Right ascension

Right ascension (abbreviated RA; symbol α) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the March equinox to the (hour circle of the) point above the earth in question.[1] When paired with declination, these astronomical coordinates specify the direction of a point on the celestial sphere in the equatorial coordinate system.

Ra and dec demo animation small
Right ascension and declination as seen on the inside of the celestial sphere. The primary direction of the system is the March equinox, the ascending node of the ecliptic (red) on the celestial equator (blue). Right ascension is measured eastward up to 24h along the celestial equator from the primary direction.

An old term, right ascension (Latin: ascensio recta[2]) refers to the ascension, or the point on the celestial equator that rises with any celestial object as seen from Earth's equator, where the celestial equator intersects the horizon at a right angle. It contrasts with oblique ascension, the point on the celestial equator that rises with any celestial object as seen from most latitudes on Earth, where the celestial equator intersects the horizon at an oblique angle.[3]


Ra and dec on celestial sphere
Right ascension (blue) and declination (green) as seen from outside the celestial sphere
Hour angle still1
Various hour angles are depicted here. The symbol ♈ is the vernal equinox direction.
Assuming the day of the year is the March equinox: the Sun lies toward the grey arrow, the star marked by a green arrow will appear to rise somewhere in the east about midnight (the Earth drawn from "above" turns anticlockwise). After the observer reaches the green arrow dawn comes over-powering the star's light about six hours before it sets on the western horizon. The Right ascension of the star is about 18h. 18h means it is a March early-hours star and in blue sky in the morning. If 12h RA, the star would be a March all-night star as opposite the March equinox. If 6h RA the star would be a March late-hours star, at its high (meridian) at dusk.

Right ascension is the celestial equivalent of terrestrial longitude. Both right ascension and longitude measure an angle from a primary direction (a zero point) on an equator. Right ascension is measured from the Sun at the March equinox i.e. the First Point of Aries, which is the place on the celestial sphere where the Sun crosses the celestial equator from south to north at the March equinox and is currently located in the constellation Pisces. Right ascension is measured continuously in a full circle from that alignment of Earth and Sun in space, that equinox, the measurement increasing towards the east.[4]

As seen from Earth (except at the poles), objects noted to have 12h RA are longest visible (appear throughout the night) at the March equinox; those with 0h RA (apart from the sun) do so at the September equinox. On those dates at midnight, such objects will reach ("culminate" at) their highest point (their meridian). How high depends on their declination; if 0° declination (i.e. on the celestial equator) then at Earth's equator they are directly overhead (at zenith).

Any units of angular measure could have been chosen for right ascension, but it is customarily measured in hours (h), minutes (m), and seconds (s), with 24h being equivalent to a full circle. Astronomers have chosen this unit to measure right ascension because they measure a star's location by timing its passage through the highest point in the sky as the Earth rotates. The line which passes through the highest point in the sky, called the meridian, is the projection of a longitude line onto the celestial sphere. Since a complete circle contains 24h of right ascension or 360° (degrees of arc), 1/24 of a circle is measured as 1h of right ascension, or 15°; 1/24×60 of a circle is measured as 1m of right ascension, or 15 minutes of arc (also written as 15′); and 1/24×60×60 of a circle contains 1s of right ascension, or 15 seconds of arc (also written as 15″). A full circle, measured in right-ascension units, contains 24 × 60 × 60 = 86400s, or 24 × 60 = 1440m, or 24h.[5]

Because right ascensions are measured in hours (of rotation of the Earth), they can be used to time the positions of objects in the sky. For example, if a star with RA = 1h 30m 00s is at its meridian, then a star with RA = 20h 00m 00s will be on the/at its meridian (at its apparent highest point) 18.5 sidereal hours later.

Sidereal hour angle, used in celestial navigation, is similar to right ascension, but increases westward rather than eastward. Usually measured in degrees (°), it is the complement of right ascension with respect to 24h.[6] It is important not to confuse sidereal hour angle with the astronomical concept of hour angle, which measures angular distance of an object westward from the local meridian.

Symbols and abbreviations

Unit Value Symbol Sexagesimal system In radians
Hour 1/24 circle h 15° π/12 rad
Minute 1/60 hour, 1/1440 circle m 1/4°, 15 π/720 rad
Second 1/60 minute, 1/3600 hour, 1/86400 circle s 1/240°, 1/4′, 15 π/43200 rad

Effects of precession

The Earth's axis rotates slowly westward about the poles of the ecliptic, completing one cycle in about 26,000 years. This movement, known as precession, causes the coordinates of stationary celestial objects to change continuously, if rather slowly. Therefore, equatorial coordinates (including right ascension) are inherently relative to the year of their observation, and astronomers specify them with reference to a particular year, known as an epoch. Coordinates from different epochs must be mathematically rotated to match each other, or to match a standard epoch.[7] Right ascension for "fixed stars" near the ecliptic and equator increases by about 3.05 seconds per year on average, or 5.1 minutes per century, but for fixed stars further from the ecliptic the rate of change can be anything from negative infinity to positive infinity. The right ascension of Polaris is increasing quickly. The North Ecliptic Pole in Draco and the South Ecliptic Pole in Dorado are always at right ascension 18h and 6h respectively.

The currently used standard epoch is J2000.0, which is January 1, 2000 at 12:00 TT. The prefix "J" indicates that it is a Julian epoch. Prior to J2000.0, astronomers used the successive Besselian epochs B1875.0, B1900.0, and B1950.0.[8]


Old RA diagram
How right ascension got its name. Ancient astronomy was very concerned with the rise and set of celestial objects. The ascension was the point on the celestial equator (red) which rose or set at the same time as an object (green) on the celestial sphere. As seen from the equator, both were on a great circle from pole to pole (left, sphaera recta or right sphere). From almost anywhere else, they were not (center, sphaera obliqua or oblique sphere). At the poles, objects did not rise or set (right, sphaera parallela or parallel sphere). An object's right ascension was its ascension on a right sphere.[9]

The concept of right ascension has been known at least as far back as Hipparchus who measured stars in equatorial coordinates in the 2nd century BC. But Hipparchus and his successors made their star catalogs in ecliptic coordinates, and the use of RA was limited to special cases.

With the invention of the telescope, it became possible for astronomers to observe celestial objects in greater detail, provided that the telescope could be kept pointed at the object for a period of time. The easiest way to do that is to use an equatorial mount, which allows the telescope to be aligned with one of its two pivots parallel to the Earth's axis. A motorized clock drive often is used with an equatorial mount to cancel out the Earth's rotation. As the equatorial mount became widely adopted for observation, the equatorial coordinate system, which includes right ascension, was adopted at the same time for simplicity. Equatorial mounts could then be accurately pointed at objects with known right ascension and declination by the use of setting circles. The first star catalog to use right ascension and declination was John Flamsteed's Historia Coelestis Britannica (1712, 1725).

Stars and ra
The entire sky, divided into two halves. Right ascension (blue) begins at the March equinox (at right, at the intersection of the ecliptic (red) and the equator (green)) and increases eastward (towards the left). The lines of right ascension (blue) from pole to pole divide the sky into 24 hours, each equivalent to 15°.

See also

Notes and references

  1. ^ U.S. Naval Observatory Nautical Almanac Office (1992). Seidelmann, P. Kenneth (ed.). Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA. p. 735. ISBN 0-935702-68-7.
  2. ^ Blaeu, Guilielmi (1668). Institutio Astronomica. p. 65., "Ascensio recta Solis, stellæ, aut alterius cujusdam signi, est gradus æquatorus cum quo simul exoritur in sphæra recta"; roughly translated, "Right ascension of the Sun, stars, or any other sign, is the degree of the equator that rises together in a right sphere"
  3. ^ Lathrop, John (1821). A Compendious Treatise on the Use of Globes and Maps. Wells and Lilly and J.W. Burditt, Boston. pp. 29, 39.
  4. ^ Moulton, Forest Ray (1916). An Introduction to Astronomy. Macmillan Co., New York. pp. 125–126.
  5. ^ Moulton (1916), p. 126.
  6. ^ Explanatory Supplement (1992), p. 11.
  7. ^ Moulton (1916), pp. 92–95.
  8. ^ see, for instance, U.S. Naval Observatory Nautical Almanac Office; U.K. Hydrographic Office; H.M. Nautical Almanac Office (2008). "Time Scales and Coordinate Systems, 2010". The Astronomical Almanac for the Year 2010. U.S. Govt. Printing Office. p. B2,.
  9. ^ Bleau (1668), p. 40–41.

External links


An azimuth ( (listen); from Arabic اَلسُّمُوت‎ as-sumūt, “the directions”, the plural form of the Arabic noun السَّمْت as-samt, meaning "the direction") is an angular measurement in a spherical coordinate system. The vector from an observer (origin) to a point of interest is projected perpendicularly onto a reference plane; the angle between the projected vector and a reference vector on the reference plane is called the azimuth.

When used as a celestial coordinate, the azimuth is the horizontal direction of a star or other astronomical object in the sky. The star is the point of interest, the reference plane is the local area (e.g. a circular area 5 km in radius at sea level) around an observer on Earth's surface, and the reference vector points to true north. The azimuth is the angle between the north vector and the star's vector on the horizontal plane.Azimuth is usually measured in degrees (°). The concept is used in navigation, astronomy, engineering, mapping, mining, and ballistics.

Boötes void

The Boötes void (or The Great Nothing) is an enormous, approximately spherical region of space, containing very few galaxies. It is located in the vicinity of the constellation Boötes, hence its name. Its center is located at approximately right ascension 14h 50m and declination 46°.

Conjunction (astronomy)

In astronomy, a conjunction occurs when two astronomical objects or spacecraft have either the same right ascension or the same ecliptic longitude, usually as observed from Earth.

The astronomical symbol for conjunction is ☌ (in Unicode U+260C) and handwritten .

The conjunction symbol is not used in modern astronomy. It continues to be used in astrology.When two objects always appear close to the ecliptic—such as two planets, the Moon and a planet, or the Sun and a planet—this fact implies an apparent close approach between the objects as seen on the sky. A related word, appulse, is the minimum apparent separation on the sky of two astronomical objects.Conjunctions involve either two objects in the Solar System or one object in the Solar System and a more distant object, such as a star. A conjunction is an apparent phenomenon caused by the observer's perspective: the two objects involved are not actually close to one another in space. Conjunctions between two bright objects close to the ecliptic, such as two bright planets, can be seen with the naked eye.


In astronomy, declination (abbreviated dec; symbol δ) is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. Declination's angle is measured north or south of the celestial equator, along the hour circle passing through the point in question.

The root of the word declination (Latin, declinatio) means "a bending away" or "a bending down". It comes from the same root as the words incline ("bend toward") and recline ("bend backward").In some 18th and 19th century astronomical texts, declination is given as North Pole Distance (N.P.D.), which is equivalent to 90 - (declination). For instance an object marked as declination -5 would have a NPD of 95, and a declination of -90 (the south celestial pole) would have a NPD of 180.

Equatorial coordinate system

The equatorial coordinate system is a celestial coordinate system widely used to specify the positions of celestial objects. It may be implemented in spherical or rectangular coordinates, both defined by an origin at the centre of Earth, a fundamental plane consisting of the projection of Earth's equator onto the celestial sphere (forming the celestial equator), a primary direction towards the vernal equinox, and a right-handed convention.The origin at the center of Earth means the coordinates are geocentric, that is, as seen from the centre of Earth as if it were transparent. The fundamental plane and the primary direction mean that the coordinate system, while aligned with Earth's equator and pole, does not rotate with the Earth, but remains relatively fixed against the background stars. A right-handed convention means that coordinates increase northward from and eastward around the fundamental plane.

Hour angle

In astronomy and celestial navigation, the hour angle is one of the coordinates used in the equatorial coordinate system to give the direction of a point on the celestial sphere. The hour angle of a point is the angle between two planes: one containing Earth's axis and the zenith (the meridian plane), and the other containing Earth's axis and the given point (the hour circle passing through the point).

The angle may be expressed as negative east of the meridian plane and positive west of the meridian plane, or as positive westward from 0° to 360°. The angle may be measured in degrees or in time, with 24h = 360° exactly.

In astronomy, hour angle is defined as the angular distance on the celestial sphere measured westward along the celestial equator from the meridian to the hour circle passing through a point. It may be given in degrees, time, or rotations depending on the application.

In celestial navigation, the convention is to measure in degrees westward from the prime meridian (Greenwich hour angle, GHA), from the local meridian (local hour angle, LHA) or from the first point of Aries (sidereal hour angle, SHA).

The hour angle is paired with the declination to fully specify the location of a point on the celestial sphere in the equatorial coordinate system.

International Celestial Reference System

The International Celestial Reference System (ICRS) is the current standard celestial reference system adopted by the International Astronomical Union (IAU). Its origin is at the barycenter of the Solar System, with axes that are intended to be "fixed" with respect to space. ICRS coordinates are approximately the same as equatorial coordinates: the mean pole at J2000.0 in the ICRS lies at 17.3±0.2 mas in the direction 12 h and 5.1±0.2 mas in the direction 18 h. The mean equinox of J2000.0 is shifted from the ICRS right ascension origin by 78±10 mas (direct rotation around the polar axis).

The defining extragalactic reference frame of the ICRS is the International Celestial Reference Frame (currently ICRF3) based on hundreds of extra-galactic radio sources, mostly quasars, distributed around the entire sky. Because they are so distant, they are apparently stationary to our current technology, yet their positions can be measured with the utmost accuracy by Very Long Baseline Interferometry (VLBI). The positions of most are known to 0.001 arcsecond or better. At optical wavelengths, the ICRS is currently realized by the Hipparcos Celestial Reference Frame (HCRF), a subset of about 100,000 stars in the Hipparcos Catalogue. A more accurate optical realization of the ICRS (Gaia-CRF2), based on the observation by the Gaia spacecraft of almost 500,000 extragalactic objects believed to be quasars, is under preparation.


Kepler-27 is a star in the northern constellation of Cygnus, the swan, that is orbited by a planet found to be unequivocally within the star's habitable zone. It is located at the celestial coordinates: Right Ascension 19h 28m 56.825s, Declination +41° 05′ 09.15″. With an apparent visual magnitude of 15.855, this star is too faint to be seen with the naked eye.


Kepler-28 is a star in the northern constellation of Cygnus., It is orbited by two exoplanets. It is located at the celestial coordinates: Right Ascension 19h 28m 32.887s, Declination +42° 25′ 45.91″. With an apparent visual magnitude of 15.036, this star is too faint to be seen with the naked eye.


Kepler-45, formerly known as KOI-254, is a star in the northern constellation of Cygnus. It is located at the celestial coordinates: right ascension 19h 31m 29.495s, declination +41° 03′ 51.37″. With an apparent visual magnitude of 16.88, this star is too faint to be seen with the naked eye.

List of NGC objects (5001–6000)

This is a list of NGC objects 5001–6000 from the New General Catalogue (NGC). The astronomical catalogue is composed mainly of star clusters, nebulae, and galaxies. Other objects in the catalogue can be found in the other subpages of the list of NGC objects.

The constellation information in these tables is taken from The Complete New General Catalogue and Index Catalogue of Nebulae and Star Clusters by J. L. E. Dreyer, which was accessed using the "VizieR Service". Galaxy types are identified using the NASA/IPAC Extragalactic Database. The other data of these tables are from the SIMBAD Astronomical Database unless otherwise stated.

Longitude of the ascending node

The longitude of the ascending node (☊ or Ω) is one of the orbital elements used to specify the orbit of an object in space. It is the angle from a reference direction, called the origin of longitude, to the direction of the ascending node, measured in a reference plane. The ascending node is the point where the orbit of the object passes through the plane of reference, as seen in the adjacent image. Commonly used reference planes and origins of longitude include:

For a geocentric orbit, Earth's equatorial plane as the reference plane, and the First Point of Aries as the origin of longitude. In this case, the longitude is also called the right ascension of the ascending node, or RAAN. The angle is measured eastwards (or, as seen from the north, counterclockwise) from the First Point of Aries to the node.

For a heliocentric orbit, the ecliptic as the reference plane, and the First Point of Aries as the origin of longitude. The angle is measured counterclockwise (as seen from north of the ecliptic) from the First Point of Aries to the node.

For an orbit outside the Solar System, the plane tangent to the celestial sphere at the point of interest (called the plane of the sky) as the reference plane, and north, i.e. the perpendicular projection of the direction from the observer to the North Celestial Pole onto the plane of the sky, as the origin of longitude. The angle is measured eastwards (or, as seen by the observer, counterclockwise) from north to the node., pp. 40, 72, 137; , chap. 17.In the case of a binary star known only from visual observations, it is not possible to tell which node is ascending and which is descending. In this case the orbital parameter which is recorded is the longitude of the node, Ω, which is the longitude of whichever node has a longitude between 0 and 180 degrees., chap. 17;, p. 72.

NGC 11

NGC 11 is a spiral galaxy located in the Andromeda constellation. It is located at right ascension 00h 08m 42.5s; declination +37° 26′ 53″; under J2000.0 coordinates and was discovered by Édouard Stephan on October 24 1881.

NGC 276

NGC 276 is a barred spiral galaxy located approximately 626 million light-years from the Solar System in the constellation Cetus. It was discovered in 1886 by Frank Muller and was later also observed by DeLisle Stewart.John Dreyer, creator of the New General Catalogue describes the object as "extremely faint, pretty small, extended 265°, 11 magnitude star 3 arcmin to north". The galaxy's right ascension was later corrected in the Index Catalogue using the observation data by Stewart.

NGC 4790

NGC 4790 is a Barred Spiral Galaxy (SBc) located in the vicinity of the constellation Virgo. It has a declination of -10° 14' 52" and a right ascension of 12 hours, 54 minutes and 51.9 seconds. In 2012, a possible supernova, SN 2012au, was detected in NGC 4790.The galaxy was discovered on 25 March 1786 by William Herschel.

Ohio Sky Survey

The Ohio Sky Survey was an astronomical survey of extragalactic radio sources. Data were taken between 1965 and 1971 using the Big Ear radio telescope at the Ohio State University Radio Observatory (OSURO), also known as the "Big Ear Radio Observatory (BERO)".

The survey covered 94% of the sky area between the limiting declinations of 63°N and 36°S with a resolution at 1415 MHz of 40 arc minutes in declination. The survey was carried out primarily at a frequency of 1415 MHz but observations were also made at 2650 MHz and 612 MHz. Roughly 19,620 sources were identified over the course of the survey of which 60% were previously uncatalogued.

The survey was unique in that it covered a larger portion of the sky, to a greater depth, and at a higher frequency, than any previous survey. In addition, all previously catalogued sources were tabulated and maps of the areas surveyed were included with the positions of all catalogued sources.

Sources discovered in the course of the survey were assigned names according to a coordinate numbering system consisting of a two-letter prefix followed by three digits. The first letter, O, stood for Ohio, and the second letter, B–Z inclusive (omitting O) indicated the source right ascension in hours (0–23 inclusive). The first digit indicated the declination zone in increments of 10°, while the last two digits give the right ascension to the nearest one-hundredth of an hour.

Data reduction for the survey was done using a computer program developed by John D. Kraus and Robert S. Dixon.The Ohio Sky Survey was published in seven installments and two supplements.

Omega Piscium

Omega Piscium (Omega Psc, ω Piscium, ω Psc) is a star approximately 106 light years away from Earth, in the constellation Pisces. It has a spectral type of F4IV, meaning it is a subgiant/dwarf star, and it has a temperature of 6,600 kelvins. It may or may not be a close binary star system. Variations in its spectrum were once interpreted as giving it an orbital period of 2.16 days, but this claim was later debunked as false. It is 20 times brighter than the Sun and is 1.8 times greater in mass, if it is a single star.Counting stars with Flamsteed numbers, Greek letters, and proper names, Omega Piscium was the named star with the highest right ascension (akin to terrestrial longitude). Due to the 26,000-year wobble of the Earth's axis, this changed in 2013, when its right ascension was reset to 0 hours. It is the first star to the east of the Circlet of Pisces, which represents the head of the western fish in the constellation.

Proper motion

Proper motion is the astronomical measure of the observed changes in the apparent places of stars or other celestial objects in the sky, as seen from the center of mass of the Solar System, compared to the abstract background of the more distant stars.The components for proper motion in the equatorial coordinate system (of a given epoch, often J2000.0) are given in the direction of right ascension (μα) and of declination (μδ). Their combined value is computed as the total proper motion (μ). It has dimensions of angle per time, typically arcseconds per year or milliarcseconds per year. Knowledge of the proper motion, distance, and radial velocity allows calculations of true stellar motion or velocity in space in respect to the Sun, and by coordinate transformation, the motion in respect to the Milky Way.

Proper motion is not entirely "proper" (that is, intrinsic to the celestial body or star), because it includes a component due to the motion of the Solar System itself.

Smithsonian Astrophysical Observatory Star Catalog

The Smithsonian Astrophysical Observatory Star Catalog is an astrometric star catalogue. It was published by the Smithsonian Astrophysical Observatory in 1966 and contains 258,997 stars. The catalogue was

compiled from various previous astrometric catalogues, and contains only stars to about ninth magnitude for

which accurate proper motions were known. Names in the SAO catalogue start with the letters SAO, followed by a number. The numbers are assigned following 18 ten-degree bands of declination, with stars sorted by right ascension within each band.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.