Pupa

A pupa (Latin: pūpa, "doll"; plural: pūpae) is the life stage of some insects undergoing transformation between immature and mature stages. The pupal stage is found only in holometabolous insects, those that undergo a complete metamorphosis, with four life stages: egg, larva, pupa, and imago. The processes of entering and completing the pupal stage are controlled by the insect's hormones, especially juvenile hormone, prothoracicotropic hormone, and ecdysone.

The pupae of different groups of insects have different names such as chrysalis for the pupae of butterflies and tumbler for those of the mosquito family. Pupae may further be enclosed in other structures such as cocoons, nests, or shells.[1]

Cetoine global
Pupa of the rose chafer beetle, Cetonia aurata
Mosquito Pupa
Tumbler (pupa) of a mosquito. Unlike most pupae, tumblers can swim around actively.

Position in life cycle

The pupal stage follows the larval stage and precedes adulthood (imago) in insects with complete metamorphosis. The pupa is a non-feeding, usually sessile stage, or highly active as in mosquitoes. It is during pupation that the adult structures of the insect are formed while the larval structures are broken down. The adult structures grow from imaginal discs.

Duration

Pupation may last weeks, months, or even years, depending on temperature and the species of insect.[2][3] For example, pupation lasts eight to fifteen days in monarch butterflies.[4] The pupa may enter dormancy or diapause until the appropriate season to emerge as an adult insect. In temperate climates pupae usually stay dormant during winter, while in the tropics pupae usually do so during the dry season.

Hercus fontinalis eclosion
Adult Hercus fontinalis emerging from cocoon
Eclosion of Papilio dardanus

Emergence

Insects emerge (eclose) from pupae by splitting the pupal case. Most butterflies emerge in the morning. In mosquitoes the emergence is in the evening or night. In fleas the process is triggered by vibrations that indicate the possible presence of a suitable host. Prior to emergence, the adult inside the pupal exoskeleton is termed pharate. Once the pharate adult has eclosed from the pupa, the empty pupal exoskeleton is called an exuvia; in most hymenopterans (ants, bees and wasps) the exuvia is so thin and membranous that it becomes "crumpled" as it is shed.

Pupal mating

Mottled Emigrant (Catopsilia pyranthe) mating with emerging butterfly from pupa in Hyderabad, AP W IMG 9437
Mating in pierid Catopsilia pyranthe of male with newly emerged female.

In a few taxa of the Lepidoptera, especially Heliconius, pupal mating is an extreme form of reproductive strategy in which the adult male mates with a female pupa about to emerge, or with the newly moulted female; this is accompanied by other actions such as capping of the reproductive system of the female with the sphragis, denying access to other males, or by exuding an anti-aphrodisiac pheromone.[5][6]

Defense

Pupae are usually immobile and are largely defenseless. To overcome this, a common strategy is concealed placement. There are some species of Lycaenid butterflies who are protected in their pupal stage by ants. Another means of defense by pupae of other species is the capability of making sounds or vibrations to scare potential predators. A few species use chemical defenses including toxic secretions. The pupae of social hymenopterans are protected by adult members of the hive.

Types

Based on the presence or absence of articulated mandibles that are employed in emerging from a cocoon or pupal case, the pupae can be classified in to two types:[7][8]

Based on whether the pupal appendages are free or attached to the body, the pupae can be classified in three types:[9]

  • Exarate pupa – appendages are free and are not usually encapsulated within a cocoon. All decticous pupa and some adecticous pupa are always exarate. (Neuroptera, Trichoptera, Cyclorrhapha of Dipterans, Siphonaptera, most Coleoptera, Hymenoptera, and few Lepidoptera).
  • Obtect pupa – appendages are attached closely to the body and are commonly encapsulated within a cocoon. Some adecticous pupa are obtect forms. (Most Lepidoptera, Nematocera and Brachycera of Dipterans, Staphylinidae and Chrysomelidae Coleopterans, many Chalcidoidea Hymenopterans)
  • Coarctate pupa – enclosed in a hardened cuticle of the penultimate larval instar called puparium. However, the pupa itself is of exarate adecticous pupa forms. (Cyclorrhapha of Dipterans).

Chrysalis

Common crow pupa
Common crow butterfly (Euploea core) chrysalis illustrating the Greek origin of the term: χρυσός (chrysós) for gold

A chrysalis (Latin chrysallis, from Greek χρυσαλλίς = chrysallís, plural: chrysalides, also known as an aurelia) or nympha is the pupal stage of butterflies. The term is derived from the metallic gold-coloration found in the pupae of many butterflies, referred to by the Greek term χρυσός (chrysós) for gold.

When the caterpillar is fully grown, it makes a button of silk which it uses to fasten its body to a leaf or a twig. Then the caterpillar's skin comes off for the final time. Under this old skin is a hard skin called a chrysalis.[10]

Because chrysalises are often showy and are formed in the open, they are the most familiar examples of pupae. Most chrysalides are attached to a surface by a Velcro-like arrangement of a silken pad spun by the caterpillar, usually cemented to the underside of a perch, and the cremastral hook or hooks protruding from the rear of the chrysalis or cremaster at the tip of the pupal abdomen by which the caterpillar fixes itself to the pad of silk. (Gr. kremastos 'suspended')[11]

Like other types of pupae, the chrysalis stage in most butterflies is one in which there is little movement. However, some butterfly pupae are capable of moving the abdominal segments to produce sounds or to scare away potential predators. Within the chrysalis, growth and differentiation occur.[12] The adult butterfly emerges (ecloses) from this and expands its wings by pumping haemolymph into the wing veins.[13] Although this sudden and rapid change from pupa to imago is often called metamorphosis, metamorphosis is really the whole series of changes that an insect undergoes from egg to adult.

When emerging, the butterfly uses a liquid, sometimes called cocoonase, which softens the shell of the chrysalis. Additionally, it uses two sharp claws located on the thick joints at the base of the forewings to help make its way out.[14] Having emerged from the chrysalis, the butterfly will usually sit on the empty shell in order to expand and harden its wings. However, if the chrysalis was near the ground (such as if it fell off from its silk pad), the butterfly would find another vertical surface to rest upon and harden its wings (such as a wall or fence).

Moth pupae are usually dark in color and either formed in underground cells, loose in the soil, or their pupa is contained in a protective silk case called a cocoon. The pupa of some species such as the hornet moth develop sharp ridges around the outside called adminicula that allow the pupa to move from its place of concealment inside a tree trunk when it is time for the adult to emerge.[15]

Pupa, chrysalis, and cocoon are frequently confused, but are quite distinct from each other. The pupa is the stage between the larva and adult stages. The chrysalis generally refers to a butterfly pupa although the term may be misleading as there are some moths whose pupae resembles a chrysalis, e.g.: the plume winged moths of the family Pterophoridae and some geometrid moths. A cocoon is a silk case that the larvae of moths, and sometimes other insects, spin around the pupa.

Cocoon

Caterpillars cocoon
The tough brown cocoon of an emperor gum moth

A cocoon is a casing spun of silk by many moths and caterpillars,[16] and numerous other holometabolous insect larvae as a protective covering for the pupa.

Cocoons may be tough or soft, opaque or translucent, solid or meshlike, of various colors, or composed of multiple layers, depending on the type of insect larva producing it. Many moth caterpillars shed the larval hairs (setae) and incorporate them into the cocoon; if these are urticating hairs then the cocoon is also irritating to the touch. Some larvae attach small twigs, fecal pellets or pieces of vegetation to the outside of their cocoon in an attempt to disguise it from predators. Others spin their cocoon in a concealed location—on the underside of a leaf, in a crevice, down near the base of a tree trunk, suspended from a twig or concealed in the leaf litter.[17]

The silk in the cocoon of the silk moth can be unraveled to harvest silk fibre which makes this moth the most economically important of all lepidopterans. The silk moth is the only completely domesticated lepidopteran and does not exist in the wild.

Insects that pupate in a cocoon must escape from it, and they do this either by the pupa cutting its way out, or by secreting enzymes, sometimes called cocoonase, that soften the cocoon. Some cocoons are constructed with built-in lines of weakness along which they will tear easily from inside, or with exit holes that only allow a one-way passage out; such features facilitate the escape of the adult insect after it emerges from the pupal skin.

Puparium

Some pupae remain inside the exoskeleton of the final larval instar and this last larval "shell" is called a puparium (plural, puparia). Flies of the group Muscomorpha have puparia, as do members of the order Strepsiptera, and the Hemipteran family Aleyrodidae.[18]

Gallery

Fruit Fly Pupa

Fruit fly (Drosophila melanogaster) pupa

Caterpillar making cocoon2

An emperor gum moth caterpillar spinning its cocoon

Actias luna pupa 2 sjh

Luna moth cocoon and pupa

Actias luna cocoons sjh

Assortment of Luna moth cocoons

Actias luna emergence sjh

Luna moth emerging from pupa within silk cocoon

Luna moth pupa removed from cocoon

Chrysalis5504

Chrysalis of Gulf fritillary

Pupation - Inachis io

Pupation of Inachis io

Monarch Butterfly Chrysalis

Monarch butterfly chrysalis

Nacimiento de una Dryas iulia, Mariposario de Icod de los Vinos, Tenerife, España, 2012-12-13, DD 03

Specimen of an eclosing Dryas iulia butterfly

Pupae of Japanagromyza inferna Spencer in gall of Centrosema virginianum L. - ZooKeys-374-045-g005

Pupae of Japanagromyza inferna, a gall fly, in gall of Centrosema virginianum

Cabbage looper in cocoon

Pupa of cabbage looper

See also

References

  1. ^ Borror, D. J.; DeLong, Dwight M.; Triplehorn, Charles A. (2004). Introduction to the Study of Insects (Sixth ed.). New York: Holt, Rinehart & Winston. ISBN 0-03-096835-6.
  2. ^ Nielsen, Erik Tetens, and J. St Haeger. "Pupation and emergence in Aedes taeniorhynchus (Wied.)." Bulletin of Entomological Research 45.4 (1954): 757–768.
  3. ^ Elliott, J. M. "Temperature‐related fluctuations in the timing of emergence and pupation of Windermere alder‐flies over 30 years." Ecological Entomology 21.3 (1996): 241–247.
  4. ^ University of Minnesota Extension, Monarch Lab. "Monarch Life Cycle". Retrieved 20 September 2017.
  5. ^ Preston–Mafham, Rod; Preston–Mafham, Ken (1993). The Encyclopedia of Land Invertebrate Behaviour (Illustrated ed.). MIT Press. p. 113. ISBN 978-0-262-16137-4. Retrieved 16 November 2010.
  6. ^ Boggs, Carol L.; Watt, Ward B.; Ehrlich, Paul R. (2003). Butterflies: Ecology and Evolution Taking Flight (Illustrated ed.). University of Chicago Press. p. 739. ISBN 978-0-226-06318-8. Retrieved 16 November 2010.
  7. ^ "Types of Pupa". Agri Info. Retrieved 28 April 2016.
  8. ^ "Pupa and Puparium (Insects)". what-when-how. Retrieved 28 April 2016.
  9. ^ "Insect Pupal Forms". About.com. Retrieved 28 April 2016.
  10. ^ Darby, Gene (1958). What is a Butterfly. Chicago: Benefic Press. p. 19.
  11. ^ Academic Dictionaries and Encyclopedias
  12. ^ Lowe, Tristan; Garwood, Russell P.; Simonsen, Thomas; Bradley, Robert S.; Withers, Philip J. (2013). "Metamorphosis revealed: three dimensional imaging inside a living chrysalis". Journal of the Royal Society Interface. 10 (84). 20130304. doi:10.1098/rsif.2013.0304. PMC 3673169. Retrieved June 11, 2015.
  13. ^ AMNH Archived December 7, 2006, at the Wayback Machine Accessed December 2006
  14. ^ The Entomologist
  15. ^ Newland, D.E. "Eclosion mechanics, mating and ovipositing behaviour of Sesia apiformis". Entomologist's Gazette.
  16. ^ Darby, Gene (1958). What is a Butterfly. Chicago: Benefic Press. p. 41.
  17. ^ Scoble, Malcolm J. (1992). The Lepidoptera: Form, Function and Diversity. Oxford: Oxford University Press. ISBN 0-19-854031-0.
  18. ^ Gullan, P. J.; Cranston, P. S. (2000). The Insects: An Outline of Entomology (2nd ed.). London: Blackwell. ISBN 0-632-05343-7.

External links

1947 Sugar Bowl

The 1947 Sugar Bowl was played between the third-ranked Georgia Bulldogs and the ninth-ranked North Carolina Tar Heels. Georgia won 20–10.

In the second quarter, North Carolina scored on a four-yard Walt Pupa touchdown run to take a 7–0 halftime lead. In the third quarter, Georgia scored on a 4-yard touchdown run by John Rauch to tie the game at 7. North Carolina's Fox kicked a 27-yard field goal as North Carolina led 10–7. Georgia scored on a 67-yard touchdown pass from Charley Trippi to Dan Edwards to take a 13–10 lead. In the fourth quarter, Rauch scored on a 13-yard touchdown to seal the Georgia victory 20–10.

Attacus atlas

Attacus atlas, the Atlas moth, is a large saturniid moth endemic to the forests of Asia. The species was first described by Carl Linnaeus in his 1758 10th edition of Systema Naturae.

Beondegi

Beondegi (번데기), literally "pupa", is a Korean street food made with silkworm pupae. It is usually sold from street vendors. The boiled or steamed snack food is served in paper cups with toothpick skewers.Canned beondegi can also be found in grocery stores and convenience stores.

Butterfly

Butterflies are insects in the macrolepidopteran clade Rhopalocera from the order Lepidoptera, which also includes moths. Adult butterflies have large, often brightly coloured wings, and conspicuous, fluttering flight. The group comprises the large superfamily Papilionoidea, which contains at least one former group, the skippers (formerly the superfamily "Hesperioidea"), and the most recent analyses suggest it also contains the moth-butterflies (formerly the superfamily "Hedyloidea"). Butterfly fossils date to the Paleocene, which was about 56 million years ago.

Butterflies have the typical four-stage insect life cycle. Winged adults lay eggs on the food plant on which their larvae, known as caterpillars, will feed. The caterpillars grow, sometimes very rapidly, and when fully developed, pupate in a chrysalis. When metamorphosis is complete, the pupal skin splits, the adult insect climbs out, and after its wings have expanded and dried, it flies off. Some butterflies, especially in the tropics, have several generations in a year, while others have a single generation, and a few in cold locations may take several years to pass through their entire life cycle.

Butterflies are often polymorphic, and many species make use of camouflage, mimicry and aposematism to evade their predators. Some, like the monarch and the painted lady, migrate over long distances. Many butterflies are attacked by parasites or parasitoids, including wasps, protozoans, flies, and other invertebrates, or are preyed upon by other organisms. Some species are pests because in their larval stages they can damage domestic crops or trees; other species are agents of pollination of some plants. Larvae of a few butterflies (e.g., harvesters) eat harmful insects, and a few are predators of ants, while others live as mutualists in association with ants. Culturally, butterflies are a popular motif in the visual and literary arts.

Crambus

The genus Crambus includes around 155 species of moths in the family Crambidae, distributed globally. The adult stages are called snout moths (a name shared with the rest of the family Crambidae), while the larvae of Crambus and the related genus Herpetogramma are the sod webworms, which can damage grasses.

Fly

Flies are insects with a pair of functional wings for flight and a pair of specialized hindwings called halteres for balance. They are classified as an order called Diptera, that name being derived from the Greek δι- di- "two", and πτερόν pteron "wing". The order Diptera is divided into two suborders (although one suborder is non-monophyletic), with about 110 families divided between them; the families contain an estimated 1,000,000 species, including the familiar housefly, horse-fly, crane fly, and hoverfly; although only about 125,000 species have a species description published. The earliest fly fossils found so far are from the Triassic, about 240 million years ago; phylogenetic analysis suggests that flies originated in the Permian, about 260 million years ago.

Many insects, such as the butterfly, contain the word fly in their name, but are not Dipterans. Also, the word "fly" is sometimes used colloquially and non-scientifically as a name for any small flying insect: the term "true fly" is sometimes invoked to make clear the insect being referenced is a Dipteran.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. The suborder Nematocera (from Greek, "thready-horns") have thin, long antennae; while the suborder Brachycera (from Greek "short-horns") have short antennae. Flies have only a single pair of wings to fly; their arrangement gives them great maneuverability in flight. The hindwings (halteres) evolved into advanced mechanosensory organs, which act as high-speed sensors of rotational movement and allow them to perform advanced aerobatics. Claws and pads on their feet enable them to cling to smooth surfaces.

The life cycle of flies consists of the eggs, larva, pupa, and the adult. Flies undergo complete metamorphosis; the eggs are laid on the larval food-source, and the larvae (which lack true limbs) develop in a protected environment, often inside their food source. The pupa in higher dipterans is a tough capsule from which the adult emerges when ready to do so. Flies have short lives: for example, the adult housefly lives about a month; the mayfly about a year. The source of nutrition for adult flies is liquified food, including nectar.

Flies are of considerable ecological and human importance. They are important pollinators, second only to the bees and their Hymenopteran relatives. They may have been responsible for the first plant pollination in the Triassic. Mosquitoes are vectors for malaria, dengue, West Nile fever, yellow fever, encephalitis, and other infectious diseases; and houseflies, commensal with humans all over the world, spread food-borne illnesses. Flies can be annoyances, especially in some parts of the world where they can occur in large numbers, buzzing and settling on the skin or eyes to bite or seek fluids. Larger flies such as tsetse flies and screwworms cause significant economic harm to cattle. Blowfly larvae, known as gentles, and other dipteran larvae, known more generally as maggots, are used as fishing bait, as food for carnivorous animals, and in medicine for debridement to clean wounds. Fruit flies are used as model organisms in research. In culture, the subject of flies appears in religion, literature, cinema, and music.

GNU GRUB

GNU GRUB (short for GNU GRand Unified Bootloader, commonly referred to as GRUB) is a boot loader package from the GNU Project. GRUB is the reference implementation of the Free Software Foundation's Multiboot Specification, which provides a user the choice to boot one of multiple operating systems installed on a computer or select a specific kernel configuration available on a particular operating system's partitions.

GNU GRUB was developed from a package called the Grand Unified Bootloader (a play on Grand Unified Theory). It is predominantly used for Unix-like systems. The GNU operating system uses GNU GRUB as its boot loader, as do most Linux distributions and the Solaris operating system on x86 systems, starting with the Solaris 10 1/06 release.

Holometabolism

Holometabolism, also called complete metamorphosis, is a form of insect development which includes four life stages: egg, larva, pupa, and imago or adult. Holometabolism is a synapomorphic trait of all insects in the superorder Endopterygota. Immature stages of holometabolous insects are very different from the mature stage. In some species the holometabolous life cycle prevents larvae from competing with adults because they inhabit different ecological niches. The morphology and behavior of each stage are adapted for different activities. For example, larval traits maximize feeding, growth, and development, while adult traits enable dispersal, mating, and egg laying. Some species of holometabolous insects protect and feed their offspring. Other insect developmental strategies include ametabolism and hemimetabolism.

Imago

In biology, the imago is the last stage an insect attains during its metamorphosis, its process of growth and development; it also is called the imaginal stage, the stage in which the insect attains maturity. It follows the final ecdysis of the immature instars.In a member of the Ametabola or Hemimetabola, in which metamorphosis is "incomplete", the final ecdysis follows the last immature or nymphal stage.

In members of the Holometabola, in which there is a pupal stage, the final ecdysis follows emergence from the pupa, after which the metamorphosis is complete, although there is a prolonged period of maturation in some species.The imago is the only stage during which the insect is sexually mature and, if it is a winged species, has functional wings. The imago often is referred to as the adult stage.Members of the order Ephemeroptera (mayflies) do not have a pupal stage, but they briefly pass through an extra winged stage called the subimago. Insects at this stage have functional wings but are not yet sexually mature.The Latin plural of imago is imagines, and this is the term generally used by entomologists –

however, imagoes is also acceptable.

Instar

An instar ( (listen), from the Latin "form", "likeness") is a developmental stage of arthropods, such as insects, between each moult (ecdysis), until sexual maturity is reached. Arthropods must shed the exoskeleton in order to grow or assume a new form. Differences between instars can often be seen in altered body proportions, colors, patterns, changes in the number of body segments or head width. After moulting, i.e. shedding their exoskeleton, the juvenile arthropods continue in their life cycle until they either pupate or moult again. The instar period of growth is fixed; however, in some insects, like the salvinia stem-borer moth, the number of instars depends on early larval nutrition. Some arthropods can continue to moult after sexual maturity, but the stages between these subsequent moults are generally not called instars.

For most insect species, an instar is the developmental stage of the larval forms of holometabolous (complete metamorphism) or nymphal forms of hemimetabolous (incomplete metamorphism) insects, but an instar can be any developmental stage including pupa or imago (the adult, which does not moult in insects).

The number of instars an insect undergoes often depends on the species and the environmental conditions, as described for a number of species of Lepidoptera. However it is believed that the number of instars can be physiologically constant per species in some insect orders, as for example Diptera and Hymenoptera. It should be minded that the number of larval instars is not directly related to speed of development. For instance, environmental conditions may dramatically affect the developmental rates of species and still have no impact on the number of larval instars. As examples, lower temperatures and lower humidity often slow the rate of development- an example is seen in the lepidopteran tobacco budworm and that may have an effect on how many molts will caterpillars undergo. On the other hand, temperature is demonstrated to affect the development rates of a number of hymenopterans without affecting numbers of instars or larval morphology, as observed in the ensign wasp and in the red imported fire ant. In fact the number of larval instars in ants has been the subject of a number of recent investigations, and no instances of temperature-related variation in numbers of instars have yet been recorded.

Lepidoptera

Lepidoptera ( LEP-i-DOP-tər-ə, from Ancient Greek lepís “scale” + pterón “wing”) is an order of insects that includes butterflies and moths (both are called lepidopterans). About 180,000 species of the Lepidoptera are described, in 126 families and 46 superfamilies, 10 per cent of the total described species of living organisms. It is one of the most widespread and widely recognizable insect orders in the world. The Lepidoptera show many variations of the basic body structure that have evolved to gain advantages in lifestyle and distribution. Recent estimates suggest the order may have more species than earlier thought, and is among the four most speciose orders, along with the Hymenoptera, Diptera, and Coleoptera.Lepidopteran species are characterized by more than three derived features. The most apparent is the presence of scales that cover the bodies, wings, and a proboscis. The scales are modified, flattened "hairs", and give butterflies and moths their wide variety of colors and patterns. Almost all species have some form of membranous wings, except for a few that have reduced wings or are wingless. Mating and the laying of eggs are carried out by adults, normally near or on host plants for the larvae. Like most other insects, butterflies and moths are holometabolous, meaning they undergo complete metamorphosis. The larvae are commonly called caterpillars, and are completely different from their adult moth or butterfly forms, having a cylindrical body with a well-developed head, mandible mouth parts, three pairs of thoracic legs and from none up to five pairs of prolegs. As they grow, these larvae change in appearance, going through a series of stages called instars. Once fully matured, the larva develops into a pupa. A few butterflies and many moth species spin a silk case or cocoon prior to pupating, while others do not, instead going underground. A butterfly pupa, called a chrysalis, has a hard skin, usually with no cocoon. Once the pupa has completed its metamorphosis, a sexually mature adult emerges.

The Lepidoptera have, over millions of years, evolved a wide range of wing patterns and coloration ranging from drab moths akin to the related order Trichoptera, to the brightly colored and complex-patterned butterflies. Accordingly, this is the most recognized and popular of insect orders with many people involved in the observation, study, collection, rearing of, and commerce in these insects. A person who collects or studies this order is referred to as a lepidopterist.

Butterflies and moths play an important role in the natural ecosystem as pollinators and as food in the food chain; conversely, their larvae are considered very problematic to vegetation in agriculture, as their main source of food is often live plant matter. In many species, the female may produce from 200 to 600 eggs, while in others, the number may approach 30,000 eggs in one day. The caterpillars hatching from these eggs can cause damage to large quantities of crops. Many moth and butterfly species are of economic interest by virtue of their role as pollinators, the silk they produce, or as pest species.

Lycaenidae

Lycaenidae is the second-largest family of butterflies (behind Nymphalidae, brush-footed butterflies), with over 6,000 species worldwide, whose members are also called gossamer-winged butterflies. They constitute about 30% of the known butterfly species.

The family is traditionally divided into the subfamilies of the blues (Polyommatinae), the coppers (Lycaeninae), the hairstreaks (Theclinae), and the harvesters (Miletinae).

Adults are small, under 5 cm usually, and brightly coloured, sometimes with a metallic gloss.

Larvae are often flattened rather than cylindrical, with glands that may produce secretions that attract and subdue ants. Their cuticles tend to be thickened. Some larvae are capable of producing vibrations and low sounds that are transmitted through the substrates they inhabit. They use these sounds to communicate with ants.Adult individuals often have hairy antenna-like tails complete with black and white annulated (ringed) appearance. Many species also have a spot at the base of the tail and some turn around upon landing to confuse potential predators from recognizing the true head orientation. This causes predators to approach from the true head end resulting in early visual detection.

Lycaenids are diverse in their food habits and apart from phytophagy, some of them are entomophagous, feeding on aphids, scale insects, and ant larvae. Some lycaenids even exploit their association with ants by inducing ants to feed them by regurgitation, a process called trophallaxis. Not all lycaenid butterflies need ants, but about 75% of species associate with ants, a relationship called myrmecophily. These associations can be mutualistic, parasitic, or predatory depending on the species.

In some species, larvae are attended and protected by ants while feeding on the host plant, and the ants receive sugar-rich honeydew from them, throughout the larval life, and in some species during the pupal stage. In other species, only the first few instars are spent on the plant, and the remainder of the larval lifespan is spent as a predator within the ant nest. It becomes a parasite, feeding on ant regurgitations, or a predator on the ant larvae. The caterpillars pupate inside the ants' nest and the ants continue to look after the pupae. Just before the adults emerge, the wings of the butterfly inside the pupal case detach from it, and the pupa becomes silvery. The adult butterfly emerges from the pupa after three to four weeks, still inside the ant nest. The butterfly must crawl out of the ant nest before it can expand its wings.

Several evolutionary adaptations enable these associations, including small glands on the skin of the caterpillars called "pore cupola organs". Caterpillars of many species, except those of the Riodininae, have a gland on the seventh abdominal segment that produces honeydew and is called the "dorsal nectary gland" (also called "Newcomer's gland"). An eversible organ called the "tentacular organ" is present on the eighth abdominal segment (third segment of thorax in the Riodininae) and this is cylindrical and topped with a ring of spikes and emits chemical signals which are believed to help in communicating with ants.

Many taxonomists include only the Lycaeninae, Theclinae, Polyommatinae, Poritiinae, Miletinae, and Curetinae under the Lycaenidae.The tribe Aphnaeini of the subfamily Theclinae, which includes the genus Chrysoritis, is sometimes listed as separate subfamily.A few authorities still include the family Riodinidae within the Lycaenidae. The monotypic former subfamily Styginae represented by Styx infernalis from the Peruvian Andes has been placed within the subfamily Euselasiinae of the family Riodinidae.Other classifications notably include the Riodininae (e.g., Abisara echerius).

Lipteninae (Afrotropical) may be ranked as a tribe of Poritiinae. (Liptenini)

Poritiinae (Oriental and Afrotropical)

Liphyrinae (mostly African, some Asian) may be ranked as a tribe of Miletinae. (Liphyrini) Selected species

Liphyra brassolis – moth butterfly (largest lycaenid)

Curetinae – sunbeams (Oriental or Palaearctic) selected species

Miletinae – harvesters (mostly African, or Oriental, some Holarctic), probably all feed on aphids or their secretions

Curetis thetis – Indian sunbeam

Theclinae – hairstreaks (usually tailed) and elfins (not tailed) (global) may be ranked as a tribe of Lycaeninae (Theclini) see the clade below right. Selected species

Arhopala - oakblues

Atlides halesus – great purple hairstreak

Eumaeus atala – Atala

Satyrium pruni – black hairstreak

Lycaeninae – coppers (Holarctic) selected species

Iophanus pyrrhias – Guatemalan copper

Lycaena boldenarum – boulder copper

Lycaena epixanthe – bog copper

Lycaena rauparaha – Rauparaha's copper

Lycaena dispar – large copper

Lycaena phlaeas – small copper

Lycaena heteronea - blue copper

Polyommatinae – blues (global) selected species

Caleta spp.

Celastrina ladon – spring azure

Chilades - jewel blues

Cupido comyntas – eastern tailed-blue

Cupido minimus – small blue

Euphilotes battoides allyni – El Segundo blue

Euphilotes pallescens arenamontana – Sand Mountain blue

Glaucopsyche lygdamus – silvery blue

Glaucopsyche lygdamus palosverdesensis – Palos Verdes blue

Glaucopsyche xerces (extinct) – Xerces blue

Icaricia icarioides fenderi – Fender's blue

Maculinea arion – large blue

Phengaris xiushani

Polyommatus icarus – common blue

Polyommatus semiargus – mazarine blue

Pseudozizeeria maha – pale grass blue

Plebejus argus – silver-studded blue

Talicada nyseus – red pierrotThe fossil genus Lithodryas is usually (but not unequivocally) placed here; Lithopsyche is sometimes placed here, but sometimes in the Riodininae.

Mealworm

Mealworms are the larval form of the mealworm beetle, Tenebrio molitor, a species of darkling beetle. Like all holometabolic insects, they go through four life stages: egg, larva, pupa, and adult. Larvae typically measure about 2.5 cm or more, whereas adults are generally between 1.25 and 1.8 cm in length.

Mosquito

Mosquitoes (alternate spelling mosquitos) are a group of about 3500 species of small insects that are flies (order Diptera). Within Diptera they constitute the family Culicidae (from the Latin culex meaning "gnat"). The word "mosquito" (formed by mosca and diminutive -ito) is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, three pairs of long hair-like legs, feathery antennae, and elongated mouthparts.

The mosquito life cycle consists of egg, larva, pupa, and adult stages. Eggs are laid on the water surface; they hatch into motile larvae that feed on aquatic algae and organic material. The adult females of most species have tube-like mouthparts (called a proboscis) that can pierce the skin of a host and feed on blood, which contains protein and iron needed to produce eggs. Thousands of mosquito species feed on the blood of various hosts ⁠— vertebrates, including mammals, birds, reptiles, amphibians, and some fish; along with some invertebrates, primarily other arthropods. This loss of blood is seldom of any importance to the host.

The mosquito's saliva is transferred to the host during the bite, and can cause an itchy rash. In addition, many species can ingest pathogens while biting, and transmit them to future hosts. In this way, mosquitoes are important vectors of diseases such as malaria, yellow fever, Chikungunya, West Nile, dengue fever, filariasis, Zika and other arboviruses. By transmitting diseases, mosquitoes cause the deaths of more people than any other animal taxon: over 700,000 each year and as many as half of the people who have ever lived.

Pupa (Hasidic dynasty)

Kehillat Yaakov Pupa (also "Puppa"; Hebrew/Yiddish: קהלת יעקב פאפא) is a Hasidic dynasty named after the town of its origin (according to the Yiddish name), also known in Hungarian as Pápa. Before World War II, Pupa had an important yeshiva which produced many well-known Orthodox rabbis in Hungary. The whole community was deported to Auschwitz concentration camp and only a very few individuals came back. Currently there are no Jews in Pápa.

The group is based in the Williamsburg section of Brooklyn, New York, with branches in Boro Park section of Brooklyn, Monsey, New York , and Ossining, New York. It is headed by the Pupa Rebbe who has several thousand followers.

Pupa presently consists of a wide international network of educational institutions with more than 7,000 students enrolled in its yeshivas, girls schools, camps, and kollelim in Williamsburg, Boro Park, Monsey, Westchester, Montreal, Jerusalem, and elsewhere.

Pupa (manga)

Pupa (Japanese: ピューパ, Hepburn: Pyūpa) is a 2011–2013 Japanese horror manga series written and illustrated by Sayaka Mogi. An anime television series adaptation produced by Studio Deen premiered on January 9, 2014. Both are notable for their extreme graphic violence.

Ripiphoridae

The Ripiphoridae (formerly spelled Rhipiphoridae) are a cosmopolitan family of some 450 described species of beetles. Informally they are known by the common name "wedge-shaped beetles". The Ripiphoridae are unusual among beetle families in that many species are hypermetamorphic parasitoids, an attribute that they share with the Meloidae. Members of the family differ in their choice of hosts, but most attack various species of bees or wasps, while some others attack cockroaches.

Many species of Ripiphoridae have abbreviated elytra, and flabellate or pectinate antennae. Genera include Allocinops, Rhipistena and Sharpides.Species that attack bees typically lay their eggs on flowers. There the eggs hatch almost immediately into small planidial larvae and lie in wait for a visiting host. The planidium mounts the bee and rides it back to the hive. There it dismounts and seeks a cell occupied by a host larva. The planidium then enters the body of the host. It changes its skin and shape, then remains more or less dormant until the host larva pupates. It then emerges from the bee pupa and begins to feed. It eats the entire pupa, then pupates in its turn and completes its metamorphosis before emerging from the hive to mate and lay eggs.Fossil species in the genera Paleoripiphorus, Macrosiagon, Cretaceoripidius, Flabellotoma, Burmitoma, Plesiotoma, and Amberocula have been described from mid- to lower-Cretaceous amber from sites in France, Germany and Burma.

Sex Pot (1975 film)

Sex Pot (Italian: La pupa del gangster) is a 1975 Italian comedy film directed by Giorgio Capitani.

Tomoyo Harada

Tomoyo Harada (原田 知世, Harada Tomoyo, born November 28, 1967 in Nagasaki, Japan) is a Japanese actress, singer, and lyricist, and was a popular idol in the 80's. She was cast in numerous films and TV-series since her beginning in 1982 in the leading role of the original TV series Sailorfuku to kikanju. Her first role in a film was in 1983's Toki o Kakeru Shōjo for which she won the award for best newcomer at the 8th Hochi Film Award. She won the award for best actress at the 7th Yokohama Film Festival for Early Spring Story. Numerous other singles and albums have followed.

In the summer of 2007, Harada joined the pop electronica band "pupa" as a vocalist, at the invitation of Yukihiro Takahashi. Other members are Hiroshi Takano, Ren Takada, Hirohisa Horie, Tomohiko Gondo.

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.