# Pore water pressure

Pore water pressure (sometimes abbreviated to pwp) refers to the pressure of groundwater held within a soil or rock, in gaps between particles (pores). Pore water pressures below the phreatic level of the groundwater are measured with piezometers. The vertical pore water pressure distribution in aquifers can generally be assumed to be close to hydrostatic.

In the unsaturated ("vadose") zone, the pore pressure is determined by capillarity and is also referred to as tension, suction, or matric pressure. Pore water pressures under unsaturated conditions are measured with tensiometers, which operate by allowing the pore water to come into equilibrium with a reference pressure indicator through a permeable ceramic cup placed in contact with the soil.

Pore water pressure is vital in calculating the stress state in the ground soil mechanics, from Terzaghi's expression for the effective stress of a soil.

## General principles

Pressure develops due to:

• Water elevation difference, water flowing from higher elevation to lower elevation and causing a velocity head, or with water flow, as exemplified in the Bernoulli's energy equations.
• Hydrostatic water pressure, resulting from the weight of material above the point measured.
• Osmotic pressure, inhomogeneous aggregation of ion concentrations, which causes a force in water particles as they attract by the molecular laws of attraction.
• Absorption pressure, attraction of surrounding soil particles to one another by adsorbed water films.[1]
• Matric suction. The defining trait of unsaturated soil, this term corresponds to the pressure dry soil exerts on the surrounding material to equalise the moisture content in the overall block of soil the and is defined as difference between pore air pressure,${\displaystyle (u_{a})}$, and pore water pressure, ${\displaystyle (u_{w})}$.

## Pore water pressure below the water table

A vibrating wire piezometer. The vibrating wire converts the fluid pressures into equivalent frequency signals that are then recorded.

The buoyancy effects of water have a large impact on certain soil properties, such as the effective stress present at any point in a soil medium. Consider an arbitrary point five meters below the ground surface. In dry soil, particles at this point experience a total overhead stress equal to the depth underground (5 meters), multiplied by the specific weight of the soil. However, when the local water table height is within said five meters, the total stress felt five meters below surface is decreased by the product of the height of the water table in to the five meter area, and the specific weight of water, 9.81 kN/m^3. This parameter is called the effective stress of the soil, basically equal to the difference in a soil's total stress and pore water pressure. The pore water pressure is essential in differentiating a soil's total stress from its effective stress. A correct representation of stress in soil is necessary for accurate field calculations in a variety of engineering trades.[2]

### Equation for calculation

When there is no flow, the pore pressure at depth, hw, below the water surface is:[3]

${\displaystyle p_{s}=g_{w}h_{w}}$,

where:

• ps is the saturated pore water pressure (kPa),
• gw is the unit weight of water (kN/m3),
${\displaystyle g_{w}=9.81kN/m^{3}}$ (English Units 62.43 lb/ft^3)[4]
• hw is the depth below the water table (m),

### Measurement methods and standards

The standard method for measuring pore water pressure below the water table employs a piezometer, which measures the height to which a column of the liquid rises against gravity; i.e., the static pressure (or piezometric head) of groundwater at a specific depth.[5] Piezometers often employ electronic pressure transducers to provide data. The United States Bureau of Reclamation has a standard for monitoring water pressure in a rock mass with piezometers. It sites ASTM D4750, "Standard Test Method for Determining Subsurface Liquid Levels in a Borehole or Monitoring Well (Observation Well)".[6]

## Pore water pressure above the water table

Electronic tensiometer probe: (1) porous cup; (2) water-filled tube; (3) sensor-head; (4) pressure sensor

At any point above the water table, in the vadose zone, the effective stress is approximately equal to the total stress, as proven by Terzaghi's principle. Realistically, the effective stress is greater than the total stress, as the pore water pressure in these partially saturated soils is actually negative. This is primarily due to the surface tension of pore water in voids throughout the vadose zone causing a suction effect on surrounding particles, i.e. matric suction. This capillary action is the "upward movement of water through the vadose zone" (Coduto, 266).[7] Increased water infiltration, such as that caused by heavy rainfall, brings about a reduction in matric suction, following the relationship described by the soil water characteristic curve (SWCC), resulting in a reduction of the soil's shear strength, and reduced slope stability. [8] Capillary effects in soil are more complex than in free water due to the randomly connected void space and particle interference through which to flow; regardless, the height of this zone of capillary rise, where negative pore water pressure is generally peaks, can be closely approximated by a simple equation. The height of capillary rise is inversely proportional to the diameter of void space in contact with water. Therefore, the smaller the void space, the higher water will rise due to tension forces. Sandy soils consist of more coarse material with more room for voids, and therefore tends to have a much shallower capillary zone than do more cohesive soils, such as clays and silts.[7]

### Equation for calculation

If the water table is at depth dw in fine-grained soils, then the pore pressure at the ground surface is:[3]

${\displaystyle p_{g}=-g_{w}d_{w}}$,

where:

• pg is the unsaturated pore water pressure (Pa) at ground level,
• gw is the unit weight of water (kN/m3),
${\displaystyle g_{w}=9.81kN/m^{3}}$
• dw is the depth of the water table (m),

and the pore pressure at depth, z, below the surface is:

${\displaystyle p_{u}=g_{w}(z-d_{w})}$,

where:

• pu is the unsaturated pore water pressure (Pa) at point, z, below ground level,
• zu is depth below ground level.

### Measurement methods and standards

A tensiometer is an instrument used to determine the matric water potential (${\displaystyle \Psi _{m}}$) (soil moisture tension) in the vadose zone.[9] An ISO standard, "Soil quality — Determination of pore water pressure — Tensiometer method", ISO 11276:1995, "describes methods for the determination of pore water pressure (point measurements) in unsaturated and saturated soil using tensiometers. Applicable for in situ measurements in the field and, e. g. soil cores, used in experimental examinations." It defines pore water pressure as "the sum of matric and pneumatic pressures".[10]

#### Matric pressure

The amount of work that must be done in order to transport reversibly and isothermally an infinitesimal quantity of water, identical in composition to the soil water, from a pool at the elevation and the external gas pressure of the point under consideration, to the soil water at the point under consideration, divided by the volume of water transported.[11]

#### Pneumatic pressure

The amount of work that must be done in order to transport reversibly and isothermally an infinitesimal quantity of water, identical in composition to the soil water, from a pool at atmospheric pressure and at the elevation of the point under consideration, to a similar pool at an external gas pressure of the point under consideration, divided by the volume of water transported.[11]

## References

1. ^ Mitchell, J.K. "Components of Pore Water Pressure and their Engineering Significance" (PDF). Retrieved 2013-02-17.
2. ^ Das, Braja (2011). Principles of Foundation Engineering. Stamford, CT: Cengage Learning. ISBN 9780495668107.
3. ^ a b Wood, David Muir. "Pore water pressure". GeotechniCAL reference package. Bristol University. Retrieved 2014-03-12.
4. ^ National Council of Examiners for Engineering and Surveying (2005). Fundamentals of Engineering Supplied-Reference Handbook (7th ed.). Clemson: National Council of Examiners for Engineering and Surveying. ISBN 1-932613-00-5
5. ^ Dunnicliff, John (1993) [1988]. Geotechnical Instrumentation for Monitoring Field Performance. Wiley-Interscience. p. 117. ISBN 0-471-00546-0.
6. ^ Materials Engineering and Research Laboratory. "Procedure For Using Piezometers to Monitor Water Pressure in a Rock Mass" (PDF). USBR 6515. U.S. Bureau of Reclamation. Retrieved 2014-03-13.
7. ^ a b Coduto, Donald; et al. (2011). Geotechnical Engineering Principles and Practices. NJ: Pearson Higher Education, Inc. ISBN 9780132368681.
8. ^ Zhang, Y; et al. (2015). "Rate effects in inter-granular capillary bridges.". Unsaturated Soil Mechanics-from Theory to Practice: Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils. CRC Press. pp. 463–466.
9. ^ Rawls, W.J., Ahuja, L.R., Brakensiek, D.L., and Shirmohammadi, A. 1993. Infiltration and soil water movement, in Maidment, D.R., Ed., Handbook of hydrology, New York, NY, USA, McGraw-Hill, p. 5.1–5.51.
10. ^ ISO (1995). "Soil quality -- Determination of pore water pressure -- Tensiometer method". ISO 11276:1995. International Standards Organization. Retrieved 2014-03-13.
11. ^ a b BS 7755 1996; Part 5.1
Alec Skempton

Sir Alec Westley Skempton (4 June 1914 – 9 August 2001) was an English civil engineer internationally recognised, along with Karl Terzaghi, as one of the founding fathers of the engineering discipline of soil mechanics. He established the soil mechanics course at Imperial College London, where the Civil and Environmental Engineering Department's building was renamed after him in 2004, and was knighted in the 2000 New Year Honours for services to engineering. He was also a notable contributor on the history of British civil engineering.

Causes of landslides

The causes of landslides are usually related to instabilities in slopes. It is usually possible to identify one or more landslide causes and one landslide trigger. The difference between these two concepts is subtle but important. The landslide causes are the reasons that a landslide occurred in that location and at that time. Landslide causes are listed in the following table, and include geological factors, morphological factors, physical factors and factors associated with human activity.

Causes may be considered to be factors that made the slope vulnerable to failure, that predispose the slope to becoming unstable. The trigger is the single event that finally initiated the landslide. Thus, causes combine to make a slope vulnerable to failure, and the trigger finally initiates the movement. Landslides can have many causes but can only have one trigger as shown in the next figure. Usually, it is relatively easy to determine the trigger after the landslide has occurred (although it is generally very difficult to determine the exact nature of landslide triggers ahead of a movement event).

Occasionally, even after detailed investigations, no trigger can be determined - this was the case in the large Mount Cook landslide in New Zealand 1991. It is unclear as to whether the lack of a trigger in such cases is the result of some unknown process acting within the landslide, or whether there was in fact a trigger, but it cannot be determined. Perhaps this is because the trigger was in fact a slow but steady decrease in material strength associated with the weathering of the rock - at some point the material becomes so weak that failure must occur. Hence the trigger is the weathering process, but this is not detectable externally.

In most cases we think of a trigger as an external stimulus that induces an immediate or near-immediate response in the slope, in this case in the form of the movement of the landslide. Generally this movement is induced either because the stresses in the slope are altered, perhaps by increasing shear stress or decreasing the effective normal stress, or by reducing the resistance to the movement perhaps by decreasing the shear strength of the materials within the landslide.

Cone penetration test

The cone penetration or cone penetrometer test (CPT) is a method used to determine the geotechnical engineering properties of soils and delineating soil stratigraphy. It was initially developed in the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft soils. Based on this history it has also been called the "Dutch cone test". Today, the CPT is one of the most used and accepted soil methods for soil investigation worldwide.

The test method consists of pushing an instrumented cone, with the tip facing down, into the ground at a controlled rate (controlled between 1.5 -2.5 cm/s accepted). The resolution of the CPT in delineating stratigraphic layers is related to the size of the cone tip, with typical cone tips having a cross-sectional area of either 10 or 15 cm², corresponding to diameters of 3.6 and 4.4 cm. A very early ultra-miniature 1 cm² subtraction penetrometer was developed and used on a US mobile ballistic missile launch system (MGM-134 Midgetman) soil/structure design program in 1984 at the Earth Technology Corporation of Long Beach, California.

Cryosuction

Cryosuction is the concept of negative pressure in freezing soil resulting from transformation of liquid water to ice in the soil pores whereby water migrates through soil pores to the freezing zone (through capillary action).

Fine-grained soils such as clays and silts enables greater negative pressures than more coarse-grained soils due to the smaller pore size. In periglacial environments, this mechanism is highly significant and it is the predominant process in ice lens formation in permafrost areas.

Several models for ice-lens formation by cryosuction exist, among others the Hydrodynamic model and the Pre-melting model, many of them based on the Clausius–Clapeyron relation with various assumptions, yielding cryosuction potentials of 11 to 12 atm per degree Celsius below zero depending on pore size.

Direct shear test

A direct shear test is a laboratory or field test used by geotechnical engineers to measure the shear strength properties of soil or rock material, or of discontinuities in soil or rock masses.

The U.S. and U.K. standards defining how the test should be performed are ASTM D 3080, AASHTO T236 and BS 1377-7:1990, respectively. For rock the test is generally restricted to rock with (very) low shear strength. The test is, however, standard practice to establish the shear strength properties of discontinuities in rock.

The test is performed on three or four specimens from a relatively undisturbed soil sample. A specimen is placed in a shear box which has two stacked rings to hold the sample; the contact between the two rings is at approximately the mid-height of the sample. A confining stress is applied vertically to the specimen, and the upper ring is pulled laterally until the sample fails, or through a specified strain. The load applied and the strain induced is recorded at frequent intervals to determine a stress–strain curve for each confining stress. Several specimens are tested at varying confining stresses to determine the shear strength parameters, the soil cohesion (c) and the angle of internal friction, commonly known as friction angle (${\displaystyle \phi }$). The results of the tests on each specimen are plotted on a graph with the peak (or residual) stress on the y-axis and the confining stress on the x-axis. The y-intercept of the curve which fits the test results is the cohesion, and the slope of the line or curve is the friction angle.

Direct shear tests can be performed under several conditions. The sample is normally saturated before the test is run, but can be run at the in-situ moisture content. The rate of strain can be varied to create a test of undrained or drained conditions, depending whether the strain is applied slowly enough for water in the sample to prevent pore-water pressure buildup. Direct shear test machine is required to perform the test. The test using the direct shear machine determinates the consolidated drained shear strength of a soil material in direct shear.

The advantages of the direct shear test over other shear tests are the simplicity of setup and equipment used, and the ability to test under differing saturation, drainage, and consolidation conditions. These advantages have to be weighed against the difficulty of measuring pore-water pressure when testing in undrained conditions, and possible spuriously high results from forcing the failure plane to occur in a specific location.

The test equipment and procedures are slightly different for test on discontinuities.

Dynamic compaction

Dynamic compaction is a method that is used to increase the density of the soil when certain subsurface constraints make other methods inappropriate. It is a method that is used to increase the density of soil deposits. The process involves dropping a heavy weight repeatedly on the ground at regularly spaced intervals. The weight and the height determine the amount of compaction that would occur. The weight that is used, depends on the degree of compaction desired and is between 8 tonne to 36 tonne. The height varies from 1m to 30m.

The impact of the free fall creates stress waves that help in the densification of the soil. These stress waves can penetrate up to 10m. In cohesionless soils, these waves create liquefaction that is followed by the compaction of the soil, and in cohesive soils, they create an increased amount of pore water pressure that is followed by the compaction of the soil. Pore water pressure is the pressure of water that is trapped within the particles of rocks and soils.

The degree of compaction depends on the weight of the hammer, the height from which the hammer is dropped, and the spacing of the locations at which the hammer is dropped. The initial weight dropping has the most impact, and penetrates up to a greater depth. The following drops, if spaced closer to one another, compact the shallower layers and the process is completed by compacting the soil at the surface.

Most soil types can be improved with dynamic compaction. Old fills and granular soils are most often treated. The soils that are below the water table have to be treated carefully to permit emission of the excess pore water pressure that is created when the weight is dropped onto the surface.

To watch a video of dynamic compaction, navigate here: http://www.haywardbaker.com/solutions/techniques/dynamic-compaction

Effective stress

Effective stress is a force that keeps a collection of particles rigid. Usually this applies to sand, soil, or gravel.

Index of soil-related articles

This is an index of articles relating to soil.

Landslide

The term landslide or less frequently, landslip, refers to several forms of mass wasting that include a wide range of ground movements, such as rockfalls, deep-seated slope failures, mudflows, and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides. Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as a heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.

Phreatic

Phreatic is a term used in hydrology to refer to aquifers, in speleology to refer to cave passages, and in volcanology to refer to eruption type.

River bank failure

River bank failure can be caused when the gravitational forces acting on a bank exceed the forces which hold the sediment together. Failure depends on sediment type, layering, and moisture content.All river banks experience erosion, but failure is dependent on the location and the rate at which erosion is occurring.

River bank failure may be caused by house placement, water saturation, weight on the river bank, vegetation, and/or tectonic activity. When structures are built too close to the bank of the river, their weight may exceed the weight which the bank can hold and cause slumping, or accelerate slumping that may already be active. Adding to these stresses can be increased saturation caused by irrigation and septics, which reduce the soil's strength. While deep rooted vegetation can increase the strength of river banks, replacement with grass and shallower rooted vegetation can actually weaken the soil. Presence of lawns and concrete driveways concentrates runoff onto the riverbank, weakening it further. Foundations and structures further increase stress. Although each mode of failure is clearly defined, investigation into soil types, bank composition, and environment must be clearly defined in order to establish the mode of failure, of which multiple types may be present on the same area at different times. Once failure has been classified, steps may be taken in order to prevent further erosion. If tectonic failure is at fault, research into its effects may aid in the understanding of alluvial systems and their responses to different stresses.

Sand

Sand is a granular material composed of finely divided rock and mineral particles. It is defined by size, being finer than gravel and coarser than silt. Sand can also refer to a textural class of soil or soil type; i.e., a soil containing more than 85 percent sand-sized particles by mass.The composition of sand varies, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal settings is silica (silicon dioxide, or SiO2), usually in the form of quartz. The second most common type of sand is calcium carbonate, for example, aragonite, which has mostly been created, over the past half billion years, by various forms of life, like coral and shellfish. For example, it is the primary form of sand apparent in areas where reefs have dominated the ecosystem for millions of years like the Caribbean.

Sand is a non-renewable resource over human timescales, and sand suitable for making concrete is in high demand. Desert sand, although plentiful, is not suitable for concrete. 50 billion tons of beach sand and fossil sand is used each year for construction.

Soil consolidation

Soil consolidation refers to the mechanical process by which soil changes volume gradually in response to a change in pressure. This happens because soil is a two-phase material, comprising soil grains and pore fluid, usually groundwater. When soil saturated with water is subject to an increase in pressure, the high volumetric stiffness of water compared to the soil matrix means that the water initially absorbs all the change in pressure without changing volume, creating excess pore water pressure. As water diffuses away from regions of high pressure due to seepage, the soil matrix gradually takes up the pressure change and shrinks in volume. The theoretical framework of consolidation is therefore closely related to the diffusion equation, the concept of effective stress, and hydraulic conductivity.

In the narrow sense, "consolidation" refers strictly to this delayed volumetric response to pressure change due to gradual movement of water. Some publications also use "consolidation" in the broad sense, to refer to any process by which soil changes volume due to a change in applied pressure. This broader definition encompasses the overall concept of soil compaction, subsidence, and heave. Some types of soil, mainly those rich in organic matter, show significant creep, whereby the soil changes volume slowly at constant effective stress over a longer time-scale than consolidation due to the diffusion of water. To distinguish between the two mechanisms, "primary consolidation" refers to consolidation due to dissipation of excess water pressure, while "secondary consolidation" refers to the creep process.

The effects of consolidation are most conspicuous where a building sits over a layer of soil with low stiffness and low permeability, such as marine clay, leading to large settlement over many years. Types of construction project where consolidation often poses technical risk include land reclamation, the construction of embankments, and tunnel and basement excavation in clay.

Geotechnical engineers use oedometers to quantify the effects of consolidation. In an oedometer test, a series of known pressures are applied to a thin disc of soil sample, and the change of sample thickness with time is recorded. This allows the consolidation characteristics of the soil to be quantified in terms of the coefficient of consolidation (${\displaystyle C_{v}}$) and hydraulic conductivity (${\displaystyle K}$).

Soil liquefaction

Soil liquefaction occurs when a saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid.

In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California. He described the mechanism of flow liquefaction of the embankment dam as:

If the pressure of the water in the pores is great enough to carry all the load, it will have the effect of holding the particles apart and of producing a condition that is practically equivalent to that of quicksand… the initial movement of some part of the material might result in accumulating pressure, first on one point, and then on another, successively, as the early points of concentration were liquefied.

The phenomenon is most often observed in saturated, loose (low density or uncompacted), sandy soils. This is because a loose sand has a tendency to compress when a load is applied. Dense sands, by contrast, tend to expand in volume or 'dilate'. If the soil is saturated by water, a condition that often exists when the soil is below the water table or sea level, then water fills the gaps between soil grains ('pore spaces'). In response to soil compressing, the pore water pressure increases and the water attempts to flow out from the soil to zones of low pressure (usually upward towards the ground surface). However, if the loading is rapidly applied and large enough, or is repeated many times (e.g. earthquake shaking, storm wave loading) such that the water does not flow out before the next cycle of load is applied, the water pressures may build to the extent that it exceeds the force (contact stresses) between the grains of soil that keep them in contact. These contacts between grains are the means by which the weight from buildings and overlying soil layers is transferred from the ground surface to layers of soil or rock at greater depths. This loss of soil structure causes it to lose its strength (the ability to transfer shear stress), and it may be observed to flow like a liquid (hence 'liquefaction').

Although the effects of liquefaction have been long understood, engineers took more notice after the 1964 Niigata earthquake and 1964 Alaska earthquake. It was a major factor in the destruction in San Francisco's Marina District during the 1989 Loma Prieta earthquake, and in Port of Kobe during the 1995 Great Hanshin earthquake. More recently liquefaction was largely responsible for extensive damage to residential properties in the eastern suburbs and satellite townships of Christchurch, New Zealand during the 2010 Canterbury earthquake and more extensively again following the Christchurch earthquakes that followed in early and mid-2011. On 28 September 2018, an earthquake of 7.5 magnitude hit the Central Sulawesi province of Indonesia. Resulting soil liquefaction buried the suburb of Balaroa and Petobo village in 3 meters deep mud. The government of Indonesia is considering designating the two neighborhoods of Balaroa and Petobo, that have been totally buried under mud, as mass graves.The building codes in many countries require engineers to consider the effects of soil liquefaction in the design of new buildings and infrastructure such as bridges, embankment dams and retaining structures.

Soil mechanics

Soil mechanics is a branch of soil physics and applied mechanics that describes the behavior of soils. It differs from fluid mechanics and solid mechanics in the sense that soils consist of a heterogeneous mixture of fluids (usually air and water) and particles (usually clay, silt, sand, and gravel) but soil may also contain organic solids and other matter. Along with rock mechanics, soil mechanics provides the theoretical basis for analysis in geotechnical engineering, a subdiscipline of civil engineering, and engineering geology, a subdiscipline of geology. Soil mechanics is used to analyze the deformations of and flow of fluids within natural and man-made structures that are supported on or made of soil, or structures that are buried in soils. Example applications are building and bridge foundations, retaining walls, dams, and buried pipeline systems. Principles of soil mechanics are also used in related disciplines such as engineering geology, geophysical engineering, coastal engineering, agricultural engineering, hydrology and soil physics.

This article describes the genesis and composition of soil, the distinction between pore water pressure and inter-granular effective stress, capillary action of fluids in the soil pore spaces, soil classification, seepage and permeability, time dependent change of volume due to squeezing water out of tiny pore spaces, also known as consolidation, shear strength and stiffness of soils. The shear strength of soils is primarily derived from friction between the particles and interlocking, which are very sensitive to the effective stress. The article concludes with some examples of applications of the principles of soil mechanics such as slope stability, lateral earth pressure on retaining walls, and bearing capacity of foundations.

Submarine landslide

Submarine landslides are marine landslides that transport sediment across the continental shelf and into the deep ocean. A submarine landslide is initiated when the downwards driving stress (gravity and other factors) exceeds the resisting stress of the seafloor slope material causing movements along one or more concave to planar rupture surfaces. Submarine landslides take place in a variety of different settings including planes as low as 1° and can cause significant damage to both life and property. Recent advances have been made in understanding the nature and processes of submarine landslides through the use of sidescan sonar and other seafloor mapping technology.

Terzaghi's principle

Terzaghi's Principle states that when a rock is subjected to a stress, it is opposed by the fluid pressure of pores in the rock.

More specifically, Karl von Terzaghi's Principle, also known as Terzaghi's theory of one-dimensional consolidation, states that all quantifiable changes in stress to a soil [compression, deformation, shear resistance] are a direct result of a change in effective stress. The effective stress ${\displaystyle \sigma '}$ is related to total stress ${\displaystyle \sigma }$ and the pore pressure ${\displaystyle u}$ by the relationship;

${\displaystyle \sigma =\sigma '+u}$

reading that total stress is equal to the sum of effective stress and pore water pressure.

Trench

A trench is a type of excavation or depression in the ground that is generally deeper than it is wide (as opposed to a wider gully, or ditch), and narrow compared with its length (as opposed to a simple hole).In geology, trenches are created as a result of erosion by rivers or by geological movement of tectonic plates. In the civil engineering field, trenches are often created to install underground infrastructure or utilities (such as gas mains, water mains or telephone lines), or later to access these installations. Trenches have also often been dug for military defensive purposes. In archaeology, the "trench method" is used for searching and excavating ancient ruins or to dig into strata of sedimented material.

UTEXAS

UTEXAS is a slope stability analysis program written by Stephen G. Wright of the University of Texas at Austin. The program is used in the field of civil engineering to analyze levees, earth dams, natural slopes, and anywhere there is concern for mass wasting. UTEXAS finds the factor of safety for the slope and the critical failure surface. Recently the software was used to help determine the reasons behind the failure of I-walls during Hurricane Katrina.

Topics in soil science
Main fields
Soil topics
Soil type
Applications
Related fields
Societies, Initiatives
Scientific journals