Proprioception (/ˌproʊprioʊˈsɛpʃən, -priə-/[1][2] PROH-pree-o-SEP-shən), is the sense of the relative position of one's own parts of the body and strength of effort being employed in movement.[3] It is sometimes described as the "sixth sense".[4]

In humans, it is provided by proprioceptors in skeletal striated muscles (muscle spindles) and tendons (Golgi tendon organ) and the fibrous membrane in joint capsules. It is distinguished from exteroception, by which one perceives the outside world, and interoception, by which one perceives pain, hunger, etc., and the movement of internal organs.

The brain integrates information from proprioception and from the vestibular system into its overall sense of body position, movement, and acceleration. The word kinesthesia or kinæsthesia (kinesthetic sense) strictly means movement sense, but has been used inconsistently to refer either to proprioception alone or to the brain's integration of proprioceptive and vestibular inputs.

Proprioception has also been described in other animals such as vertebrates, and in some invertebrates such as arthropods.[5] More recently proprioception has also been described in flowering land plants (angiosperms).[6][7]

Cerebrum lobes
The cerebellum is largely responsible for coordinating the unconscious aspects of proprioception.


Proprioception is from Latin proprius, meaning "one's own", "individual", and capio, capere, to take or grasp. Thus to grasp one's own position in space, including the position of the limbs in relation to each other and the body as a whole.

Kinesthesia is a modern medical term composed of elements from Greek; kinein "to set in motion; to move" (from PIE root *keie- "to set in motion") + aisthesis "perception, feeling" (from PIE root *au- "to perceive") + Greek abstract noun ending -ia (corresponds to English -hood e.g. motherhood).

History of study

The position-movement sensation was originally described in 1557 by Julius Caesar Scaliger as a "sense of locomotion".[8] Much later, in 1826, Charles Bell expounded the idea of a "muscle sense",[9] which is credited as one of the first descriptions of physiologic feedback mechanisms.[10] Bell's idea was that commands are carried from the brain to the muscles, and that reports on the muscle's condition would be sent in the reverse direction. In 1847 the London neurologist Robert Todd highlighted important differences in the anterolateral and posterior columns of the spinal cord, and suggested that the latter were involved in the coordination of movement and balance.[11]

At around the same time, Moritz Heinrich Romberg, a Berlin neurologist, was describing unsteadiness made worse by eye closure or darkness, now known as the eponymous Romberg's sign, once synonymous with tabes dorsalis, that became recognised as common to all proprioceptive disorders of the legs. Later, in 1880, Henry Charlton Bastian suggested "kinaesthesia" instead of "muscle sense" on the basis that some of the afferent information (back to the brain) comes from other structures, including tendons, joints, and skin.[12] In 1889, Alfred Goldscheider suggested a classification of kinaesthesia into three types: muscle, tendon, and articular sensitivity.[13]

In 1906, Charles Scott Sherrington published a landmark work that introduced the terms "proprioception", "interoception", and "exteroception".[14] The "exteroceptors" are the organs that provide information originating outside the body, such as the eyes, ears, mouth, and skin. The interoceptors provide information about the internal organs, and the "proprioceptors" provide information about movement derived from muscular, tendon, and articular sources. Using Sherrington's system, physiologists and anatomists search for specialised nerve endings that transmit mechanical data on joint capsule, tendon and muscle tension (such as Golgi tendon organs and muscle spindles), which play a large role in proprioception.

Primary endings of muscle spindles "respond to the size of a muscle length change and its speed" and "contribute both to the sense of limb position and movement".[15] Secondary endings of muscle spindles detect changes in muscle length, and thus supply information regarding only the sense of position.[15] Essentially, muscle spindles are stretch receptors.[16] It has been accepted that cutaneous receptors also contribute directly to proprioception by providing "accurate perceptual information about joint position and movement", and this knowledge is combined with information from the muscle spindles.[17]


A major component of proprioception is joint position sense, which is determined by measuring the accuracy of joint–angle replication.[18] Clinical aspects of joint position sense are measured in joint position matching tests that measure a subject's ability to detect an externally imposed passive movement, or the ability to reposition a joint to a predetermined position. These involve an individual's ability to perceive the position of a joint without the aid of vision. Often it is assumed that the ability of one of these aspects will be related to another; however, experimental evidence suggests there is no strong relation between these two aspects. This suggests that while these components may well be related in a cognitive manner, they may in fact be physiologically separate.[19]

More recent work into the mechanism of ankle sprains suggests that the role of reflexes may be more limited due to their long latencies (even at the spinal cord level), as ankle sprain events occur in perhaps 100 ms or less. In accordance, a model has been proposed to include a 'feedforward' component of proprioception, whereby the subject will also have central information about the body's position before attaining it.[19]

Kinesthesia is a key component in muscle memory and hand-eye coordination, and training can improve this sense (see blind contour drawing). The ability to swing a golf club or to catch a ball requires a finely tuned sense of the position of the joints. This sense needs to become automatic through training to enable a person to concentrate on other aspects of performance, such as maintaining motivation or seeing where other people are.


The initiation of proprioception is the activation of a proprioreceptor in the periphery.[20] The proprioceptive sense is believed to be composed of information from sensory neurons located in the inner ear (motion and orientation) and in the stretch receptors located in the muscles and the joint-supporting ligaments (stance). There are specific nerve receptors for this form of perception termed "proprioreceptors", just as there are specific receptors for pressure, light, temperature, sound, and other sensory experiences. Proprioreceptors are sometimes known as adequate stimuli receptors. TRPN, a member of the transient receptor potential family of ion channels, has been found to be responsible for proprioception in fruit flies,[21] nematode worms,[22] African clawed frogs,[23] and zebrafish.[24] PIEZO2, a nonselective cation channel, has been shown to underlie the mechanosensitivity of proprioceptors in mice.[25] The channel mediating human proprioceptive mechanosensation has yet to be discovered.

Proprioception of the head stems from the muscles innervated by the trigeminal nerve, where the GSA fibers pass without synapsing in the trigeminal ganglion (first-order sensory neuron), reaching the mesencephalic tract and the mesencephalic nucleus of trigeminal nerve.

Although it was known that finger kinesthesia relies on skin sensation, recent research has found that kinesthesia-based haptic perception relies strongly on the forces experienced during touch.[26] This research allows the creation of "virtual", illusory haptic shapes with different perceived qualities.[27]

Conscious and non-conscious

In humans, a distinction is made between conscious proprioception and non-conscious proprioception:

  • Non-conscious proprioception is communicated primarily via the dorsal spinocerebellar tract[29] and ventral spinocerebellar tract,[30] to the cerebellum.
  • A non-conscious reaction is seen in the human proprioceptive reflex, or righting reflex—in the event that the body tilts in any direction, the person will cock their head back to level the eyes against the horizon.[31] This is seen even in infants as soon as they gain control of their neck muscles. This control comes from the cerebellum, the part of the brain affecting balance.


Field sobriety testing

Proprioception is tested by American police officers using the field sobriety test to check for alcohol intoxication. The subject is required to touch his or her nose with eyes closed; people with normal proprioception may make an error of no more than 20 millimeters, while people suffering from impaired proprioception (a symptom of moderate to severe alcohol intoxication) fail this test due to difficulty locating their limbs in space relative to their noses.


There are several relatively specific tests of the subject's ability to proprioceive. These tests are used in the diagnosis of neurological disorders. They include the visual and tactile placing reflexes.[32]


Proprioception is what allows someone to learn to walk in complete darkness without losing balance. During the learning of any new skill, sport, or art, it is usually necessary to become familiar with some proprioceptive tasks specific to that activity. Without the appropriate integration of proprioceptive input, an artist would not be able to brush paint onto a canvas without looking at the hand as it moved the brush over the canvas; it would be impossible to drive an automobile because a motorist would not be able to steer or use the pedals while looking at the road ahead; a person could not touch type or perform ballet; and people would not even be able to walk without watching where they put their feet.

Oliver Sacks reported the case of a young woman who lost her proprioception due to a viral infection of her spinal cord.[33] At first she could not move properly at all or even control her tone of voice (as voice modulation is primarily proprioceptive). Later she relearned by using her sight (watching her feet) and inner ear only for movement while using hearing to judge voice modulation. She eventually acquired a stiff and slow movement and nearly normal speech, which is believed to be the best possible in the absence of this sense. She could not judge effort involved in picking up objects and would grip them painfully to be sure she did not drop them.

Lower limb proprioceptive work

The proprioceptive sense can be sharpened through study of many disciplines. Examples are the Feldenkrais method[34] and the Alexander Technique. Juggling trains reaction time, spatial location, and efficient movement. Standing on a wobble board or balance board is often used to retrain or increase proprioception abilities, particularly as physical therapy for ankle or knee injuries. Slacklining is another method to increase proprioception.

Standing on one leg (stork standing) and various other body-position challenges are also used in such disciplines as Yoga, Wing Chun and T'ai Chi Ch'uan.[35] Also, the vestibular system of the inner ear, vision and proprioception are the main three requirements for balance.[36] Moreover, there are specific devices designed for proprioception training, such as the exercise ball, which works on balancing the abdominal and back muscles.

Joint position matching

"Joint position matching" is an established protocol for measuring proprioception, and joint position sense specifically, without the aid of visual or vestibular information.[37] During such tasks, individuals are blindfolded while a joint is moved to a specific angle for a given period of time, returned to neutral, and the subjects are asked to replicate the specified angle. Measured by constant and absolute errors, ability to accurately identify joint angles over a series of conditions is the most accurate means of determining proprioceptive acuity in isolation to date.

Recent investigations have shown that hand dominance, participant age, active versus passive matching, and presentation time of the angle can all affect performance on joint position matching tasks.[38] Joint position matching has been used in clinical settings in both the upper and lower extremities.


Temporary loss or impairment of proprioception may happen periodically during growth, mostly during adolescence. Growth that might also influence this would be large increases or drops in bodyweight/size due to fluctuations of fat (liposuction, rapid fat loss or gain) and/or muscle content (bodybuilding, anabolic steroids, catabolisis/starvation). It can also occur in those that gain new levels of flexibility, stretching, and contortion. A limb's being in a new range of motion never experienced (or at least, not for a long time since youth perhaps) can disrupt one's sense of location of that limb. Possible experiences include suddenly feeling that feet or legs are missing from one's mental self-image; needing to look down at one's limbs to be sure they are still there; and falling down while walking, especially when attention is focused upon something other than the act of walking.

Proprioception is occasionally impaired spontaneously, especially when one is tired. Similar effects can be felt during the hypnagogic state of consciousness, during the onset of sleep. One's body may feel too large or too small, or parts of the body may feel distorted in size. Similar effects can sometimes occur during epilepsy or migraine auras. These effects are presumed to arise from abnormal stimulation of the part of the parietal cortex of the brain involved with integrating information from different parts of the body.[39]

Proprioceptive illusions can also be induced, such as the Pinocchio illusion.

The proprioceptive sense is often unnoticed because humans will adapt to a continuously present stimulus; this is called habituation, desensitization, or adaptation. The effect is that proprioceptive sensory impressions disappear, just as a scent can disappear over time. One practical advantage of this is that unnoticed actions or sensation continue in the background while an individual's attention can move to another concern. The Alexander Technique addresses these unconscious elements by bringing attention to them and practicing a new movement with focus on how it feels to move in the new way.

People who have a limb amputated may still have a confused sense of that limb's existence on their body, known as phantom limb syndrome. Phantom sensations can occur as passive proprioceptive sensations of the limb's presence, or more active sensations such as perceived movement, pressure, pain, itching, or temperature. There are a variety of theories concerning the etiology of phantom limb sensations and experience. One is the concept of "proprioceptive memory", which argues that the brain retains a memory of specific limb positions and that after amputation there is a conflict between the visual system, which actually sees that the limb is missing, and the memory system which remembers the limb as a functioning part of the body.[40] Phantom sensations and phantom pain may also occur after the removal of body parts other than the limbs, such as after amputation of the breast, extraction of a tooth (phantom tooth pain), or removal of an eye (phantom eye syndrome).

Temporary impairment of proprioception has also been known to occur from an overdose of vitamin B6 (pyridoxine and pyridoxamine). Most of the impaired function returns to normal shortly after the amount of the vitamin in the body returns to a level that is closer to that of the physiological norm. Impairment can also be caused by cytotoxic factors such as chemotherapy.

It has been proposed that even common tinnitus and the attendant hearing frequency-gaps masked by the perceived sounds may cause erroneous proprioceptive information to the balance and comprehension centers of the brain, precipitating mild confusion.

Proprioception is permanently impaired in patients that suffer from joint hypermobility or Ehlers-Danlos syndrome (a genetic condition that results in weak connective tissue throughout the body).[41] It can also be permanently impaired from viral infections as reported by Sacks. The catastrophic effect of major proprioceptive loss is reviewed by Robles-De-La-Torre (2006).[42]

Proprioception is also permanently impaired in physiological aging (presbypropria).[43]


Terrestrial plants control the orientation of their primary growth through the sensing of several vectorial stimuli such as the light gradient or the gravitational acceleration. This control has been called tropism. However, a quantitative study of shoot gravitropism demonstrated that, when a plant is tilted, it cannot recover a steady erected posture under the sole driving of the sensing of its angular deflection versus gravity. An additional control through the continuous sensing of its curvature by the organ and the subsequent driving an active straightening process are required.[6][7][44] Being a sensing by the plant of the relative configuration of its parts, it has been called proprioception. This dual sensing and control by gravisensing and proprioception has been formalized into a unifying mathematical model simulating the complete driving of the gravitropic movement. This model has been validated on 11 species sampling the phylogeny of land angiosperms, and on organs of very contrasted sizes, ranging from the small germination of wheat (coleoptile) to the trunk of poplar trees.[6][7] This model also shows that the entire gravitropic dynamics is controlled by a single dimensionless number called the "Balance Number", and defined as the ratio between the sensitivity to the inclination angle versus gravity and the proprioceptive sensitivity. This model has been extended to account for the effects of the passive bending of the organ under its self-weight, suggesting that proprioception is active even in very compliant stems, although they may not be able to efficiently straighten depending on their elastic deformation under the gravitational pull.[45] Further studies have shown that the cellular mechanism of proprioception in plants involves myosin and actin, and seems to occur in specialized cells.[46] Proprioception was then found to be involved in other tropisms and to be central also to the control of nutation [47]

These results change the view we have on plant sensitivity. They are also providing concepts and tools for the breeding of crops that are resilient to lodging, and of trees with straight trunks and homogeneous wood quality.[48]

The discovery of proprioception in plants has generated an interest in the popular science and generalist media.[49][50] This is because this discovery questions a long-lasting a priori that we have on plants. In some cases this has led to a shift between proprioception and self-awareness or self-consciousness. There is no scientific ground for such a semantic shift. Indeed, even in animals, proprioception can be unconscious; so it is thought to be in plants.[7][50]

See also


  1. ^ "Proprioception". Merriam-Webster Dictionary.
  2. ^ "proprioceptive – definition of proprioceptive in English from the Oxford dictionary". Retrieved 2016-01-20.
  3. ^ Mosby's Medical, Nursing & Allied Health Dictionary, Fourth Edition, Mosby-Year Book 1994, p. 1285
  4. ^ Gandevia, Simon; Proske, Uwe (1 September 2016). "Proprioception: The Sense Within". The Scientist. Retrieved 25 July 2018.
  5. ^ Fox, Richard; Barnes, Robert D.; Ruppert, Edward E. (2003-08-07). Invertebrate Zoology: A Functional Evolutionary Approach (7th ed.). Australia, Brazil, Japan, Korea: Brooks/Cole. ISBN 9780030259821.
  6. ^ a b c Bastien, Renaud; Bohr, Tomas; Moulia, Bruno; Douady, Stéphane (2013-01-08). "Unifying model of shoot gravitropism reveals proprioception as a central feature of posture control in plants". Proceedings of the National Academy of Sciences. 110 (2): 755–760. Bibcode:2013PNAS..110..755B. doi:10.1073/pnas.1214301109. ISSN 0027-8424. PMC 3545775. PMID 23236182. Archived from the original on 2018-06-01. Retrieved 2017-08-05.
  7. ^ a b c d Hamant, Olivier; Moulia, Bruno (2016-10-01). "How do plants read their own shapes?". New Phytologist. 212 (2): 333–337. doi:10.1111/nph.14143. ISSN 1469-8137.
  8. ^ Jerosch, Jörg; Heisel, Jürgen (May 2010). Management der Arthrose: Innovative Therapiekonzepte (in German). Deutscher Ärzteverlag. p. 107. ISBN 978-3-7691-0599-5. Retrieved 8 April 2011.
  9. ^ Singh, Arun Kumar (September 1991). The Comprehensive History of Psychology. Motilal Banarsidass Publ. p. 66. ISBN 978-81-208-0804-1. Retrieved 8 April 2011.
  10. ^ Dickinson, John (1976). Proprioceptive control of human movement. Princeton Book Co. p. 4. Retrieved 8 April 2011.
  11. ^ Todd, Robert Bentley (1847). The Cyclopaedia of Anatomy and Physiology Vol. 4. London: Longmans. pp. 585–723.
  12. ^ Foster, Susan Leigh (15 December 2010). Choreographing Empathy: Kinesthesia in Performance. Taylor & Francis. p. 74. ISBN 978-0-415-59655-8. Retrieved 8 April 2011.
  13. ^ Brookhart, John M.; Mountcastle, Vernon B. (Vernon Benjamin); Geiger, Stephen R. (1984). The Nervous system: Sensory processes ; volume editor: Ian Darian-Smith. American Physiological Society. p. 784. ISBN 978-0-683-01108-1. Retrieved 8 April 2011.
  14. ^ Sherrington,C.S.(1906). The Integrative Action of the Nervous System. NewHaven, CT:YaleUniversityPress.
  15. ^ a b Proske, U; Gandevia, SC (2009). "The kinaesthetic senses". The Journal of Physiology. 587 (Pt 17): 4139–4146. doi:10.1113/jphysiol.2009.175372. PMC 2754351. PMID 19581378.
  16. ^ Winter, JA; Allen, TJ; Proske, U (2005). "Muscle spindle signals combine with the sense of effort to indicate limb position". The Journal of Physiology. 568 (Pt 3): 1035–46. doi:10.1113/jphysiol.2005.092619. PMC 1464181. PMID 16109730.
  17. ^ Collins, DF; Refshauge, KM; Todd, G; Gandevia, SC (2005). "Cutaneous receptors contribute to kinesthesia at the index finger, elbow, and knee". Journal of Neurophysiology. 94 (3): 1699–706. doi:10.1152/jn.00191.2005. PMID 15917323.
  18. ^ Dover, G; Powers, ME (2003). "Reliability of Joint Position Sense and Force-Reproduction Measures During Internal and External Rotation of the Shoulder". Journal of Athletic Training. 38 (4): 304–310. PMC 314388. PMID 14737211.
  19. ^ a b Feuerbach, JW; Grabiner, MD; Koh, TJ; Weiker, GG (1994). "Effect of an ankle orthosis and ankle ligament anesthesia on ankle joint proprioception". The American Journal of Sports Medicine. 22 (2): 223–9. doi:10.1177/036354659402200212. PMID 8198191.
  20. ^ Sherrington CS (1907). "On the proprioceptive system, especially in its reflex aspect". Brain. 29 (4): 467–85. doi:10.1093/brain/29.4.467. Archived from the original on 2008-12-06. Retrieved 2008-02-15.
  21. ^ Walker, R. G.; Willingham, A. T.; Zuker, C. S. (2000). "A Drosophila mechanosensory transduction channel". Science. 287 (5461): 2229–2234. Bibcode:2000Sci...287.2229W. doi:10.1126/science.287.5461.2229. PMID 10744543.
  22. ^ Li, W.; Feng, Z.; Sternberg, P. W.; Shawn Xu, X. Z. (2006). "A C. Elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue". Nature. 440 (7084): 684–687. Bibcode:2006Natur.440..684L. doi:10.1038/nature04538. PMC 2865900. PMID 16572173.
  23. ^ Shin, J. -B.; Adams, D.; Paukert, M.; Siba, M.; Sidi, S.; Levin, M.; Gillespie, P. G.; Gründer, S. (2005). "Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells". Proceedings of the National Academy of Sciences. 102 (35): 12572–12577. Bibcode:2005PNAS..10212572S. doi:10.1073/pnas.0502403102. PMC 1194908. PMID 16116094.
  24. ^ Sidi, S.; Friedrich, R. W.; Nicolson, T. (2003). "NompC TRP Channel Required for Vertebrate Sensory Hair Cell Mechanotransduction". Science. 301 (5629): 96–99. Bibcode:2003Sci...301...96S. doi:10.1126/science.1084370. PMID 12805553.
  25. ^ Woo SH, Lukacs V, de-Nooij JC, Zaytseva D, Criddle CR, Francisco A, Jessell TM, Wilkinson KA, Patapounian A (2015). "Piezo2 is the principal mechanotransduction channel for proprioception". Nature Neuroscience. 18 (12): 1756–1762. doi:10.1038/nn.4162. PMC 4661126. PMID 26551544.
  26. ^ Robles-De-La-Torre G, Hayward V (2001). "Force can overcome object geometry in the perception of shape through active touch" (PDF). Nature. 412 (6845): 445–8. doi:10.1038/35086588. PMID 11473320. Archived (PDF) from the original on 2006-10-03. Retrieved 2006-10-03.
  27. ^ the MIT Technology Review article "The Cutting Edge of Haptics"
  28. ^ Fix, James D. (2002). Neuroanatomy. Hagerstown, MD: Lippincott Williams & Wilkins. p. 127. ISBN 0-7817-2829-0.
  29. ^ Swenson RS. "Review of Clinical and Functional Neuroscience, Chapter 7A: Somatosensory Systems". (online version Dartmouth college). Archived from the original on 2008-04-05. Retrieved 2008-04-10.
  30. ^ Siegel, Allan (2010). Essential Neuroscience. Lippincott Williams & Wilkins. p. 263.
  31. ^ "TMJ, Forward Head Posture and Neck Pain". Freedom From Pain Institute. Archived from the original on 2013-10-05. Retrieved 3 October 2013.
  32. ^ Introduction to Neurology, 2nd Edition 1976, A.C.Palmer, Blackwell Scientific, Oxford
  33. ^ Sacks, O.. "The Disembodied Lady", in The Man Who Mistook His Wife for a Hat and his autobiographical case study A Leg to Stand On.
  34. ^ Connors, Karol A.; Galea, Mary P.; Said, Catherine M. (2011). "Feldenkrais Method Balance Classes Improve Balance in Older Adults: A Controlled Trial". Evidence-Based Complementary and Alternative Medicine. 2011: 1–9. doi:10.1093/ecam/nep055. Archived from the original on 2013-10-04. Retrieved 2013-10-03.
  35. ^ cheng man ch'ing. T'ai Chi Ch'uan. Blue Snake Books usa. pp. 86, 88. ISBN 978-0-913028-85-8.
  36. ^ Hanc, John. "Staying on Balance, With the Help of Exercises". The New York Times. Archived from the original on 2017-10-11. Retrieved 11 October 2017.
  37. ^ Goble, DJ; Noble, BC; Brown, SH (2010). "Where was my arm again? Memory-based matching of proprioceptive targets is enhanced by increased target presentation time" (PDF). Neuroscience Letters. 481 (1): 54–8. doi:10.1016/j.neulet.2010.06.053. PMID 20600603. Archived (PDF) from the original on 2014-12-19. Retrieved 2013-03-15.
  38. ^ Goble, DJ (2010). "Proprioceptive acuity assessment via joint position matching: From basic science to general practice". Physical Therapy. 90 (8): 1176–84. doi:10.2522/ptj.20090399. PMID 20522675.
  39. ^ Ehrsson H, Kito T, Sadato N, Passingham R, Naito E (2005). "Neural substrate of body size: illusory feeling of shrinking of the waist". PLoS Biol. 3 (12): e412. doi:10.1371/journal.pbio.0030412. PMC 1287503. PMID 16336049.
  40. ^ Weeks, S.R.; Anderson-Barnes, V.C.; Tsao, J. (2010). "Phantom limb pain: Theories and therapies" (PDF). The Neurologist. 16 (5): 277–286. doi:10.1097/nrl.0b013e3181edf128. Archived from the original (PDF) on 2011-08-12.
  41. ^ Castori M (2012). "Ehlers-danlos syndrome, hypermobility type: an underdiagnosed hereditary connective tissue disorder with mucocutaneous, articular, and systemic manifestations". ISRN Dermatol. 2012: 751768. doi:10.5402/2012/751768. PMC 3512326. PMID 23227356.
  42. ^ Robles-De-La-Torre G (2006). "The Importance of the Sense of Touch in Virtual and Real Environments" (PDF). IEEE Multimedia. 13 (3): 24–30. doi:10.1109/MMUL.2006.69. Archived (PDF) from the original on 2014-01-24. Retrieved 2006-10-07.
  43. ^ Boisgontier, MP; Olivier, I; Chenu, O; Nougier, V (2012). "Presbypropria: The effects of physiological ageing on proprioceptive control". Age (Dordrecht, Netherlands). 34 (5): 1179–94. doi:10.1007/s11357-011-9300-y. PMC 3448996. PMID 21850402.
  44. ^ "From gravitropism to dynamical posture control: proprioception in plants". University of Cambridge. Archived from the original on 2017-08-05. Retrieved 5 August 2017.
  45. ^ Chelakkot, Raghunath; Mahadevan, L. (March 2017). "On the growth and form of shoots". Journal of the Royal Society Interface. 14 (128): 20170001. doi:10.1098/rsif.2017.0001. ISSN 1742-5689. PMC 5378141. PMID 28330990. Archived from the original on 2017-08-05. Retrieved 2017-08-05.
  46. ^ Okamoto, Keishi; Ueda, Haruko; Shimada, Tomoo; Tamura, Kentaro; Kato, Takehide; Tasaka, Masao; Morita, Miyo Terao; Hara-Nishimura, Ikuko (2015-03-23). "Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton". Nature Plants. 1 (4): 15031. doi:10.1038/nplants.2015.31. ISSN 2055-0278. PMID 27247032.
  47. ^ Bastien, Renaud; Meroz, Yasmine (2016-12-06). "The Kinematics of Plant Nutation Reveals a Simple Relation between Curvature and the Orientation of Differential Growth". PLOS Computational Biology. 12 (12): e1005238. arXiv:1603.00459. Bibcode:2016PLSCB..12E5238B. doi:10.1371/journal.pcbi.1005238. ISSN 1553-7358. PMID 27923062. Archived from the original on 2018-06-27. Retrieved 2018-11-09.
  48. ^ Gardiner, Barry; Berry, Peter; Moulia, Bruno (2016). "Review: Wind impacts on plant growth, mechanics and damage". Plant Science. 245: 94–118. doi:10.1016/j.plantsci.2016.01.006. PMID 26940495.
  49. ^ Gabbatiss, Josh (10 January 2017). "Plants can see, hear and smell – and respond". Archived from the original on 2017-08-06. Retrieved 5 August 2017.
  50. ^ a b plantguy (28 May 2017). "The Selfish Plant 4 – Plant Proprioception?". How Plants Work. Retrieved 5 August 2017.

External links

Anterior lobe of cerebellum

The anterior lobe of cerebellum is the portion of the cerebellum responsible for mediating unconscious proprioception. Inputs into the anterior lobe of the cerebellum are mainly from the spinal cord.In alcoholics, it can deteriorate.It is sometimes equated to the "paleocerebellum".

Anterior trigeminothalamic tract

The anterior trigeminothalamic tract (or ventral trigeminothalamic tract) is a tract composed of second order neuronal axons. These fibers carry sensory information about discriminative and crude touch, conscious proprioception, pain, and temperature from the head, face, and oral cavity. The anterior trigeminothalamic tract connects the principal (chief sensory) nucleus and spinal trigeminal nucleus to the ventral posteromedial (VPM) nucleus of the thalamus.

The anterior trigeminothalamic tract is also called the anterior trigeminal lemniscus.

Brodmann area 7

Brodmann area 7 is one of Brodmann's cytologically defined regions of the brain. It is involved in locating objects in space. It serves as a point of convergence between vision and proprioception to determine where objects are in relation to parts of the body.

Brown-Séquard syndrome

Brown-Séquard syndrome (also known as Brown-Séquard's hemiplegia, Brown-Séquard's paralysis, hemiparaplegic syndrome, hemiplegia et hemiparaplegia spinalis, or spinal hemiparaplegia) is caused by damage to one half of the spinal cord, resulting in paralysis and loss of proprioception on the same (or ipsilateral) side as the injury or lesion, and loss of pain and temperature sensation on the opposite (or contralateral) side as the lesion. It is named after physiologist Charles-Édouard Brown-Séquard, who first described the condition in 1850.

Eye–hand coordination

Eye–hand coordination (also known as hand–eye coordination) is the coordinated control of eye movement with hand movement and the processing of visual input to guide reaching and grasping along with the use of proprioception of the hands to guide the eyes. Eye–hand coordination has been studied in activities as diverse as the movement of solid objects such as wooden blocks, archery, sporting performance, music reading, computer gaming, copy-typing, and even tea-making. It is part of the mechanisms of performing everyday tasks; in its absence, most people would be unable to carry out even the simplest of actions such as picking up a book from a table or playing a video game. While it is recognized by the term hand–eye coordination, without exception, medical sources, and most psychological sources, refer to eye–hand coordination.

Gracile nucleus

Located in the medulla oblongata, the gracile nucleus is one of the dorsal column nuclei that participate in the sensation of fine touch and proprioception of the lower body (legs and trunk). It contains second-order neurons of the posterior column-medial lemniscus pathway, which receive inputs from sensory neurons of the dorsal root ganglia and send axons that synapse in the thalamus.

The neurons contained within the nucleus form a visible bump called the gracile tubercle on the posterior side of the closed medulla at the floor of the fourth ventricle.

The gracile nucleus and fasciculus carry epicritic, kinesthetic, and conscious proprioceptive information from the lower part of the body (below the level of T6 in the spinal cord). The counterpart to the gracile nucleus and fasciculus is the cuneate nucleus and fasciculus, which carries the same type of information, but from the upper body (above T6, excepting the face and ear - the information from the face and ear is carried by the principal sensory nucleus of trigeminal nerve).

Internal arcuate fibers

The internal arcuate fibers are the axons of second-order sensory neurons that compose the gracile and cuneate nuclei of the medulla oblongata. These second-order neurons begin in the posterior grey column in the spinal cord. They receive input from first-order sensory neurons, which provide sensation to many areas of the body and have cell bodies in the dorsal root ganglia of the dorsal root of the spinal nerves. Upon decussation (crossing over) from one side of the medulla to the other, also known as the sensory decussation, they are then called the medial lemniscus.

The internal arcuate fibers are part of the second-order neurons of the posterior column-medial lemniscus system, and are important for relaying the sensation of fine touch and proprioception to the thalamus and ultimately to the cerebral cortex.

Mesencephalic nucleus of trigeminal nerve

The mesencephalic nucleus is involved with reflex proprioception of the periodontium and of the muscles of mastication in the jaw that functions to prevent biting down hard enough to lose a tooth. To subserve this reflex protective function, mechanoreceptive nerves in the periodontal ligament sense tooth movement and project to the mesencephalic nucleus. Likewise, afferent fibers from muscle spindles, the sensory organs of skeletal muscle, are stimulated by the stretch of hard contraction of jaw muscles. The temporomandibular joints and the Golgi tendon organs of the jaw muscles do not project to the mesencephalic nucleus. The mesencephalic nucleus is one of four trigeminal nerve nuclei, three sensory and one motor. The other two sensory nuclei are the chief sensory nucleus mediating conscious facial touch and the spinal trigeminal nucleus, mediating pain in the head, and is of importance in headache. The trigeminal motor nucleus innervates the muscles of mastication.

Unlike many nuclei within the central nervous system (CNS), the mesencephalic nucleus contains no chemical synapses but are electrically coupled. Neurons of this nucleus are unipolar cells that receive proprioceptive information from the mandible and send projections to the trigeminal motor nucleus to mediate monosynaptic jaw jerk reflexes. It is also the only structure in the CNS to contain first order sensory neurons, cell bodies of primary afferents in contact with the periphery, which are usually contained within ganglia (like the trigeminal ganglion). The mesencephalic nucleus can thus be considered functionally as a sensory ganglion embedded within the brainstem, making it neuroanatomically unique.


Nociception (also nocioception or nociperception, from Latin nocere 'to harm or hurt') is the sensory nervous system's response to certain harmful or potentially harmful stimuli. In nociception, intense chemical (e.g., chili powder in the eyes), mechanical (e.g., cutting, crushing), or thermal (heat and cold) stimulation of sensory nerve cells called nociceptors produces a signal that travels along a chain of nerve fibers via the spinal cord to the brain. Nociception triggers a variety of physiological and behavioral responses and usually results in a subjective experience of pain in sentient beings.

Obliquus capitis inferior muscle

The obliquus capitis inferior muscle () is the larger of the two oblique muscles of the neck. It arises from the apex of the spinous process of the axis and passes laterally and slightly upward, to be inserted into the lower and back part of the transverse process of the atlas.

It lies deep to the semispinalis capitis and trapezius muscles.

The muscle is responsible for rotation of the head and first cervical vertebra (atlanto-axial joint).

It forms the lower boundary of the suboccipital triangle of the neck.

The naming of this muscle may be confusing, as it is the only capitis (L. "head") muscle that does NOT attach to the cranium.

Principal sensory nucleus of trigeminal nerve

The principal sensory nucleus (or chief sensory nucleus of V) is a group of second order neurons which have cell bodies in the caudal pons.

It receives information about discriminative sensation and light touch of the face as well as conscious proprioception of the jaw via first order neurons of CN V.

Most of the sensory information crosses the midline and travels to the contralateral ventral posteromedial nucleus (VPM) of the thalamus via the anterior trigeminothalamic tract.

However, information of the oral cavity travels to the ipsilateral VPM of the thalamus via the dorsal trigeminothalamic tract.

Romberg's test

Romberg's test, Romberg's sign, or the Romberg maneuver is a test used in an exam of neurological function for balance, and also as a test for driving under the influence of an intoxicant. The exam is based on the premise that a person requires at least two of the three following senses to maintain balance while standing: proprioception (the ability to know one's body position in space); vestibular function (the ability to know one's head position in space); and vision (which can be used to monitor and adjust for changes in body position).

A patient who has a problem with proprioception can still maintain balance by using vestibular function and vision. In the Romberg test, the standing patient is asked to close his or her eyes. An increased loss of balance is interpreted as a positive Romberg's test.

The Romberg test is a test of the body's sense of positioning (proprioception), which requires healthy functioning of the dorsal columns of the spinal cord.The Romberg test is used to investigate the cause of loss of motor coordination (ataxia). A positive Romberg test suggests that the ataxia is sensory in nature, that is, depending on loss of proprioception. If a patient is ataxic and Romberg's test is not positive, it suggests that ataxia is cerebellar in nature, that is, depending on localized cerebellar dysfunction instead.

It is used as an indicator for possible alcohol or drug impaired driving and neurological decompression sickness. When used to test impaired driving, the test is performed with the subject estimating 30 seconds in their head. This is used to gauge the subject's internal clock and can be an indicator of stimulant or depressant use.

Sensation (psychology)

Sensation is an animal's, including humans', detection of external or internal stimulation (e.g., eyes detecting light waves, ears detecting sound waves). It is different from perception, which is about making sense of, or describing, the stimulation (e.g., seeing a chair, hearing a guitar).

Sensation involves three steps:

Sensory receptors detect stimuli.

Sensory stimuli are transduced into electrical impulses (action potentials) to be decoded by the brain.

Electrical impulses move along neural pathways to specific parts of the brain wherein the impulses are decoded into useful information (perception).For example, when touched by a soft feather, mechanoreceptors – which are sensory receptors in the skin – register that the skin has been touched. That sensory information is then turned into neural information through a process called transduction. Next, the neural information travels down neural pathways to the appropriate part of the brain, wherein the sensations are perceived as the touch of a feather.

Children are often taught five basic senses: seeing (i.e., vision), hearing (i.e., audition), tasting (i.e., gustation), smelling (i.e., olfaction), and touching. However, there are actually many more senses including vestibular sense, kinesthetic sense, sense of thirst, sense of hunger, and cutaneous sense.


A sense is a physiological capacity of organisms that provides data for perception. The senses and their operation, classification, and theory are overlapping topics studied by a variety of fields, most notably neuroscience, cognitive psychology (or cognitive science), and philosophy of perception. The nervous system has a specific sensory nervous system, and a sense organ, or sensor, dedicated to each sense.

Humans have a multitude of sensors. Sight (vision), hearing (audition), taste (gustation), smell (olfaction), and touch (somatosensation) are the five traditionally recognized senses. The ability to detect other stimuli beyond those governed by these most broadly recognized senses also exists, and these sensory modalities include temperature (thermoception), kinesthetic sense (proprioception), pain (nociception), balance (equilibrioception), vibration (mechanoreception), and various internal stimuli (e.g. the different chemoreceptors for detecting salt and carbon dioxide concentrations in the blood, or sense of hunger and sense of thirst). However, what constitutes a sense is a matter of some debate, leading to difficulties in defining what exactly a distinct sense is, and where the borders lie between responses to related stimuli.

Other animals also have receptors to sense the world around them, with degrees of capability varying greatly between species. Humans have a comparatively weak sense of smell and a stronger sense of sight relative to many other mammals while some animals may lack one or more of the traditional five senses. Some animals may also intake and interpret sensory stimuli in very different ways. Some species of animals are able to sense the world in a way that humans cannot, with some species able to sense electrical and magnetic fields, and detect water pressure and currents.

Sensory decussation

The sensory decussation or decussation of the lemniscus is a decussation or crossover of axons from the gracile nucleus and cuneate nucleus, which are responsible for fine touch, proprioception and two-point discrimination of the body. The fibres of this decussation are called the internal arcuate fibres and are found at the superior aspect of the closed medulla superior to the motor decussation. It is part of the second neuron in the posterior column–medial lemniscus pathway.

Somatosensory system

The somatosensory system is a part of the sensory nervous system. The somatosensory system is a complex system of sensory neurons and pathways that responds to changes at the surface or inside the body. The axons (as afferent nerve fibers), of sensory neurons connect with, or respond to, various receptor cells. These sensory receptor cells are activated by different stimuli such as heat and nociception, giving a functional name to the responding sensory neuron, such as a thermoreceptor which carries information about temperature changes. Other types include mechanoreceptors, chemoreceptors, and nociceptors and they send signals along a sensory nerve to the spinal cord where they may be processed by other sensory neurons and then relayed to the brain for further processing. Sensory receptors are found all over the body including the skin, epithelial tissues, muscles, bones and joints, internal organs, and the cardiovascular system.

Somatic senses are sometimes referred to as somesthetic senses, with the understanding that somesthesis includes the sense of touch, proprioception (sense of position and movement), and (depending on usage) haptic perception.The mapping of the body surfaces in the brain is called somatotopy. In the cortex, it is also referred to as the cortical homunculus. This brain-surface ("cortical") map is not immutable, however. Dramatic shifts can occur in response to stroke or injury.

Spatial disorientation

Spatial disorientation, spatial unawareness, or "Spatial-D" is the inability to determine one’s position, location, and motion relative to their environment. This phenomenon most commonly affects aircraft pilots and underwater divers, but also can be induced in normal conditions—or reproduced in the lab with instruments such as the Barany Chair. In aviation, the term means the inability to correctly interpret aircraft attitude, altitude or airspeed, in relation to the ground or point of reference. This most commonly occurs after a reference point (e.g., the horizon) has been lost. Spatial disorientation, often referred to as 'Spatial-D' by aviators occurs when aircrew's sensory interpretation of their position or motion conflicts with reality. Spatial disorientation is often separated into 3 main categories by mishap investigators:

Type 1: Unrecognized

Type 2: Recognized

Type 3: IncapacitatingA pilot who enters such conditions will quickly lose spatial orientation if there has been no training in flying with reference to instruments. Approximately 80% of the private pilots in the United States do not have an instrument rating, and therefore are prohibited from flying in conditions where instrument skills are required. Not all pilots abide by this rule and approximately 40% of the NTSB fatal general aviation accident reports list "continuation of flight into conditions for which the pilot was not qualified" as a cause.

Spino-olivary tract

The spino-olivary tract (historically Helweg's tract) is located in the anterior funiculus of the spinal cord and provides transmission of unconscious proprioception and is involved in balance. This tract carries proprioception information from muscles and tendons as well as cutaneous impulses to the olivary bodies. The olivary bodies known also as the olives, are located in the medulla oblongata in the brainstem. Other tracts that carry proprioception are the DSCT, cuneocerebellar tract, and the VSCT.The spino-olivary tract is a non-specific indirect ascending pathway and is connected to olivary nuclei. The axons enter the spinal cord from the dorsal root ganglia and terminate on unknown second-order neurons in the posterior grey column. The axons from the second-order neurons cross the midline and ascend as the spino-olivary tract in the white matter at the junction of the anterior and lateral columns. The axons end by synapsing on third-order neurons in the inferior olivary nuclei in the medulla oblongata. The axons of the third-order neurons cross the midline and enter the cerebellum through the inferior cerebellar peduncle.The spino-olivary tract conveys information to the cerebellum from cutaneous and proprioceptive organs. Sensations are from the ipsilateral side as the fibres cross twice – once at the level of axons of second-order neurons and again at the level of axons of third-order neurons.

Tabes dorsalis

Tabes dorsalis, also known as syphilitic myelopathy, is a slow degeneration (specifically, demyelination) of the neural tracts primarily in the dorsal columns (posterior columns) of the spinal cord (the portion closest to the back of the body) and dorsal roots. These nerves normally help maintain a person's sense of position (proprioception), vibration, and discriminative touch.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.