect a range of animals, and are zoonotic, meaning they can be transferred between humans and other animals. Typhoidal serotypes include Salmonella Typhi and Salmonella Paratyphi A, which are adapted to humans and do not occur in other animals.

Nontyphoidal Salmonella

Non-invasive

Infection with nontyphoidal serotypes of Salmonella generally results in food poisoning. Infection usually occurs when a person ingests foods that contain a high concentration of the bacteria. Infants and young children are much more susceptible to infection, easily achieved by ingesting a small number of bacteria. In infants, infection through inhalation of bacteria-laden dust is possible.

The organisms enter through the digestive tract and must be ingested in large numbers to cause disease in healthy adults. An infection can only begin after living salmonellae (not merely Salmonella-produced toxins) reach the gastrointestinal tract. Some of the microorganisms are killed in the stomach, while the surviving ones enter the small intestine and multiply in tissues. Gastric acidity is responsible for the destruction of the majority of ingested bacteria, but Salmonella has evolved a degree of tolerance to acidic environments that allows a subset of ingested bacteria to survive.[47] Bacterial colonies may also become trapped in mucus produced in the esophagus. By the end of the incubation period, the nearby host cells are poisoned by endotoxins released from the dead salmonellae. The local response to the endotoxins is enteritis and gastrointestinal disorder.

About 2,000 serotypes of nontyphoidal Salmonella are known, which may be responsible for as many as 1.4 million illnesses in the United States each year. People who are at risk for severe illness include infants, elderly, organ-transplant recipients, and the immunocompromised.[37]

Invasive

While in developed countries, nontyphoidal serotypes present mostly as gastrointestinal disease, in sub-Saharan Africa, these serotypes can create a major problem in bloodstream infections, and are the most commonly isolated bacteria from the blood of those presenting with fever. Bloodstream infections caused by nontyphoidal salmonellae in Africa were reported in 2012 to have a case fatality rate of 20–25%. Most cases of invasive nontyphoidal salmonella infection (iNTS) are caused by S. typhimurium or S. enteritidis. A new form of Salmonella typhimurium (ST313) emerged in the southeast of the African continent 75 years ago, followed by a second wave which came out of central Africa 18 years later. This second wave of iNTS possibly originated in the Congo Basin, and early in the event picked up a gene that made it resistant to the antibiotic chloramphenicol. This created the need to use expensive antimicrobial drugs in areas of Africa that were very poor, making treatment difficult. The increased prevalence of iNTS in sub-Saharan Africa compared to other regions is thought to be due to the large proportion of the African population with some degree of immune suppression or impairment due to the burden of HIV, malaria, and malnutrition, especially in children. The genetic makeup of iNTS is evolving into a more typhoid-like bacterium, able to efficiently spread around the human body. Symptoms are reported to be diverse, including fever, hepatosplenomegaly, and respiratory symptoms, often with an absence of gastrointestinal symptoms.[48]

Typhoidal Salmonella

Typhoid fever is caused by Salmonella serotypes which are strictly adapted to humans or higher primates—these include Salmonella typhi, Paratyphi A, Paratyphi B, and Paratyphi C. In the systemic form of the disease, salmonellae pass through the lymphatic system of the intestine into the blood of the patients (typhoid form) and are carried to various organs (liver, spleen, kidneys) to form secondary foci (septic form). Endotoxins first act on the vascular and nervous apparatus, resulting in increased permeability and decreased tone of the vessels, upset of thermal regulation, and vomiting and diarrhoea. In severe forms of the disease, enough liquid and electrolytes are lost to upset the water-salt metabolism, decrease the circulating blood volume and arterial pressure, and cause hypovolemic shock. Septic shock may also develop. Shock of mixed character (with signs of both hypovolemic and septic shock) is more common in severe salmonellosis. Oliguria and azotemia may develop in severe cases as a result of renal involvement due to hypoxia and toxemia.

Global monitoring

In Germany, food-borne infections must be reported.[49] From 1990 to 2016, the number of officially recorded cases decreased from about 200,000 to about 13,000 cases.[50] In the United States, about 1,200,000 cases of Salmonella infection are estimated to occur each year.[51] A World Health Organization study estimated that 21,650,974 cases of typhoid fever occurred in 2000, 216,510 of which resulted in death, along with 5,412,744 cases of paratyphoid fever.[52]

Molecular mechanisms of infection

Mechanisms of infection differ between typhoidal and nontyphoidal serotypes, owing to their different targets in the body and the different symptoms that they cause. Both groups must enter by crossing the barrier created by the intestinal cell wall, but once they have passed this barrier, they use different strategies to cause infection.

Nontyphoidal serotypes preferentially enter M cells on the intestinal wall by bacterial-mediated endocytosis, a process associated with intestinal inflammation and diarrhoea. They are also able to disrupt tight junctions between the cells of the intestinal wall, impairing the cells' ability to stop the flow of ions, water, and immune cells into and out of the intestine. The combination of the inflammation caused by bacterial-mediated endocytosis and the disruption of tight junctions is thought to contribute significantly to the induction of diarrhoea.[53]

Salmonellae are also able to breach the intestinal barrier via phagocytosis and trafficking by CD18-positive immune cells, which may be a mechanism key to typhoidal Salmonella infection. This is thought to be a more stealthy way of passing the intestinal barrier, and may, therefore, contribute to the fact that lower numbers of typhoidal Salmonella are required for infection than nontyphoidal Salmonella.[53] Salmonella cells are able to enter macrophages via macropinocytosis.[54] Typhoidal serotypes can use this to achieve dissemination throughout the body via the mononuclear phagocyte system, a network of connective tissue that contains immune cells, and surrounds tissue associated with the immune system throughout the body.[53]

Much of the success of Salmonella in causing infection is attributed to two type III secretion systems which function at different times during an infection. One is required for the invasion of nonphagocytic cells, colonization of the intestine, and induction of intestinal inflammatory responses and diarrhea. The other is important for survival in macrophages and establishment of systemic disease.[53] These systems contain many genes which must work co-operatively to achieve infection.

The AvrA toxin injected by the SPI1 type III secretion system of S. Typhimurium works to inhibit the innate immune system by virtue of its serine/threonine acetyltransferase activity, and requires binding to eukaryotic target cell phytic acid (IP6).[55] This leaves the host more susceptible to infection.

Salmonellosis is known to be able to cause back pain or spondylosis. It can manifest as five clinical patterns: gastrointestinal tract infection, enteric fever, bacteremia, local infection, and the chronic reservoir state. The initial symptoms are nonspecific fever, weakness, and myalgia among others. In the bacteremia state, it can spread to any parts of the body and this induces localized infection or it forms abscesses. The forms of localized Salmonella infections are arthritis, urinary tract infection, infection of the central nervous system, bone infection, soft tissue infection, etc.[56] Infection may remain as the latent form for a long time, and when the function of reticular endothelial cells is deteriorated, it may become activated and consequently, it may secondarily induce spreading infection in the bone several months or several years after acute salmonellosis.[56]

Selective Immune Knockout

A 2018 Imperial College London study shows how salmonella disrupt specific arms of the immune system (e.g. 3 of 5 NF-kappaB proteins) using a family of zinc metalloproteinase effectors, leaving others untouched.[57]

Resistance to oxidative burst

A hallmark of Salmonella pathogenesis is the ability of the bacterium to survive and proliferate within phagocytes. Phagocytes produce DNA-damaging agents such as nitric oxide and oxygen radicals as a defense against pathogens. Thus, Salmonella species must face attack by molecules that challenge genome integrity. Buchmeier et al.[58] showed that mutants of S. enterica lacking RecA or RecBC protein function are highly sensitive to oxidative compounds synthesized by macrophages, and furthermore these findings indicate that successful systemic infection by S. enterica requires RecA- and RecBC-mediated recombinational repair of DNA damage.[58][59]

Host adaptation

S. enterica, through some of its serotypes such as Typhimurium and Enteriditis, shows signs of the ability to infect several different mammalian host species, while other serotypes such as Typhi seem to be restricted to only a few hosts.[60] Some of the ways that Salmonella serotypes have adapted to their hosts include loss of genetic material and mutation. In more complex mammalian species, immune systems, which include pathogen specific immune responses, target serovars of Salmonella through binding of antibodies to structures such as flagella. Through the loss of the genetic material that codes for a flagellum to form, Salmonella can evade a host's immune system.[61] mgtC leader RNA from bacteria virulence gene (mgtCBR operon) decreases flagellin production during infection by directly base pairing with mRNAs of the fljB gene encoding flagellin and promotes degradation.[62] In the study by Kisela et al., more pathogenic serovars of S. enterica were found to have certain adhesins in common that have developed out of convergent evolution.[63] This means that, as these strains of Salmonella have been exposed to similar conditions such as immune systems, similar structures evolved separately to negate these similar, more advanced defenses in hosts. Still, many questions remain about the way that Salmonella has evolved into so many different types, but Salmonella may have evolved through several phases. As Baumler et al. have suggested, Salmonella most likely evolved through horizontal gene transfer, formation of new serovars due to additional pathogenicity islands. and an approximation of its ancestry.[64] So, Salmonella could have evolved into its many different serotypes through gaining genetic information from different pathogenic bacteria. The presence of several pathogenicity islands in the genome of different serotypes has lent credence to this theory.[64]

Salmonella sv. Newport has signs of adaptation to a plant colonization lifestyle, which may play a role in its disproportionate association with foodborne illness linked to produce. A variety of functions selected for during sv. Newport persistence in tomatoes have been reported to be similar to those selected for in sv. Typhimurium from animal hosts.[65] The papA gene, which is unique to sv. Newport, contributes to the strain's fitness in tomatoes, and has homologs in genomes of other Enterobacteriaceae that are able to colonize plant and animal hosts.[65]

Genetics

In addition to its importance as a pathogen, S. enterica serovar Typhimurium has been instrumental in the development of genetic tools that led to an understanding of fundamental bacterial physiology. These developments were enabled by the discovery of the first generalized transducing phage, P22,[66] in Typhimurium that allowed quick and easy genetic exchange that allowed fine structure genetic analysis. The large number of mutants led to a revision of genetic nomenclature for bacteria.[67] Many of the uses of transposons as genetic tools, including transposon delivery, mutagenesis, construction of chromosome rearrangements, were also developed in Typhimurium. These genetic tools also led to a simple test for carcinogens, the Ames test.[68]

See also

References

  1. ^ "Salmonella". NCBI taxonomy. Bethesda, MD: National Center for Biotechnology Information. Retrieved 27 January 2019.
  2. ^ Su LH, Chiu CH (2007). "Salmonella: clinical importance and evolution of nomenclature". Chang Gung Medical Journal. 30 (3): 210–9. PMID 17760271.
  3. ^ Gal-Mor O, Boyle EC, Grassl GA (2014). "Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ". Frontiers in Microbiology. 5: 391. doi:10.3389/fmicb.2014.00391. PMC 4120697. PMID 25136336.
  4. ^ a b Fàbrega A, Vila J (April 2013). "Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation". Clinical Microbiology Reviews. 26 (2): 308–41. doi:10.1128/CMR.00066-12. PMC 3623383. PMID 23554419.
  5. ^ Tortora GA (2008). Microbiology: An Introduction] (9th ed.). Pearson. pp. 323–324. ISBN 978-8131722329.
  6. ^ a b Jantsch J, Chikkaballi D, Hensel M (March 2011). "Cellular aspects of immunity to intracellular Salmonella enterica". Immunological Reviews. 240 (1): 185–95. doi:10.1111/j.1600-065X.2010.00981.x. PMID 21349094.
  7. ^ Ryan I KJ, Ray CG, eds. (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. pp. 362–8. ISBN 978-0-8385-8529-0.
  8. ^ Collapse of Aztec society linked to catastrophic salmonella outbreak
  9. ^ Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B (July 2000). "Salmonella nomenclature". Journal of Clinical Microbiology. 38 (7): 2465–7. PMC 86943. PMID 10878026.
  10. ^ editors, Gillespie SH, Hawkey PM (2006). Principles and practice of clinical bacteriology (2nd ed.). Hoboken, NJ: John Wiley & Sons. ISBN 9780470017968.
  11. ^ Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, Wain J, Heyderman RS, Obaro S, Alonso PL, Mandomando I, MacLennan CA, Tapia MD, Levine MM, Tennant SM, Parkhill J, Dougan G (November 2012). "Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa". Nature Genetics. 44 (11): 1215–21. doi:10.1038/ng.2423. PMC 3491877. PMID 23023330.
  12. ^ Eberth, Prof C. J. (1880-07-01). "Die Organismen in den Organen bei Typhus abdominalis". Archiv für Pathologische Anatomie und Physiologie und für Klinische Medizin (in German). 81 (1): 58–74. doi:10.1007/BF01995472. ISSN 0720-8723.
  13. ^ Hardy A (August 1999). "Food, hygiene, and the laboratory. A short history of food poisoning in Britain, circa 1850-1950". Social History of Medicine. 12 (2): 293–311. doi:10.1093/shm/12.2.293. PMID 11623930.
  14. ^ "FDA/CFSAN—Food Safety A to Z Reference Guide—Salmonella". FDA–Center for Food Safety and Applied Nutrition. 2008-07-03. Archived from the original on 2009-03-02. Retrieved 2009-02-14.
  15. ^ a b Heymann DA, Alcamo IE, Heymann DL (2006). Salmonella. Philadelphia: Chelsea House Publishers. ISBN 978-0-7910-8500-4. Retrieved 31 July 2015.
  16. ^ "Serotypes Profile of Salmonella Isolates from Meat and Poultry Products, January 1998 through December 2014".
  17. ^ "Steps in a Foodborne Outbreak Investigation".
  18. ^ Yoon KB, Song BJ, Shin MY, Lim HC, Yoon YH, Jeon DY, Ha H, Yang SI, Kim JB (2017). "Antibiotic Resistance Patterns and Serotypes of Salmonella spp. Isolated at Jeollanam-do in Korea" (PDF). Osong Public Health Res Perspect. 8: 211–219. doi:10.24171/j.phrp.2017.8.3.08. PMC 5525558. PMID 28781944.CS1 maint: Multiple names: authors list (link)
  19. ^ Clark MA, Barret EL (June 1987). "The phs gene and hydrogen sulfide production by Salmonella typhimurium". Journal of Bacteriology. 169 (6): 2391–2397. doi:10.1128/jb.169.6.2391-2397.1987. PMC 212072. PMID 3108233.
  20. ^ "UK Standards for Microbiology Investigations: Changing the Phase of Salmonella" (PDF). UK Standards for Microbiology Investigations: 8–10. 8 January 2015. Retrieved 2 August 2015.
  21. ^ Snyder JW, Atlas RM (2006). Handbook of Media for Clinical Microbiology. CRC Press. p. 374. ISBN 978-0849337956.
  22. ^ Alvarez J, Sota M, Vivanco AB, Perales I, Cisterna R, Rementeria A, Garaizar J (April 2004). "Development of a multiplex PCR technique for detection and epidemiological typing of salmonella in human clinical samples". Journal of Clinical Microbiology. 42 (4): 1734–8. doi:10.1128/JCM.42.4.1734-1738.2004. PMC 387595. PMID 15071035.
  23. ^ Hoorfar J, Ahrens P, Rådström P (September 2000). "Automated 5' nuclease PCR assay for identification of Salmonella enterica". Journal of Clinical Microbiology. 38 (9): 3429–35. PMC 87399. PMID 10970396.
  24. ^ Dominguez, Silvia A. "Modelling the Growth of Salmonella in Raw Poultry Stored under Aerobic Conditions".
  25. ^ Pin C, Avendaño-Perez G, Cosciani-Cunico E, Gómez N, Gounadakic A, Nychas GJ, Skandamis P, Barker G (March 2011). "Modelling Salmonella concentration throughout the pork supply chain by considering growth and survival in fluctuating conditions of temperature, pH and a(w)". International Journal of Food Microbiology. 145 Suppl 1: S96–102. doi:10.1016/j.ijfoodmicro.2010.09.025. PMID 20951457.
  26. ^ Pan W. "Modelling the Growth of Salmonella in Cut Red Round Tomatoes as a Function of Temperature".
  27. ^ Li D, Friedrich LM, Danyluk MD, Harris LJ, Schaffner DW (June 2013). "Development and validation of a mathematical model for growth of pathogens in cut melons". Journal of Food Protection. 76 (6): 953–8. doi:10.4315/0362-028X.JFP-12-398. PMID 23726189.
  28. ^ Li D. "Development and validation of a mathematical model for growth of salmonella in cantaloupe".
  29. ^ Winfield MD, Groisman EA (July 2003). "Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli". Applied and Environmental Microbiology. 69 (7): 3687–94. doi:10.1128/aem.69.7.3687-3694.2003. PMC 165204. PMID 12839733.
  30. ^ Mandal RK, Kwon YM (8 September 2017). "Salmonella entericaSerovar Typhimurium Genes for Desiccation Survival". Frontiers in Microbiology. 8 (1723): 1723. doi:10.3389/fmicb.2017.01723. PMC 5596212. PMID 28943871.
  31. ^ Sorrells KM, Speck ML, Warren JA (January 1970). "Pathogenicity of Salmonella gallinarum after metabolic injury by freezing". Applied Microbiology. 19 (1): 39–43. PMC 376605. PMID 5461164. Mortality differences between wholly uninjured and predominantly injured populations were small and consistent (5% level) with a hypothesis of no difference.
  32. ^ Beuchat LR, Heaton EK (June 1975). "Salmonella survival on pecans as influenced by processing and storage conditions". Applied Microbiology. 29 (6): 795–801. PMC 187082. PMID 1098573. Little decrease in viable population of the three species was noted on inoculated pecan halves stored at -18, -7, and 5°C for 32 weeks.
  33. ^ Goodfellow SJ, Brown WL (August 1978). "Fate of Salmonella Inoculated into Beef for Cooking". Journal of Food Protection. 41 (8): 598–605. doi:10.4315/0362-028x-41.8.598.
  34. ^ Partnership for Food Safety Education (PFSE) Fight BAC! Basic Brochure Archived 2013-08-31 at the Wayback Machine.
  35. ^ USDA Internal Cooking Temperatures Chart Archived 2012-05-03 at the Wayback Machine. The USDA has other resources available at their Safe Food Handling Archived 2013-06-05 at the Wayback Machine fact-sheet page. See also the National Center for Home Food Preservation.
  36. ^ "Reptiles, Amphibians, and Salmonella". Centers for Disease Control and Prevention. U.S. Department of Health & Human Services. 25 November 2013. Retrieved 3 August 2013.
  37. ^ a b Goldrick, Barbara (2003). "Foodborne Diseases: More efforts needed to meet the Healthy People 2010 objectives". The American Journal of Nursing. 103 (3): 105–106. doi:10.1097/00000446-200303000-00043. Retrieved 6 December 2014.
  38. ^ F. Kauffmann: Die Bakteriologie der Salmonella-Gruppe. Munksgaard, Kopenhagen, 1941
  39. ^ Le ML, Popoff MY (1987). "Request for an Opinion. Designation of Salmonella enterica. sp. nov., nom. rev., as the type and only species of the genus Salmonella". Int. J. Syst. Bacteriol. 37 (4): 465–468. doi:10.1099/00207713-37-4-465.
  40. ^ Reeves MW, Evins GM, Heiba AA, Plikaytis BD, Farmer JJ (February 1989). "Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov". Journal of Clinical Microbiology. 27 (2): 313–20. PMC 267299. PMID 2915026.
  41. ^ Judicial Commission of the International Committee on Systematics of Prokaryotes (January 2005). "The type species of the genus Salmonella Lignieres 1900 is Salmonella enterica (ex Kauffmann and Edwards 1952) Le Minor and Popoff 1987, with the type strain LT2T, and conservation of the epithet enterica in Salmonella enterica over all earlier epithets that may be applied to this species. Opinion 80". International Journal of Systematic and Evolutionary Microbiology. 55 (Pt 1): 519–20. doi:10.1099/ijs.0.63579-0. PMID 15653929.
  42. ^ Tindall BJ, Grimont PA, Garrity GM, Euzéby JP (January 2005). "Nomenclature and taxonomy of the genus Salmonella". International Journal of Systematic and Evolutionary Microbiology. 55 (Pt 1): 521–4. doi:10.1099/ijs.0.63580-0. PMID 15653930.
  43. ^ Grimont PA, Xavier Weill F (2007). Antigenic Formulae of the Salmonella Serovars (PDF) (9th ed.). Institut Pasteur, Paris, France: WHO Collaborating Centre for Reference and Research on Salmonella. p. 7. Retrieved 26 August 2015.
  44. ^ Janda JM, Abbott SL (2006). "The Enterobacteria", ASM Press.
  45. ^ Porwollik S, ed. (2011). Salmonella: From Genome to Function. Caister Academic Press. ISBN 978-1-904455-73-8.
  46. ^ Achtman M, Wain J, Weill FX, Nair S, Zhou Z, Sangal V, Krauland MG, Hale JL, Harbottle H, Uesbeck A, Dougan G, Harrison LH, Brisse S, S. Enterica MLST Study Group (2012). "Multilocus sequence typing as a replacement for serotyping in Salmonella enterica". PLoS Pathogens. 8 (6): e1002776. doi:10.1371/journal.ppat.1002776. PMC 3380943. PMID 22737074. open access
  47. ^ Garcia-del Portillo F, Foster JW, Finlay BB (October 1993). "Role of acid tolerance response genes in Salmonella typhimurium virulence". Infection and Immunity. 61 (10): 4489–92. PMC 281185. PMID 8406841.
  48. ^ Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA (June 2012). "Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa". Lancet. 379 (9835): 2489–99. doi:10.1016/S0140-6736(11)61752-2. PMC 3402672. PMID 22587967.
  49. ^ § 6 and § 7 of the German law on infectious disease prevention, Infektionsschutzgesetz
  50. ^ "Anzahl der jährlich registrierten Salmonellose-Erkrankungen in Deutschland bis 2016 | Statistik".
  51. ^ Centers for Disease Control and Prevention
  52. ^ Crump JA, Luby SP, Mintz ED (May 2004). "The global burden of typhoid fever". Bulletin of the World Health Organization. 82 (5): 346–53. PMC 2622843. PMID 15298225.
  53. ^ a b c d Haraga A, Ohlson MB, Miller SI (January 2008). "Salmonellae interplay with host cells". Nature Reviews. Microbiology. 6 (1): 53–66. doi:10.1038/nrmicro1788. PMID 18026123.
  54. ^ Kerr MC, Wang JT, Castro NA, Hamilton NA, Town L, Brown DL, Meunier FA, Brown NF, Stow JL, Teasdale RD (April 2010). "Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella". The EMBO Journal. 29 (8): 1331–47. doi:10.1038/emboj.2010.28. PMC 2868569. PMID 20300065.
  55. ^ Mittal R, Peak-Chew SY, Sade RS, Vallis Y, McMahon HT (June 2010). "The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate". The Journal of Biological Chemistry. 285 (26): 19927–34. doi:10.1074/jbc.M110.126581. PMC 2888404. PMID 20430892.
  56. ^ a b Choi YS, Cho WJ, Yun SH, Lee SY, Park SH, Park JC, Jang EH, Shin HY (December 2010). "A case of back pain caused by Salmonella spondylitis -A case report-". Korean Journal of Anesthesiology. 59 Suppl: S233–7. doi:10.4097/kjae.2010.59.S.S233. PMC 3030045. PMID 21286449.
  57. ^ "Bacterial protein mimics DNA to sabotage cells' defenses: Study reveals details of Salmonella infections".
  58. ^ a b Buchmeier NA, Lipps CJ, So MY, Heffron F (March 1993). "Recombination-deficient mutants of Salmonella typhimurium are avirulent and sensitive to the oxidative burst of macrophages". Molecular Microbiology. 7 (6): 933–6. doi:10.1111/j.1365-2958.1993.tb01184.x. PMID 8387147.
  59. ^ Cano DA, Pucciarelli MG, García-del Portillo F, Casadesús J (January 2002). "Role of the RecBCD recombination pathway in Salmonella virulence". Journal of Bacteriology. 184 (2): 592–5. doi:10.1128/jb.184.2.592-595.2002. PMC 139588. PMID 11751841.
  60. ^ Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Sanders M, Whitehead S, Chabalgoity JA, Maskell D, Humphrey T, Roberts M, Barrow PA, Dougan G, Parkhill J (October 2008). "Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways". Genome Research. 18 (10): 1624–37. doi:10.1101/gr.077404.108. PMC 2556274. PMID 18583645.
  61. ^ den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML, Degoricija L, Hoelzer K, Rodriguez-Rivera LD, Brown S, Bolchacova E, Furtado MR, Wiedmann M (August 2011). "Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica". BMC Genomics. 12: 425. doi:10.1186/1471-2164-12-425. PMC 3176500. PMID 21859443.
  62. ^ Choi E, Han Y, Cho YJ, Nam D, Lee EJ (September 2017). "Salmonellavirulence gene". Proceedings of the National Academy of Sciences of the United States of America. 114 (38): 10232–10237. doi:10.1073/pnas.1705437114. PMC 5617274. PMID 28874555.
  63. ^ Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC, Tchesnokova V, Kramer JJ, Beskhlebnaya V, Samadpour M, Grzymajlo K, Ugorski M, Lankau EW, Mackie RI, Clegg S, Sokurenko EV (2012). "Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin". PLoS Pathogens. 8 (6): e1002733. doi:10.1371/journal.ppat.1002733. PMC 3369946. PMID 22685400.
  64. ^ a b Bäumler AJ, Tsolis RM, Ficht TA, Adams LG (October 1998). "Evolution of host adaptation in Salmonella enterica". Infection and Immunity. 66 (10): 4579–87. PMC 108564. PMID 9746553.
  65. ^ a b de Moraes MH, Soto EB, Salas González I, Desai P, Chu W, Porwollik S, McClelland M, Teplitski M (2018). "Salmonella sv. Newport to a Plant Colonization Lifestyle". Frontiers in Microbiology. 9: 877. doi:10.3389/fmicb.2018.00877. PMC 5968271. PMID 29867794.
  66. ^ Zinder ND, Lederberg J (November 1952). "Genetic exchange in Salmonella" (PDF). Journal of Bacteriology. 64 (5): 679–99. PMC 169409. PMID 12999698.
  67. ^ Demerec M, Adelberg EA, Clark AJ, Hartman PE (July 1966). "A proposal for a uniform nomenclature in bacterial genetics" (PDF). Genetics. 54 (1): 61–76. PMC 1211113. PMID 5961488.
  68. ^ Ames BN, Mccann J, Yamasaki E (December 1975). "Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test". Mutation Research. 31 (6): 347–64. doi:10.1016/0165-1161(75)90046-1. PMID 768755.

External links

1984 Rajneeshee bioterror attack

The 1984 Rajneeshee bioterror attack was the food poisoning of 751 individuals in The Dalles, Oregon, through the deliberate contamination of salad bars at ten local restaurants with Salmonella. A group of prominent followers of Bhagwan Shree Rajneesh (later known as Osho) led by Ma Anand Sheela had hoped to incapacitate the voting population of the city so that their own candidates would win the 1984 Wasco County elections. The incident was the first and single largest bioterrorist attack in United States history.Having previously gained political control of Antelope, Oregon, Rajneesh's followers, who were based in nearby Rajneeshpuram, sought election to two of the three seats on the Wasco County Circuit Court that were up for election in November 1984. Fearing they would not gain enough votes, some Rajneeshpuram officials decided to incapacitate voters in The Dalles, the largest population center in Wasco County. The chosen biological agent was Salmonella enterica Typhimurium, which was first delivered through glasses of water to two County Commissioners and then, on a larger scale, at salad bars and in salad dressing.

As a result of the attack, 751 people contracted salmonellosis, 45 of whom were hospitalized, but none died. Although an initial investigation by the Oregon Public Health Division and the Centers for Disease Control did not rule out deliberate contamination, the agents and contamination were only confirmed a year later. On February 28, 1985, Congressman James H. Weaver gave a speech in the United States House of Representatives in which he "accused the Rajneeshees of sprinkling Salmonella culture on salad bar ingredients in eight restaurants".At a press conference in September 1985, Rajneesh accused several of his followers of participation in this and other crimes, including an aborted plan in 1985 to assassinate a United States Attorney, and he asked state and federal authorities to investigate. Oregon Attorney General David B. Frohnmayer set up an interagency task force, composed of Oregon State Police and the Federal Bureau of Investigation, and executed search warrants in Rajneeshpuram. A sample of bacteria matching the contaminant that had sickened the town residents was found in a Rajneeshpuram medical laboratory. Two leading Rajneeshpuram officials were convicted on charges of attempted murder and served 29 months of 20-year sentences in a minimum-security federal prison.

2008 United States salmonellosis outbreak

The 2008 United States salmonellosis outbreak was an outbreak of salmonellosis across multiple U.S. states due to Salmonella enterica serovar Saintpaul. Over the course of the outbreak, 1442 cases were identified across 43 U.S. states, the District of Columbia, and Canada. The U.S. Centers for Disease Control and Prevention (CDC) investigation determined that jalapeño peppers imported from Mexico as well as Serrano peppers were major sources of the outbreak. Tomatoes may have been a source as well. The outbreak lasted from April to August, 2008.

Asymptomatic carrier

An asymptomatic carrier (healthy carrier or just carrier) is a person or other organism that has become infected with a pathogen, but that displays no signs or symptoms.Although unaffected by the pathogen, carriers can transmit it to others or develop symptoms in later stages of the disease. Asymptomatic carriers play a critical role in the transmission of common infectious diseases such as typhoid, C. Difficile, influenzas, and HIV. While the mechanism of disease-carrying is still unknown, researchers have made progress towards understanding how certain pathogens can remain dormant in a human for a period of time. A better understanding of asymptomatic disease carriers is crucial to the fields of medicine and public health as they work towards mitigating the spread of common infectious diseases.

Bacillus (shape)

A bacillus (plural bacilli) or bacilliform bacterium is a rod-shaped bacterium or archaeon. Bacilli are found in many different taxonomic groups of bacteria. However, the name Bacillus, capitalized and italicized, refers to a specific genus of bacteria. The name Bacilli, capitalized but not italicized, can also refer to a less specific taxonomic group of bacteria that includes two orders, one of which contains the genus Bacillus. When the word is formatted with lowercase and not italicized, 'bacillus', it will most likely be referring to shape and not to the genus at all. Bacilliform bacteria are also often simply called rods when the bacteriologic context is clear.

Sea

Bacilli usually divide in the same plane and are solitary, but can combine to form diplobacilli, streptobacilli, and palisades.

Diplobacilli: Two bacilli arranged side by side with each other.

Streptobacilli: Bacilli arranged in chains.

Coccobacillus: Oval and similar to coccus (circular shaped bacterium).There is no connection between the shape of a bacterium and its color in the Gram staining. MacConkey agar can be used to distinguish among Gram negative bacilli such as E. coli and salmonella.

Bismuth sulfite agar

Bismuth sulfite agar is a type of agar media used to isolate Salmonella species. It uses glucose as a primary source of carbon. BLBG and bismuth stop gram-positive growth. Bismuth sulfite agar tests the ability to use ferrous sulfate and convert it to hydrogen sulfide.

Bismuth sulfite agar typically contains (w/v):

1.6% bismuth sulfite Bi2(SO3)3

1.0% pancreatic digest of casein

1.0% pancreatic digest of animal tissue

1.0% beef extract

1.0% glucose

0.8% dibasic sodium phosphate

0.06% ferrous sulfate • 7 water

pH adjusted to 7.7 at 25 °CThis medium is boiled for sterility, not autoclaved.

Conagra Brands

Conagra Brands, Inc. is an American packaged foods company headquartered in Chicago, Illinois. Conagra makes and sells products under various brand names that are available in supermarkets, restaurants, and food service establishments.

Food microbiology

Food microbiology is the study of the microorganisms that inhibit, create, or contaminate food, including the study of microorganisms causing food spoilage, pathogens that may cause disease especially if food is improperly cooked or stored, those used to produce fermented foods such as cheese, yogurt, bread, beer, and wine, and those with other useful roles such as producing probiotics.

List of foodborne illness outbreaks in the United States

In 1999, an estimated 5,000 deaths, 325,000 hospitalizations and 76 million illnesses were caused by foodborne illnesses within the US. The Centers for Disease Control and Prevention began tracking outbreaks starting in the 1970s. By 2012, the figures were roughly 130,000 hospitalizations and 3,000 deaths.

Mayonnaise

Mayonnaise (, , also US: ), informally mayo (), is a thick cold condiment or dressing usually used in sandwiches and composed salads or on chips. It is a stable emulsion of oil, egg yolk, and acid, either vinegar or lemon juice. There are many variants using additional flavorings. The proteins and lecithin in the egg yolk serve as emulsifiers in mayonnaise (and hollandaise sauce). The color of mayonnaise varies from near-white to pale yellow, and its texture from a light cream to a thick gel. It is also a base in sauces such as Tartar sauce.

Commercial egg-free varieties are made for vegans and others who avoid chicken eggs or dietary cholesterol.

Myoviridae

The Myoviridae is a family of bacteriophages in the order Caudovirales. Bacteria and archaea serve as natural hosts. There are currently 93 species in this family, divided among four subfamilies and 30 genera.

Paratyphoid fever

Paratyphoid fever, also known simply as paratyphoid, is a bacterial infection caused by one of the three types of Salmonella enterica. Symptoms usually begin 6–30 days after exposure and are the same as those of typhoid fever. Often, a gradual onset of a high fever occurs over several days. Weakness, loss of appetite, and headaches also commonly occur. Some people develop a skin rash with rose-colored spots. Without treatment, symptoms may last weeks or months. Other people may carry the bacteria without being affected; however, they are still able to spread the disease to others. Both typhoid and paratyphoid are of similar severity. Paratyphoid and typhoid fever are types of enteric fever.Paratyphoid is caused by the bacterium Salmonella enterica of the serotypes Paratyphi A, Paratyphi B, or Paratyphi C growing in the intestines and blood. They are usually spread by eating or drinking food or water contaminated with the feces of an infected person. They may occur when a person who prepares food is infected. Risk factors include poor sanitation as is found among poor crowded populations. Occasionally, they may be transmitted by sex. Humans are the only animals infected. Diagnosis may be based on symptoms and confirmed by either culturing the bacteria or detecting the bacterial DNA in the blood, stool, or bone marrow. Culturing the bacteria can be difficult. Bone-marrow testing is the most accurate. Symptoms are similar to that of many other infectious diseases. Typhus is an unrelated disease.While no vaccine is available specifically for paratyphoid, the typhoid vaccine may provide some benefit. Prevention includes drinking clean water, better sanitation, and better handwashing. Treatment of the disease is with antibiotics such as azithromycin. Resistance to a number of other previously effective antibiotics is common.Paratyphoid affects about six million people a year. It is most common in parts of Asia and rare in the developed world. Most cases are due to Paratyphi A rather than Paratyphi B or C. In 2015, paratyphoid fever resulted in about 29,200 deaths, down from 63,000 deaths in 1990. The risk of death is between 10 and 15% without treatment, while with treatment, it may be less than 1%.

Salmonella Dub

Salmonella Dub is a dub/drum n bass/reggae/roots band from New Zealand. The band was formed in 1992 by Andrew Penman, Dave Deakins, and Mark Tyler. The band has toured extensively throughout New Zealand, Australia, and Europe, including the UK and Ireland.

Salmonella enterica

Salmonella enterica (formerly Salmonella choleraesuis) is a rod-shaped, flagellate, facultative aerobic, Gram-negative bacterium and a species of the genus Salmonella. A number of its serovars are serious human pathogens.

Salmonella enterica subsp. enterica

Salmonella enterica subsp. enterica is a subspecies of Salmonella enterica, the rod-shaped, flagellated, aerobic, Gram-negative bacterium. Many of the pathogenic serovars of the S. enterica species are in this subspecies, including that responsible for typhoid.

Salmonellosis

Salmonellosis is a symptomatic infection caused by bacteria of the Salmonella type. The most common symptoms are diarrhea, fever, abdominal cramps, and vomiting. Symptoms typically occur between 12 hours and 36 hours after exposure, and last from two to seven days. Occasionally more significant disease can result in dehydration. The old, young, and others with a weakened immune system are more likely to develop severe disease. Specific types of Salmonella can result in typhoid fever or paratyphoid fever.There are two species of Salmonella: Salmonella bongori and Salmonella enterica with many subspecies. Infection is usually spread by eating contaminated meat, eggs, or milk. Other foods may spread the disease if they have come into contact with manure. A number of pets including cats, dogs, and reptiles can also carry and spread the infection. Diagnosis is by a stool test or blood tests.Efforts to prevent the disease include the proper washing, preparation, and cooking of food. Mild disease typically does not require specific treatment. More significant cases may require treatment of electrolyte problems and intravenous fluid replacement. In those at high risk or in whom the disease has spread outside the intestines, antibiotics are recommended.Salmonellosis is one of the most common causes of diarrhea globally. In 2015, 90,300 deaths occurred from nontyphoidal salmonellosis, and 178,000 deaths from typhoidal salmonellosis. In the United States, about 1.2 million cases and 450 deaths occur from nontyphoidal salmonellosis a year. In Europe, it is the second most common foodborne disease after campylobacteriosis.

Serotype

A serotype or serovar is a distinct variation within a species of bacteria or virus or among immune cells of different individuals. These microorganisms, viruses, or cells are classified together based on their cell surface antigens, allowing the epidemiologic classification of organisms to the sub-species level. A group of serovars with common antigens is called a serogroup or sometimes serocomplex.

Serotyping often plays an essential role in determining species and subspecies. The Salmonella genus of bacteria, for example, has been determined to have over 2600 serotypes, including Salmonella enterica serovar Typhimurium, S. enterica serovar Typhi, and S. enterica serovar Dublin. Vibrio cholerae, the species of bacteria that causes cholera, has over 200 serotypes, based on cell antigens. Only two of them have been observed to produce the potent enterotoxin that results in cholera: O1 and O139.

Serotypes were discovered by the American microbiologist Rebecca Lancefield in 1933.

Siphoviridae

Siphoviridae is a family of double-stranded DNA viruses in the order Caudovirales. Bacteria and archaea serve as natural hosts. There are currently 313 species in this family, divided among 47 genera. The characteristic structural features of this family are a nonenveloped head and noncontractile tail.

Spice

A spice is a seed, fruit, root, bark, or other plant substance primarily used for flavoring, coloring or preserving food. Spices are distinguished from herbs, which are the leaves, flowers, or stems of plants used for flavoring or as a garnish. Many spices have antimicrobial properties. This may explain why spices are more commonly used in warmer climates, which have more infectious diseases, and why the use of spices is prominent in meat, which is particularly susceptible to spoiling. Spices are sometimes used in medicine, religious rituals, cosmetics or perfume production.

Typhoid fever

Typhoid fever, also known simply as typhoid, is a bacterial infection due to specific type of Salmonella that causes symptoms. Symptoms may vary from mild to severe, and usually begin 6 to 30 days after exposure. Often there is a gradual onset of a high fever over several days. This is commonly accompanied by weakness, abdominal pain, constipation, headaches, and mild vomiting. Some people develop a skin rash with rose colored spots. In severe cases, people may experience confusion. Without treatment, symptoms may last weeks or months. Diarrhea is uncommon. Other people may carry the bacterium without being affected; however, they are still able to spread the disease to others. Typhoid fever is a type of enteric fever, along with paratyphoid fever.The cause is the bacterium Salmonella enterica subsp. enterica growing in the intestines and blood. Typhoid is spread by eating or drinking food or water contaminated with the feces of an infected person. Risk factors include poor sanitation and poor hygiene. Those who travel in the developing world are also at risk. Only humans can be infected. Symptoms are similar to those of many other infectious diseases. Diagnosis is by either culturing the bacteria or detecting their DNA in the blood, stool, or bone marrow. Culturing the bacterium can be difficult. Bone-marrow testing is the most accurate.A typhoid vaccine can prevent about 40 to 90% of cases during the first two years. The vaccine may have some effect for up to seven years. For those at high risk or people traveling to areas where the disease is common, vaccination is recommended. Other efforts to prevent the disease include providing clean drinking water, good sanitation, and handwashing. Until an individual's infection is confirmed as cleared, the individual should not prepare food for others. The disease is treated with antibiotics such as azithromycin, fluoroquinolones, or third-generation cephalosporins. Resistance to these antibiotics has been developing, which has made treatment of the disease more difficult.In 2015, 12.5 million new cases worldwide were reported. The disease is most common in India. Children are most commonly affected. Rates of disease decreased in the developed world in the 1940s as a result of improved sanitation and use of antibiotics to treat the disease. Each year in the United States, about 400 cases are reported and the disease occurs in an estimated 6,000 people. In 2015, it resulted in about 149,000 deaths worldwide – down from 181,000 in 1990 (about 0.3% of the global total). The risk of death may be as high as 20% without treatment. With treatment, it is between 1 and 4%. Typhus is a different disease. However, the name typhoid means "resembling typhus" due to the similarity in symptoms.

Prokaryotes: Bacteria classification (phyla and orders)
G-/
OM
G+/
no OM
Incertae
sedis
As poultry
Husbandry
Religion, mythology
and culture
Diseases
Adulterants, food contaminants
Flavorings
Microorganisms
Parasitic infections through food
Pesticides
Preservatives
Sugar substitutes
Toxins, poisons, environment pollution
Food contamination incidents
Regulation, standards, watchdogs
Institutions

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.