Printing

Printing is a process for reproducing text and images using a master form or template. The earliest non-paper products involving printing include cylinder seals and objects such as the Cyrus Cylinder and the Cylinders of Nabonidus. The earliest known form of printing as applied to paper was woodblock printing, which appeared in China before 220 AD.[1] Later developments in printing technology include the movable type invented by Bi Sheng around 1040 AD[2] and the printing press invented by Johannes Gutenberg in the 15th century. The technology of printing played a key role in the development of the Renaissance and the scientific revolution, and laid the material basis for the modern knowledge-based economy and the spread of learning to the masses.[3]

Collage of printing
From top to bottom, left to right: cylinder seal of a scene, block used for woodblock printing, Korean movable type, printing press, lithograph press, offset press used for modern lithographic printing, linotype machine for hot metal typesetting, digital printer, 3D printer in action.

History

Woodblock printing

Woodblock printing is a technique for printing text, images or patterns that was used widely throughout East Asia. It originated in China in antiquity as a method of printing on textiles and later on paper. As a method of printing on cloth, the earliest surviving examples from China date to before 220 A.D.

In East Asia

Jingangjing
The intricate frontispiece of the Diamond Sutra from Tang-dynasty China, 868 AD (British Library)

The earliest surviving woodblock printed fragments are from China. They are of silk printed with flowers in three colours from the Han Dynasty (before 220 A.D.). They are the earliest example of woodblock printing on paper and appeared in the mid-seventh century in China.

By the ninth century, printing on paper had taken off, and the first extant complete printed book containing its date is the Diamond Sutra (British Library) of 868.[4] By the tenth century, 400,000 copies of some sutras and pictures were printed, and the Confucian classics were in print. A skilled printer could print up to 2,000 double-page sheets per day.[5]

Printing spread early to Korea and Japan, which also used Chinese logograms, but the technique was also used in Turpan and Vietnam using a number of other scripts. This technique then spread to Persia and Russia.[6] This technique was transmitted to Europe via the Islamic world, and by around 1400 was being used on paper for old master prints and playing cards.[7] However, Arabs never used this to print the Quran because of the limits imposed by Islamic doctrine.[6]

In the Middle East

Block printing, called tarsh in Arabic, developed in Arabic Egypt during the ninth and tenth centuries, mostly for prayers and amulets. There is some evidence to suggest that these print blocks made from non-wood materials, possibly tin, lead, or clay. The techniques employed are uncertain, however, and they appear to have had very little influence outside of the Muslim world. Though Europe adopted woodblock printing from the Muslim world, initially for fabric, the technique of metal block printing remained unknown in Europe. Block printing later went out of use in Islamic Central Asia after movable type printing was introduced from China.[8]

In Europe

Saint Christopher 001
The earliest known woodcut, 1423, Buxheim, with hand-colouring

Block printing first came to Europe as a method for printing on cloth, where it was common by 1300. Images printed on cloth for religious purposes could be quite large and elaborate. When paper became relatively easily available, around 1400, the medium transferred very quickly to small woodcut religious images and playing cards printed on paper. These prints produced in very large numbers from about 1425 onward.

Around the mid-fifteenth-century, block-books, woodcut books with both text and images, usually carved in the same block, emerged as a cheaper alternative to manuscripts and books printed with movable type. These were all short heavily illustrated works, the bestsellers of the day, repeated in many different block-book versions: the Ars moriendi and the Biblia pauperum were the most common. There is still some controversy among scholars as to whether their introduction preceded or, the majority view, followed the introduction of movable type, with the range of estimated dates being between about 1440 and 1460.[9]

Movable-type printing

五贯宝卷
Copperplate of 1215–1216 5000 cash paper money with ten bronze movable types
Korean book-Jikji-Selected Teachings of Buddhist Sages and Seon Masters-1377
Jikji, "Selected Teachings of Buddhist Sages and Son Masters" from Korea, the earliest known book printed with movable metal type, 1377. Bibliothèque Nationale de France, Paris

Movable type is the system of printing and typography using movable pieces of metal type, made by casting from matrices struck by letterpunches. Movable type allowed for much more flexible processes than hand copying or block printing.

Around 1040, the first known movable type system was created in China by Bi Sheng out of porcelain.[2] Bi Sheng used clay type, which broke easily, but Wang Zhen by 1298 had carved a more durable type from wood. He also developed a complex system of revolving tables and number-association with written Chinese characters that made typesetting and printing more efficient. Still, the main method in use there remained woodblock printing (xylography), which "proved to be cheaper and more efficient for printing Chinese, with its thousands of characters".[10]

Copper movable type printing originated in China at the beginning of the 12th century. It was used in large-scale printing of paper money issued by the Northern Song dynasty. Movable type spread to Korea during the Goryeo dynasty.

Around 1230, Koreans invented a metal type movable printing using bronze. The Jikji, published in 1377, is the earliest known metal printed book. Type-casting was used, adapted from the method of casting coins. The character was cut in beech wood, which was then pressed into a soft clay to form a mould, and bronze poured into the mould, and finally the type was polished.[11] The Korean form of metal movable type was described by the French scholar Henri-Jean Martin as "extremely similar to Gutenberg's".[12] Eastern metal movable type was spread to Europe between the late 14th century and the early 15th century.[6][13][14][15][16]

Metal movable type
A case of cast metal type pieces and typeset matter in a composing stick

The printing press

Around 1450, Johannes Gutenberg introduced the first movable type printing system in Europe. He advanced innovations in casting type based on a matrix and hand mould, adaptations to the screw-press, the use of an oil-based ink, and the creation of a softer and more absorbent paper.[17] Gutenberg was the first to create his type pieces from an alloy of lead, tin, antimony, copper and bismuth – the same components still used today.[18] Johannes Gutenberg started work on his printing press around 1436, in partnership with Andreas Dritzehen – whom he had previously instructed in gem-cutting – and Andreas Heilmann, the owner of a paper mill.[13]

Compared to woodblock printing, movable type page setting and printing using a press was faster and more durable. Also, the metal type pieces were sturdier and the lettering more uniform, leading to typography and fonts. The high quality and relatively low price of the Gutenberg Bible (1455) established the superiority of movable type for Western languages. The printing press rapidly spread across Europe, leading up to the Renaissance, and later all around the world.

Miklós Andor in the page-setting room of Athenaeum Printing House - cca. 1920 (1).tiff
Page-setting room – c. 1920

Gutenberg's innovations in movable type printing have been called the most important invention of the second millennium.[19]

Rotary printing press

The rotary printing press was invented by Richard March Hoe in 1843. It uses impressions curved around a cylinder to print on long continuous rolls of paper or other substrates. Rotary drum printing was later significantly improved by William Bullock.

Printing capacity

The table lists the maximum number of pages which various press designs could print per hour.

Hand-operated presses Steam-powered presses
Gutenberg-style
c. 1600
Stanhope press
c. 1800
Koenig press
1812
Koenig press
1813
Koenig press
1814
Koenig press
1818
Impressions per hour 200 [20] 480 [21] 800 [22] 1,100 [23] 2,000 [24] 2,400 [24]

Conventional printing technology

All printing process are concerned with two kinds of areas on the final output:

  1. Image Area (printing areas)
  2. Non-image Area (non-printing areas)

After the information has been prepared for production (the prepress step), each printing process has definitive means of separating the image from the non-image areas.

Conventional printing has four types of process:

  1. Planographics, in which the printing and non-printing areas are on the same plane surface and the difference between them is maintained chemically or by physical properties, the examples are: offset lithography, collotype, and screenless printing.
  2. Relief, in which the printing areas are on a plane surface and the non printing areas are below the surface, examples: flexography and letterpress.
  3. Intaglio, in which the non-printing areas are on a plane surface and the printing area are etched or engraved below the surface, examples: steel die engraving, gravure
  4. Porous, in which the printing areas are on fine mesh screens through which ink can penetrate, and the non-printing areas are a stencil over the screen to block the flow of ink in those areas, examples: screen printing, stencil duplicator.

Letterpress

Commercial. Le Samedi BAnQ P48S1P03551
Miehle press printing Le Samedi journal. Montreal, 1939.

Letterpress printing is a technique of relief printing. A worker composes and locks movable type into the bed of a press, inks it, and presses paper against it to transfer the ink from the type which creates an impression on the paper.

Letterpress printing was the normal form of printing text from its invention by Johannes Gutenberg in the mid-15th century and remained in wide use for books and other uses until the second half of the 20th century, when offset printing was developed. More recently, letterpress printing has seen a revival in an artisanal form.

Offset

Offset printing is a widely used printing technique. Offset printing is where the inked image is transferred (or "offset") from a plate to a rubber blanket. An offset transfer moves the image to the printing surface. When used in combination with the lithographic process, a process based on the repulsion of oil and water; the offset technique employs a flat (planographic) image carrier. So, the image to be printed obtains ink from ink rollers, while the non-printing area attracts a film of water, keeping the non-printing areas ink-free.

Currently, most books and newspapers are printed using the technique of offset lithography.

Gravure

Gravure printing is an intaglio printing technique, where the image being printed is made up of small depressions in the surface of the printing plate. The cells are filled with ink, and the excess is scraped off the surface with a doctor blade. Then a rubber-covered roller presses paper onto the surface of the plate and into contact with the ink in the cells. The printing cylinders are usually made from copper plated steel, which is subsequently chromed, and may be produced by diamond engraving; etching, or laser ablation.

Gravure printing is used for long, high-quality print runs such as magazines, mail-order catalogues, packaging and printing onto fabric and wallpaper. It is also used for printing postage stamps and decorative plastic laminates, such as kitchen worktops.

Other printing techniques

The other significant printing techniques include:

  • Flexography, used for packaging, labels, newspapers
  • Dye-sublimation printer
  • Inkjet, used typically to print a small number of books or packaging, and also to print a variety of materials: from high quality papers simulating offset printing, to floor tiles. Inkjet is also used to apply mailing addresses to direct mail pieces
  • Laser printing (toner printing) mainly used in offices and for transactional printing (bills, bank documents). Laser printing is commonly used by direct mail companies to create variable data letters or coupons.
  • Pad printing, popular for its unusual ability to print on complex three-dimensional surfaces
  • Relief print, mainly used for catalogues
  • Screen-printing for a variety of applications ranging from T-shirts to floor tiles, and on uneven surfaces
  • Intaglio, used mainly for high value documents such as currencies.
  • Thermal printing, popular in the 1990s for fax printing. Used today for printing labels such as airline baggage tags and individual price labels in supermarket deli counters.

Impact of German movable type printing press

Quantitative aspects

European Output of Printed Books ca. 1450–1800
European output of books printed by movable type from ca. 1450 to 1800[25]

It is estimated that following the innovation of Gutenberg's printing press, the European book output rose from a few million to around one billion copies within a span of less than four centuries.[25]

Religious impact

Samuel Hartlib, who was exiled in Britain and enthusiastic about social and cultural reforms, wrote in 1641 that "the art of printing will so spread knowledge that the common people, knowing their own rights and liberties, will not be governed by way of oppression".[26]

PrintMus 038
Replica of the Gutenberg press at the International Printing Museum in Carson, California

In the Muslim world, printing, especially in Arabic scripts, was strongly opposed throughout the early modern period, though sometimes printing in Hebrew or Armenian script was permitted. Thus the first movable type printing in the Ottoman Empire was in Hebrew in 1493.[27] According to an imperial ambassador to Istanbul in the middle of the sixteenth century, it was a sin for the Turks to print religious books. In 1515, Sultan Selim I issued a decree under which the practice of printing would be punishable by death. At the end of the sixteenth century, Sultan Murad III permitted the sale of non-religious printed books in Arabic characters, yet the majority were imported from Italy. Ibrahim Muteferrika established the first press for printing in Arabic in the Ottoman Empire, against opposition from the calligraphers and parts of the Ulama. It operated until 1742, producing altogether seventeen works, all of which were concerned with non-religious, utilitarian matters. Printing did not become common in the Islamic world until the 19th century.[28]

Jews were banned from German printing guilds; as a result Hebrew printing sprang up in Italy, beginning in 1470 in Rome, then spreading to other cities including Bari, Pisa, Livorno, and Mantua. Local rulers had the authority to grant or revoke licenses to publish Hebrew books,[29] and many of those printed during this period carry the words 'con licenza de superiori' (indicating their printing having been licensed by the censor) on their title pages.

It was thought that the introduction of the printing medium 'would strengthen religion and enhance the power of monarchs.'[30] The majority of books were of a religious nature, with the church and crown regulating the content. The consequences of printing 'wrong' material were extreme. Meyrowitz[30] used the example of William Carter who in 1584 printed a pro-Catholic pamphlet in Protestant-dominated England. The consequence of his action was hanging.

Social impact

Print gave a broader range of readers access to knowledge and enabled later generations to build directly on the intellectual achievements of earlier ones without the changes arising within verbal traditions. Print, according to Acton in his lecture On the Study of History (1895), gave "assurance that the work of the Renaissance would last, that what was written would be accessible to all, that such an occultation of knowledge and ideas as had depressed the Middle Ages would never recur, that not an idea would be lost".[26]

Press1520
Bookprinting in the 16th century

Print was instrumental in changing the nature of reading within society.

Elizabeth Eisenstein identifies two long-term effects of the invention of printing. She claims that print created a sustained and uniform reference for knowledge as well as allowing for comparison between incompatible views.[31]

Asa Briggs and Peter Burke identify five kinds of reading that developed in relation to the introduction of print:

  1. Critical reading: due to the fact that texts finally became accessible to the general population, critical reading emerged because people were given the option to form their own opinions on texts
  2. Dangerous Reading: reading was seen as a dangerous pursuit because it was considered rebellious and unsociable especially in the case of women, because reading could stir up dangerous emotions such as love and that if women could read, they could read love notes
  3. Creative reading: printing allowed people to read texts and interpret them creatively, often in very different ways than the author intended
  4. Extensive Reading: print allowed for a wide range of texts to become available, thus, previous methods of intensive reading of texts from start to finish, began to change and with texts being readily available, people began reading on particular topics or chapters, allowing for much more extensive reading on a wider range of topics
  5. Private reading: became linked to the rise of individualism because before print, reading was often a group event, where one person would read to a group of people and with print, literacy rose as did availability of texts, thus reading became a solitary pursuit

The invention of printing also changed the occupational structure of European cities. Printers emerged as a new group of artisans for whom literacy was essential, although the much more labour-intensive occupation of the scribe naturally declined. Proof-correcting arose as a new occupation, while a rise in the amount of booksellers and librarians naturally followed the explosion in the numbers of books.

Educational Impact

Gutenberg's printing press had profound impacts on universities as well. Universities were influenced in their "language of scholarship, libraries, curriculum, [and] pedagogy" [32]

The language of Scholarship

Before the invention of the printing press, most written material was in Latin. However, after the invention of printing the number of books printed expanded as well as the vernacular. Latin was not replaced completely, but remained an international language until the eighteenth century.[32]

University Libraries

At this time, universities began establishing accompanying libraries. "Cambridge made the chaplain responsible for the library in the fifteenth century but this position was abolished in 1570 and in 1577 Cambridge established the new office of university librarian. Although, the University of Leuven did not see a need for a university library based on the idea that professor were the library. Libraries also began receiving so many books from gifts and purchases that they began to run out of room. This issue was solved, however, by a man named Merton (1589) who decided books should be stacked horizontally on shelves.[32]

Curriculum

The printed press changed university libraries in many ways. Professors were finally able to compare the opinions of different authors rather than being forced to look at only one or two specific authors. Textbooks themselves were also being printed in different levels of difficulty, rather than just one introductory text being made available.[32]

Comparison of printing methods

Comparison of printing methods[33]
Printing process Transfer method Pressure applied Drop size Dynamic viscosity Ink thickness on substrate Notes Cost-effective run length
Offset printing rollers 1 MPa 40–100 Pa·s 0.5–1.5 µm high print quality >5,000 (A3 trim size, sheet-fed)[34]

>30,000 (A3 trim size, web-fed)[34]

Rotogravure rollers 3 MPa 50–200 mPa·s 0.8–8 µm thick ink layers possible,
excellent image reproduction,
edges of letters and lines are jagged[35]
>500,000[35]
Flexography rollers 0.3 MPa 50–500 mPa·s 0.8–2.5 µm high quality (now HD)
Letterpress printing platen 10 MPa 50–150 Pa·s 0.5–1.5 µm slow drying
Screen-printing pressing ink through holes in screen <12 µm versatile method,
low quality
Electrophotography electrostatics 5–10 µm thick ink
Liquid Electrophotography image formation by Electrostatics and transfer while fixing High PQ, excellent image reproduction, wide range of media, very thin image,
Inkjet printer thermal 5–30 picolitres (pl) 1–5 Pa·s <0.5 µm special paper required to reduce bleeding <350 (A3 trim size)[34]
Inkjet printer piezoelectric 4–30 pl 5–20 mPa s <0.5 µm special paper required to reduce bleeding <350 (A3 trim size)[34]
Inkjet printer continuous 5–100 pl 1–5 mPa·s <0.5 µm special paper required to reduce bleeding <350 (A3 trim size)[34]
Transfer-print thermal transfer film or water release decal mass-production method of applying an image to a curved or uneven surface

Digital printing

By 2005, Digital printing accounts for approximately 9% of the 45 trillion pages printed annually around the world.[36]

Printing at home, an office, or an engineering environment is subdivided into:

  • small format (up to ledger size paper sheets), as used in business offices and libraries
  • wide format (up to 3' or 914mm wide rolls of paper), as used in drafting and design establishments.

Some of the more common printing technologies are:

  • blueprint – and related chemical technologies
  • daisy wheel – where pre-formed characters are applied individually
  • dot-matrix – which produces arbitrary patterns of dots with an array of printing studs
  • line printing – where formed characters are applied to the paper by lines
  • heat transfer – such as early fax machines or modern receipt printers that apply heat to special paper, which turns black to form the printed image
  • inkjet – including bubble-jet, where ink is sprayed onto the paper to create the desired image
  • electrophotography – where toner is attracted to a charged image and then developed
  • laser – a type of xerography where the charged image is written pixel by pixel using a laser
  • solid ink printer – where cubes of ink are melted to make ink or liquid toner

Vendors typically stress the total cost to operate the equipment, involving complex calculations that include all cost factors involved in the operation as well as the capital equipment costs, amortization, etc. For the most part, toner systems are more economical than inkjet in the long run, even though inkjets are less expensive in the initial purchase price.

Professional digital printing (using toner) primarily uses an electrical charge to transfer toner or liquid ink to the substrate onto which it is printed. Digital print quality has steadily improved from early color and black and white copiers to sophisticated colour digital presses such as the Xerox iGen3, the Kodak Nexpress, the HP Indigo Digital Press series, and the InfoPrint 5000. The iGen3 and Nexpress use toner particles and the Indigo uses liquid ink. The InfoPrint 5000 is a full-color, continuous forms inkjet drop-on-demand printing system. All handle variable data, and rival offset in quality. Digital offset presses are also called direct imaging presses, although these presses can receive computer files and automatically turn them into print-ready plates, they cannot insert variable data.

Small press and fanzines generally use digital printing. Prior to the introduction of cheap photocopying the use of machines such as the spirit duplicator, hectograph, and mimeograph was common.

3D printing

3D printing is a form of manufacturing technology where physical objects are created from three-dimensional digital models using 3D printers. The objects are created by laying down or building up many thin layers of material in succession. The technique is also known as additive manufacturing, rapid prototyping, or fabricating.

Gang run printing

Gang run printing is a method in which multiple printing projects are placed on a common paper sheet in an effort to reduce printing costs and paper waste. Gang runs are generally used with sheet-fed printing presses and CMYK process color jobs, which require four separate plates that are hung on the plate cylinder of the press. Printers use the term "gang run" or "gang" to describe the practice of placing many print projects on the same oversized sheet. Basically, instead of running one postcard that is 4 x 6 as an individual job the printer would place 15 different postcards on 20 x 18 sheet therefore using the same amount of press time the printer will get 15 jobs done in the roughly the same amount of time as one job.

Printed electronics

Printed electronics is the manufacturing of electronic devices using standard printing processes. Printed electronics technology can be produced on cheap materials such as paper or flexible film, which makes it an extremely cost-effective method of production. Since early 2010, the printable electronics industry has been gaining momentum and several large companies, including Bemis Company and Illinois Tool Works have made investments in printed electronics and industry associations including OE-A and FlexTech Alliance are contributing heavily to the advancement of the printed electronics industry.[37][38]

Printing terminologies

Printing terminologies are the specific terms used in printing industry. Following is the list of printing terminologies.

See also

References

  1. ^ Shelagh Vainker in Anne Farrer (ed), "Caves of the Thousand Buddhas", 1990, British Museum publications, ISBN 0-7141-1447-2
  2. ^ a b "Great Chinese Inventions". Minnesota-china.com. Archived from the original on December 3, 2010. Retrieved July 29, 2010.
  3. ^ Rees, Fran. Johannes Gutenberg: Inventor of the Printing Press
  4. ^ "Oneline Gallery: Sacred Texts". British Library. Archived from the original on November 10, 2013. Retrieved March 10, 2012.
  5. ^ Tsuen-Hsuin, Tsien; Needham, Joseph (1985). Paper and Printing. Science and Civilisation in China. 5 part 1. Cambridge University Press. pp. 158, 201.
  6. ^ a b c Thomas Franklin Carter, The Invention of Printing in China and its Spread Westward, The Ronald Press, NY 2nd ed. 1955, pp. 176–78
  7. ^ Mayor, A Hyatt (1980). Prints and People. 5–18. Princeton: Metropolitan Museum of Art. ISBN 978-0-691-00326-9.
  8. ^ Richard W. Bulliet (1987), "Medieval Arabic Tarsh: A Forgotten Chapter in the History of Printing". Journal of the American Oriental Society 107 (3), pp. 427–38.
  9. ^ Master E.S., Alan Shestack, Philadelphia Museum of Art, 1967
  10. ^ Beckwith, Christopher I., Empires of the Silk Road: A History of Central Eurasia from the Bronze Age to the Present, Princeton University Press, 2009, ISBN 978-0-691-15034-5
  11. ^ Tsien 1985, p. 330
  12. ^ Briggs, Asa and Burke, Peter (2002) A Social History of the Media: from Gutenberg to the Internet, Polity, Cambridge, pp. 15–23, 61–73.
  13. ^ a b Polenz, Peter von. (1991). Deutsche Sprachgeschichte vom Spätmittelalter bis zur Gegenwart: I. Einführung, Grundbegriffe, Deutsch in der frühbürgerlichen Zeit (in German). New York/Berlin: Gruyter, Walter de GmbH.
  14. ^ Christensen, Thomas (2007). "Did East Asian Printing Traditions Influence the European Renaissance?". Arts of Asia Magazine (to appear). Retrieved 2006-10-18.
  15. ^ Mendoza, Juan González de (1585). Historia de las cosas más notables, ritos y costumbres del gran reyno de la China (in Spanish).
  16. ^ Stavrianos, L.S. (1998) [1970]. A Global History: From Prehistory to the 21st Century (7th ed.). Upper Saddle River, NJ: Prentice Hall. ISBN 978-0-13-923897-0.
  17. ^ Steinberg, S. H. (1974). Five Hundred Years of Printing (3rd ed.). Harmondsworth, Middlesex: Penguin. ISBN 978-0-14-020343-1.
  18. ^ Encyclopædia Britannica. Retrieved November 27, 2006, from Encyclopædia Britannica Ultimate Reference Suite DVD – entry "printing"
  19. ^ In 1997, Time–Life magazine picked Gutenberg's invention to be the most important of the second millennium. In 1999, the A&E Network voted Johannes Gutenberg "Man of the Millennium". See also 1,000 Years, 1,000 People: Ranking The Men and Women Who Shaped The Millennium Archived October 12, 2007, at the Wayback Machine which was composed by four prominent US journalists in 1998.
  20. ^ Pollak, Michael (1972). "The performance of the wooden printing press". The Library Quarterly. 42 (2): 218–64. JSTOR 4306163.
  21. ^ Bolza 1967, p. 80
  22. ^ Bolza 1967, p. 83
  23. ^ Bolza 1967, p. 87
  24. ^ a b Bolza 1967, p. 88
  25. ^ a b Buringh, Eltjo; van Zanden, Jan Luiten: "Charting the 'Rise of the West': Manuscripts and Printed Books in Europe, A Long-Term Perspective from the Sixth through Eighteenth Centuries", The Journal of Economic History, Vol. 69, No. 2 (2009), pp. 409–45 (417, table 2)
  26. ^ a b Ref: Briggs, Asa and Burke, Peter (2002) A Social History of the Media: from Gutenberg to the Internet, Polity, Cambridge, pp. 15–23, 61–73.
  27. ^ or soon after; Naim A. Güleryüz, Bizans'tan 20. Yüzyıla – Türk Yahudileri, Gözlem Gazetecilik Basın ve Yayın A.Ş., İstanbul, January 2012, p. 90 ISBN 978-9944-994-54-5
  28. ^ Watson, William J., "İbrāhīm Müteferriḳa and Turkish Incunabula", Journal of the American Oriental Society, 1968, volume 88, issue 3, p. 436
  29. ^ "A Lifetime's Collection of Texts in Hebrew, at Sotheby's", Edward Rothstein, New York Times, February 11, 2009
  30. ^ a b Meyrowitz: "Mediating Communication: What Happens?" in "Questioning the Media", p. 41.
  31. ^ Eisenstein in Briggs and Burke, 2002: p. 21
  32. ^ a b c d Modie, G (2014). "Gutenberg's Effects on Universities". History of Education. 43 (4): 17.
  33. ^ Kipphan, Helmut (2001). Handbook of print media: technologies and production methods (Illustrated ed.). Springer. pp. 130–44. ISBN 978-3-540-67326-2.
  34. ^ a b c d e Kipphan, Helmut (2001). Handbook of print media: technologies and production methods (Illustrated ed.). Springer. pp. 976–79. ISBN 978-3-540-67326-2.
  35. ^ a b Kipphan, Helmut (2001). Handbook of print media: technologies and production methods (Illustrated ed.). Springer. pp. 48–52. ISBN 978-3-540-67326-2.
  36. ^ "When 2% Leads to a Major Industry Shift Archived February 16, 2008, at the Wayback Machine" Patrick Scaglia, August 30, 2007.
  37. ^ "Recent Announcements Show Gains Being Made by PE Industry". Printed Electronics Now.
  38. ^ "Printable transistors usher in 'internet of things'". The Register. Retrieved 21 September 2012.

Further reading

  • Edwards, Eiluned (December 2015). Block Printed Textiles of India. Niyogi Books. ISBN 978-93-85285-03-5.
  • Saunders, Gill; Miles, Rosie (May 1, 2006). Prints Now: Directions and Definitions. Victoria and Albert Museum. ISBN 978-1-85177-480-7.
  • Lafontaine, Gerard S. (1958). Dictionary of Terms Used in the Paper, Printing, and Allied Industries. Toronto: H. Smith Paper Mills. 110 p.
  • Nesbitt, Alexander (1957). The History and Technique of Lettering. Dover Books.
  • Steinberg, S.H. (1996). Five Hundred Years of Printing. London and Newcastle: The British Library and Oak Knoll Press.
  • Gaskell, Philip (1995). A New Introduction to Bibliography. Winchester and Newcastle: St Paul's Bibliographies and Oak Knoll Press.
  • Elizabeth L. Eisenstein, The Printing Press as an Agent of Change, Cambridge University Press, September 1980, Paperback, 832 p. ISBN 0-521-29955-1
  • Marshall McLuhan, The Gutenberg Galaxy: The Making of Typographic Man (1962) Univ. of Toronto Press (1st ed.); reissued by Routledge & Kegan Paul ISBN 0-7100-1818-5
  • Tam, Pui-Wing The New Paper Trail, The Wall Street Journal Online, February 13, 2006 p. R8
  • Tsien, Tsuen-Hsuin (1985). "Paper and Printing". Joseph Needham, Science and Civilisation in China, Chemistry and Chemical Technology. 5 part 1. Cambridge University Press
  • Woong-Jin-Wee-In-Jun-Gi No. 11 Jang Young Sil by Baek Sauk Gi. 1987 Woongjin Publishing Co., Ltd. p. 61.

On the effects of Gutenberg's printing

Early printers manuals The classic manual of early hand-press technology is

  • Moxon, Joseph (1962) [1683–1684]. Herbert, Davies; Carter, Harry, eds. "Mechanick Exercises on the Whole Art of Printing" (reprint ed.). New York: Dover Publications.
A somewhat later one, showing 18th century developments is
  • Stower, Caleb (1965) [1808]. "The Printer's Grammar" (reprint ed.). London: Gregg Press.

External links

3D printing

3D printing is any of various processes in which material is joined or solidified under computer control to create a three-dimensional object, with material being added together (such as liquid molecules or powder grains being fused together), typically layer by layer. In the 1990s, 3D printing techniques were considered suitable only for the production of functional or aesthetical prototypes and a more appropriate term was rapid prototyping. Today, the precision, repeatability and material range have increased to the point that 3D printing is considered as an industrial production technology, with the name of additive manufacturing. 3D printed objects can have a very complex shape or geometry and are always produced starting from a digital 3D model or a CAD file. There are many different 3D printing processes, that can be grouped into seven categories:

Vat photopolymerization

Material jetting

Binder jetting

Powder bed fusion

Material extrusion

Directed energy deposition

Sheet laminationThe most commonly used 3D Printing process is a material extrusion technique called fused deposition modeling (FDM). Metal Powder bed fusion is gaining prominence lately during the immense applications of metal parts in the industry. In 3D Printing, a three-dimensional object is built from computer-aided design (CAD) model, usually by successively adding material layer by layer, unlike the conventional machining process, where material is removed from a stock item, or the casting and forging processes which date to antiquity.The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the term is being used in popular vernacular to encompass a wider variety of additive manufacturing techniques. United States and global technical standards use the official term additive manufacturing for this broader sense.

Black and white

Black-and-white (B/W or B&W) images combine black and white in a continuous spectrum, producing a range of shades of gray.

CMYK color model

The CMYK color model (process color, four color) is a subtractive color model, used in color printing, and is also used to describe the printing process itself. CMYK refers to the four inks used in some color printing: cyan, magenta, yellow, and key.

The CMYK model works by partially or entirely masking colors on a lighter, usually white, background. The ink reduces the light that would otherwise be reflected. Such a model is called subtractive because inks "subtract" the colors red, green and blue from white light. White light minus red leaves cyan, white light minus green leaves magenta, and white light minus blue leaves yellow.

In additive color models, such as RGB, white is the "additive" combination of all primary colored lights, while black is the absence of light. In the CMYK model, it is the opposite: white is the natural color of the paper or other background, while black results from a full combination of colored inks. To save cost on ink, and to produce deeper black tones, unsaturated and dark colors are produced by using black ink instead of the combination of cyan, magenta, and yellow.

Inkjet printing

Inkjet printing is a type of computer printing that recreates a digital image by propelling droplets of ink onto paper, plastic, or other substrates. Inkjet printers are the most commonly used type of printer, and range from small inexpensive consumer models to expensive professional machines.

The concept of inkjet printing originated in the 20th century, and the technology was first extensively developed in the early 1950s. Starting in the late 1970s, inkjet printers that could reproduce digital images generated by computers were developed, mainly by Epson, Hewlett-Packard (HP) and Canon. In the worldwide consumer market, four manufacturers account for the majority of inkjet printer sales: Canon, HP, Epson and Brother.

The emerging ink jet material deposition market also uses inkjet technologies, typically printheads using piezoelectric crystals, to deposit materials directly on substrates.

The technology has been extended and the 'ink' can now also comprise solder paste in PCB assembly, or living cells, for creating biosensors and for tissue engineering.

Images produced on inkjet printers are sometime sold under other names since the term is associated with words like "digital", "computers", and "everyday printing", which can have negative connotations in some contexts. These trade names or coined terms are usually used in the fine arts reproduction field. They include Digigraph, Iris prints (or Giclée), and Cromalin.

Johannes Gutenberg

Johannes Gensfleisch zur Laden zum Gutenberg (; c. 1400 – February 3, 1468) was a German blacksmith, goldsmith, inventor, printer, and publisher who introduced printing to Europe with the printing press. His introduction of mechanical movable type printing to Europe started the Printing Revolution and is regarded as a milestone of the second millennium, ushering in the modern period of human history. It played a key role in the development of the Renaissance, Reformation, the Age of Enlightenment, and the scientific revolution and laid the material basis for the modern knowledge-based economy and the spread of learning to the masses.Gutenberg in 1439 was the first European to use movable type. Among his many contributions to printing are: the invention of a process for mass-producing movable type; the use of oil-based ink for printing books; adjustable molds; mechanical movable type; and the use of a wooden printing press similar to the agricultural screw presses of the period. His truly epochal invention was the combination of these elements into a practical system that allowed the mass production of printed books and was economically viable for printers and readers alike. Gutenberg's method for making type is traditionally considered to have included a type metal alloy and a hand mould for casting type. The alloy was a mixture of lead, tin, and antimony that melted at a relatively low temperature for faster and more economical casting, cast well, and created a durable type.

In Renaissance Europe, the arrival of mechanical movable type printing introduced the era of mass communication which permanently altered the structure of society. The relatively unrestricted circulation of information—including revolutionary ideas—transcended borders, captured the masses in the Reformation and threatened the power of political and religious authorities; the sharp increase in literacy broke the monopoly of the literate elite on education and learning and bolstered the emerging middle class. Across Europe, the increasing cultural self-awareness of its people led to the rise of proto-nationalism, accelerated by the flowering of the European vernacular languages to the detriment of Latin's status as lingua franca. In the 19th century, the replacement of the hand-operated Gutenberg-style press by steam-powered rotary presses allowed printing on an industrial scale, while Western-style printing was adopted all over the world, becoming practically the sole medium for modern bulk printing.

The use of movable type was a marked improvement on the handwritten manuscript, which was the existing method of book production in Europe, and upon woodblock printing, and revolutionized European book-making. Gutenberg's printing technology spread rapidly throughout Europe and later the world.

His major work, the Gutenberg Bible (also known as the 42-line Bible), was the first printed version of the Bible and has been acclaimed for its high aesthetic and technical quality.

Kodak

The Eastman Kodak Company (referred to simply as Kodak ) is an American technology company that produces camera-related products with its historic basis on photography. The company is headquartered in Rochester, New York, and is incorporated in New Jersey. Kodak provides packaging, functional printing, graphic communications and professional services for businesses around the world. Its main business segments are Print Systems, Enterprise Inkjet Systems, Micro 3D Printing and Packaging, Software and Solutions, and Consumer and Film. It is best known for photographic film products.

Kodak was founded by George Eastman and Henry A. Strong on September 4, 1888. During most of the 20th century, Kodak held a dominant position in photographic film. The company's ubiquity was such that its "Kodak moment" tagline entered the common lexicon to describe a personal event that was demanded to be recorded for posterity. Kodak began to struggle financially in the late 1990s, as a result of the decline in sales of photographic film and its slowness in transitioning to digital photography. As a part of a turnaround strategy, Kodak began to focus on digital photography and digital printing, and attempted to generate revenues through aggressive patent litigation.In January 2012, Kodak filed for Chapter 11 bankruptcy protection in the United States District Court for the Southern District of New York.In February 2012, Kodak announced that it would stop making digital cameras, pocket video cameras and digital picture frames and focus on the corporate digital imaging market. Digital cameras are still sold under the Kodak brand by JK Imaging Ltd thanks to an agreement with Kodak.

In August 2012, Kodak announced its intention to sell its photographic film, commercial scanners and kiosk operations, as a measure to emerge from bankruptcy, but not its motion picture film operations. In January 2013, the Court approved financing for Kodak to emerge from bankruptcy by mid 2013. Kodak sold many of its patents for approximately $525,000,000 to a group of companies (including Apple, Google, Facebook, Amazon, Microsoft, Samsung, Adobe Systems, and HTC) under the names Intellectual Ventures and RPX Corporation. On September 3, 2013, the company emerged from bankruptcy having shed its large legacy liabilities and exited several businesses. Personalized Imaging and Document Imaging are now part of Kodak Alaris, a separate company owned by the UK-based Kodak Pension Plan.

Lithography

Lithography (from Ancient Greek λίθος, lithos, meaning 'stone', and γράφειν, graphein, meaning 'to write') is a method of printing originally based on the immiscibility of oil and water. The printing is from a stone (lithographic limestone) or a metal plate with a smooth surface. It was invented in 1796 by German author and actor Alois Senefelder as a cheap method of publishing theatrical works. Lithography can be used to print text or artwork onto paper or other suitable material.Lithography originally used an image drawn with oil, fat, or wax onto the surface of a smooth, level lithographic limestone plate. The stone was treated with a mixture of acid and gum arabic, etching the portions of the stone that were not protected by the grease-based image. When the stone was subsequently moistened, these etched areas retained water; an oil-based ink could then be applied and would be repelled by the water, sticking only to the original drawing. The ink would finally be transferred to a blank paper sheet, producing a printed page. This traditional technique is still used in some fine art printmaking applications.

In modern lithography, the image is made of a polymer coating applied to a flexible plastic or metal plate. The image can be printed directly from the plate (the orientation of the image is reversed), or it can be offset, by transferring the image onto a flexible sheet (rubber) for printing and publication.

As a printing technology, lithography is different from intaglio printing (gravure), wherein a plate is either engraved, etched, or stippled to score cavities to contain the printing ink; and woodblock printing or letterpress printing, wherein ink is applied to the raised surfaces of letters or images. Today, most types of high-volume books and magazines, especially when illustrated in colour, are printed with offset lithography, which has become the most common form of printing technology since the 1960s.

The related term "photolithography" refers to when photographic images are used in lithographic printing, whether these images are printed directly from a stone or from a metal plate, as in offset printing. "Photolithography" is used synonymously with "offset printing". The technique as well as the term were introduced in Europe in the 1850s. Beginning in the 1960s, photolithography has played an important role in the fabrication and mass production of integrated circuits in the microelectronics industry.

Movable type

Movable type (US English; moveable type in British English) is the system and technology of printing and typography that uses movable components to reproduce the elements of a document (usually individual alphanumeric characters or punctuation marks) usually on the medium of paper.

The world's first movable type printing* technology for printing paper books was made of porcelain materials and was invented around 1040 AD in China during the Northern Song Dynasty by the inventor Bi Sheng (990–1051).The oldest extant book printed with movable metal type, Jikji, was printed in Korea in 1377 during the Goryeo dynasty.

Because of this, the diffusion of both movable-type systems was limited primarily to East Asia. The development of the printing press was possibly influenced by various sporadic reports of movable type technology brought back to Europe by returning business people and missionaries to China. Some of these medieval European accounts are still preserved in the library archives of the Vatican and Oxford University among many others. However, direct evidence that Gutenberg was influenced by Asian printing is lacking: "No text indicates the presence or knowledge of any kind of Asian movable type or movable type imprint in Europe before 1450. The material evidence is even more conclusive."Around 1450, Johannes Gutenberg introduced the metal movable-type printing press in Europe, along with innovations in casting the type based on a matrix and hand mould. The small number of alphabetic characters needed for European languages was an important factor. Gutenberg was the first to create his type pieces from an alloy of lead, tin, and antimony—and these materials remained standard for 550 years.For alphabetic scripts, movable-type page setting was quicker than woodblock printing. The metal type pieces were more durable and the lettering was more uniform, leading to typography and fonts. The high quality and relatively low price of the Gutenberg Bible (1455) established the superiority of movable type in Europe and the use of printing presses spread rapidly. The printing press may be regarded as one of the key factors fostering the Renaissance and due to its effectiveness, its use spread around the globe.

The 19th-century invention of hot metal typesetting and its successors caused movable type to decline in the 20th century.

Offset printing

Offset printing is a commonly used printing technique in which the inked image is transferred (or "offset") from a plate to a rubber blanket, then to the printing surface. When used in combination with the lithographic process, which is based on the repulsion of oil and water, the offset technique employs a flat (planographic) image carrier on which the image to be printed obtains ink from ink rollers, while the non-printing area attracts a water-based film (called "fountain solution"), keeping the non-printing areas ink-free. The modern "web" process feeds a large reel of paper through a large press machine in several parts, typically for several metres, which then prints continuously as the paper is fed through.

Development of the offset press came in two versions: in 1875 by Robert Barclay of England for printing on tin, and in 1904 by Ira Washington Rubel of the United States for printing on paper.

PDF

The Portable Document Format (PDF) is a file format developed by Adobe in the 1990s to present documents, including text formatting and images, in a manner independent of application software, hardware, and operating systems. Based on the PostScript language, each PDF file encapsulates a complete description of a fixed-layout flat document, including the text, fonts, vector graphics, raster images and other information needed to display it. PDF was standardized as an open format, ISO 32000, in 2008, and no longer requires any royalties for its implementation.Today, PDF files may contain a variety of content besides flat text and graphics including logical structuring elements, interactive elements such as annotations and form-fields, layers, rich media (including video content) and three dimensional objects using U3D or PRC, and various other data formats. The PDF specification also provides for encryption and digital signatures, file attachments and metadata to enable workflows requiring these features.

Poster

A poster is any piece of printed paper designed to be attached to a wall or vertical surface. Typically posters include both textual and graphic elements, although a poster may be either wholly graphical or wholly text. Posters are designed to be both eye-catching and informative. Posters may be used for many purposes. They are a frequent tool of advertisers (particularly of events, musicians, and films), propagandists, protestors, and other groups trying to communicate a message. Posters are also used for reproductions of artwork, particularly famous works, and are generally low-cost compared to the original artwork. The modern poster, as we know it, however, dates back to the 1840s and 1850s when the printing industry perfected colour lithography and made mass production possible.

Printer (computing)

In computing, a printer is a peripheral device which makes a persistent human-readable representation of graphics or text on paper.

The first computer printer designed was a mechanically driven apparatus by Charles Babbage for his difference engine in the 19th century; however, his mechanical printer design was not built until 2000. The first electronic printer was the EP-101, invented by Japanese company Epson and released in 1968. The first commercial printers generally used mechanisms from electric typewriters and Teletype machines. The demand for higher speed led to the development of new systems specifically for computer use. In the 1980s were daisy wheel systems similar to typewriters, line printers that produced similar output but at much higher speed, and dot matrix systems that could mix text and graphics but produced relatively low-quality output. The plotter was used for those requiring high quality line art like blueprints.

The introduction of the low-cost laser printer in 1984 with the first HP LaserJet, and the addition of PostScript in next year's Apple LaserWriter, set off a revolution in printing known as desktop publishing. Laser printers using PostScript mixed text and graphics, like dot-matrix printers, but at quality levels formerly available only from commercial typesetting systems. By 1990, most simple printing tasks like fliers and brochures were now created on personal computers and then laser printed; expensive offset printing systems were being dumped as scrap. The HP Deskjet of 1988 offered the same advantages as laser printer in terms of flexibility, but produced somewhat lower quality output (depending on the paper) from much less expensive mechanisms. Inkjet systems rapidly displaced dot matrix and daisy wheel printers from the market. By the 2000s high-quality printers of this sort had fallen under the $100 price point and became commonplace.

The rapid update of internet email through the 1990s and into the 2000s has largely displaced the need for printing as a means of moving documents, and a wide variety of reliable storage systems means that a "physical backup" is of little benefit today. Even the desire for printed output for "offline reading" while on mass transit or aircraft has been displaced by e-book readers and tablet computers. Today, traditional printers are being used more for special purposes, like printing photographs or artwork, and are no longer a must-have peripheral.

Starting around 2010, 3D printing became an area of intense interest, allowing the creation of physical objects with the same sort of effort as an early laser printer required to produce a brochure. These devices are in their earliest stages of development and have not yet become commonplace.

Printing press

A printing press is a mechanical device for applying pressure to an inked surface resting upon a print medium (such as paper or cloth), thereby transferring the ink. It marked a dramatic improvement on earlier printing methods in which the cloth, paper or other medium was brushed or rubbed repeatedly to achieve the transfer of ink, and accelerated the process. Typically used for texts, the invention and global spread of the printing press was one of the most influential events in the second millennium.Johannes Gutenberg, a goldsmith by profession, developed, circa 1439, a printing system by adapting existing technologies to printing purposes, as well as making inventions of his own. Printing in East Asia had been prevalent since the Tang dynasty, and in Europe, woodblock printing based on existing screw presses was common by the 14th century. Gutenberg's most important innovation was the development of hand-molded metal printing matrices, thus producing a movable type-based printing press system. His newly devised hand mould made possible the precise and rapid creation of metal movable type in large quantities. Movable type had been hitherto unknown in Europe. In Europe, the two inventions, the hand mould and the printing press, together drastically reduced the cost of printing books and other documents, particularly in short print runs.

The printing press spread within several decades to over two hundred cities in a dozen European countries. By 1500, printing presses in operation throughout Western Europe had already produced more than twenty million volumes. In the 16th century, with presses spreading further afield, their output rose tenfold to an estimated 150 to 200 million copies. The operation of a press became synonymous with the enterprise of printing, and lent its name to a new medium of expression and communication, "the press".In Renaissance Europe, the arrival of mechanical movable type printing introduced the era of mass communication, which permanently altered the structure of society. The relatively unrestricted circulation of information and (revolutionary) ideas transcended borders, captured the masses in the Reformation and threatened the power of political and religious authorities. The sharp increase in literacy broke the monopoly of the literate elite on education and learning and bolstered the emerging middle class. Across Europe, the increasing cultural self-awareness of its peoples led to the rise of proto-nationalism, and accelerated by the development of European vernacular languages, to the detriment of Latin's status as lingua franca. In the 19th century, the replacement of the hand-operated Gutenberg-style press by steam-powered rotary presses allowed printing on an industrial scale.

Printmaking

Printmaking is the process of creating artworks by printing, normally on paper. Printmaking normally covers only the process of creating prints that have an element of originality, rather than just being a photographic reproduction of a painting. Except in the case of monotyping, the process is capable of producing multiples of the same piece, which is called a print. Each print produced is not considered a "copy" but rather is considered an "original". This is because typically each print varies to an extent due to variables intrinsic to the printmaking process, and also because the imagery of a print is typically not simply a reproduction of another work but rather is often a unique image designed from the start to be expressed in a particular printmaking technique. A print may be known as an impression. Printmaking (other than monotyping) is not chosen only for its ability to produce multiple impressions, but rather for the unique qualities that each of the printmaking processes lends itself to.

Prints are created by transferring ink from a matrix or through a prepared screen to a sheet of paper or other material. Common types of matrices include: metal plates, usually copper or zinc, or polymer plates for engraving or etching; stone, aluminum, or polymer for lithography; blocks of wood for woodcuts and wood engravings; and linoleum for linocuts. Screens made of silk or synthetic fabrics are used for the screenprinting process. Other types of matrix substrates and related processes are discussed below.

Multiple impressions printed from the same matrix form an edition. Since the late 19th century, artists have generally signed individual impressions from an edition and often number the impressions to form a limited edition; the matrix is then destroyed so that no more prints can be produced. Prints may also be printed in book form, such as illustrated books or artist's books.

Publishing

Publishing is the dissemination of literature, music, or information. It is the activity of making information available to the general public. In some cases, authors may be their own publishers, meaning originators and developers of content also provide media to deliver and display the content for the same. Also, the word "publisher" can refer to the individual who leads a publishing company or an imprint or to a person who owns/heads a magazine.

Traditionally, the term refers to the distribution of printed works such as books (the "book trade") and newspapers. With the advent of digital information systems and the Internet, the scope of publishing has expanded to include electronic resources such as the electronic versions of books and periodicals, as well as micropublishing, websites, blogs, video game publishers, and the like.

Publishing includes the following stages of development: acquisition, copy editing, production, printing (and its electronic equivalents), marketing, and distribution.

Publication is also important as a legal concept:

As the process of giving formal notice to the world of a significant intention, for example, to marry or enter bankruptcy

As the essential precondition of being able to claim defamation; that is, the alleged libel must have been published

For copyright purposes, where there is a difference in the protection of published and unpublished worksThere are two basic business models in book publishing:

Traditional or commercial publishers: Do not charge authors at all to publish their books, for certain rights to publish the work and paying a royalty on books sold.

Self-publishing: The author has to meet the total expense to get the book published. The author should retain full rights, also known as vanity publishing.

Screen printing

Screen printing is a printing technique whereby a mesh is used to transfer ink onto a substrate, except in areas made impermeable to the ink by a blocking stencil. A blade or squeegee is moved across the screen to fill the open mesh apertures with ink, and a reverse stroke then causes the screen to touch the substrate momentarily along a line of contact. This causes the ink to wet the substrate and be pulled out of the mesh apertures as the screen springs back after the blade has passed. One color is printed at a time, so several screens can be used to produce a multicoloured image or design.

There are various terms used for what is essentially the same technique. Traditionally the process was called screen printing or silkscreen printing because silk was used in the process. It is also known as serigraphy, and serigraph printing. Currently, synthetic threads are commonly used in the screen printing process. The most popular mesh in general use is made of polyester. There are special-use mesh materials of nylon and stainless steel available to the screen printer. There are also different types of mesh size which will determine the outcome and look of the finished design on the material.

T-shirt

A T-shirt (or t shirt, or tee) is a style of unisex fabric shirt named after the T shape of its body and sleeves. Traditionally it has short sleeves and a round neckline, known as a crew neck, which lacks a collar. T-shirts are generally made of a stretchy, light and inexpensive fabric and are easy to clean.

Typically made of cotton textile in a stockinette or jersey knit, it has a distinctively pliable texture compared to shirts made of woven cloth. Some modern versions have a body made from a continuously knitted tube, produced on a circular knitting machine, such that the torso has no side seams. The manufacture of T-shirts has become highly automated and may include cutting fabric with a laser or a water jet.

The T-shirt evolved from undergarments used in the 19th century and, in the mid-20th century, transitioned from undergarment to general-use casual clothing.

A V-neck T-shirt has a V-shaped neckline, as opposed to the round neckline of the more common crew neck shirt (also called a U-neck). V-necks were introduced so that the neckline of the shirt does not show when worn beneath an outer shirt, as would that of a crew neck shirt.

United States Government Publishing Office

The United States Government Publishing Office (GPO) (formerly the United States Government Printing Office) is an agency of the legislative branch of the United States federal government. The office produces and distributes information products and services for all three branches of the Federal Government, including U.S. passports for the Department of State as well as the official publications of the Supreme Court, the Congress, the Executive Office of the President, executive departments, and independent agencies.

An act of Congress changed the office's name to its current form in 2014.

Woodblock printing

Woodblock printing (or block printing) is a technique for printing text, images or patterns used widely throughout East Asia and originating in China in antiquity as a method of printing on textiles and later paper. As a method of printing on cloth, the earliest surviving examples from China date to before 220 AD. Woodblock printing existed in Tang China during the 7th century AD and remained the most common East Asian method of printing books and other texts, as well as images, until the 19th century. Ukiyo-e is the best known type of Japanese woodblock art print. Most European uses of the technique for printing images on paper are covered by the art term woodcut, except for the block-books produced mainly in the 15th century in India.

Production
Consumption
Other
Types
Materials
Specifications
Manufacture
and process
Industry
The book publishing process
Copy preparation
Prepress
Book production
Free software
Software freeware
Proprietary software
See also
General topics
Product packages
Containers
Materials and
components
Processes
Machinery
Environment,
post-use
Label Construction
Content
Use
Key concepts
Promotional contents
Promotional media

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.