Platinum group

The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block (groups 8, 9, and 10, periods 5, 6 and 7).[1][1]

The six platinum-group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum. They have similar physical and chemical properties, and tend to occur together in the same mineral deposits.[2] However they can be further subdivided into the iridium-group platinum-group elements (IPGEs: Os, Ir, Ru) and the palladium-group platinum-group elements (PPGEs: Rh, Pt, Pd) based on their behaviour in geological systems.[3]

The three elements above the platinum group in the periodic table (iron, nickel and cobalt) are all ferromagnetic, these being the only known transition metals with this property.

Platinum group metals (PGMs) in the periodic table
H   He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac ** Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
   Platinum group metals
   Other noble metals

History

Naturally occurring platinum and platinum-rich alloys were known by pre-Columbian Americans for many years.[4] Though the metal was used by pre-Columbian peoples, the first European reference to platinum appears in 1557 in the writings of the Italian humanist Julius Caesar Scaliger (1484–1558) as a description of a mysterious metal found in Central American mines between Darién (Panama) and Mexico ("up until now impossible to melt by any of the Spanish arts").[4]

The name platinum is derived from the Spanish word platina “little silver", the name given to the metal by Spanish settlers in Colombia. They regarded platinum as an unwanted impurity in the silver they were mining.[4][5]

Properties and uses

National prototype kilogram K20 replica
Replica of the NIST national prototype kilogram standard, made in 90% platinum - 10% iridium alloy

As of 1996, the largest applications of platinum metals were, in thousands of troy ounces/year: Pd for autocatalysts (4470), Pt for jewelry (2370), Pd for electronics (2070), Pt for autocatalysts (1830), Pd for dental (1230), Rh for autocatalysts (490), and Pd for chemical reagents (230).[1]

The platinum metals have many useful catalytic properties. They are highly resistant to wear and tarnish, making platinum, in particular, well suited for fine jewelry. Other distinctive properties include resistance to chemical attack, excellent high-temperature characteristics, and stable electrical properties. All these properties have been exploited for industrial applications.[6]

Occurrence

Generally, ultramafic and mafic igneous rocks have relatively high, and granites low, PGE trace content. Geochemically anomalous traces occur predominantly in chromian spinels and sulfides. Mafic and ultramafic igneous rocks host practically all primary PGM ore of the world. Mafic layered intrusions, including the Bushveld Complex, outweigh by far all other geological settings of platinum deposits.[7] Other economically significant PGE deposits include mafic intrusions related to flood basalts, and ultramafic complexes of the Alaska, Urals type.[8]

PGM minerals

Typical ores for PGMs contain ca. 10 g PGM/ton ore, thus the identity of the particular mineral is unknown.[9]

Platinum

Platinum can occur as a native metal, but it can also occur in various different minerals and alloys.[10][11] That said, Sperrylite (platinum arsenide, PtAs2) ore is by far the most significant source of this metal.[12] A naturally occurring platinum-iridium alloy, platiniridium, is found in the mineral cooperite (platinum sulfide, PtS). Platinum in a native state, often accompanied by small amounts of other platinum metals, is found in alluvial and placer deposits in Colombia, Ontario, the Ural Mountains, and in certain western American states. Platinum is also produced commercially as a by-product of nickel ore processing. The huge quantities of nickel ore processed makes up for the fact that platinum makes up only two parts per million of the ore. South Africa, with vast platinum ore deposits in the Merensky Reef of the Bushveld complex, is the world's largest producer of platinum, followed by Russia.[13][14] Platinum and palladium are also mined commercially from the Stillwater igneous complex in Montana, USA. Leaders of primary platinum production are South Africa and Russia, followed by Canada, Zimbabwe and USA.

Osmium

Osmiridium is a naturally occurring alloy of iridium and osmium found in platinum-bearing river sands in the Ural Mountains and in North and South America. Trace amounts of osmium also exist in nickel-bearing ores found in the Sudbury, Ontario region along with other platinum group metals. Even though the quantity of platinum metals found in these ores is small, the large volume of nickel ores processed makes commercial recovery possible.[14][15]

Iridium

Metallic iridium is found with platinum and other platinum group metals in alluvial deposits. Naturally occurring iridium alloys include osmiridium and iridosmine, both of which are mixtures of iridium and osmium. It is recovered commercially as a by-product from nickel mining and processing.[14]

Ruthenium

Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.[14]

Rhodium

The industrial extraction of rhodium is complex, because it occurs in ores mixed with other metals such as palladium, silver, platinum, and gold. It is found in platinum ores and obtained free as a white inert metal which is very difficult to fuse. Principal sources of this element are located in South Africa, in river sands of the Ural Mountains, in North and South America, and also in the copper-nickel sulfide mining area of the Sudbury Basin region. Although the quantity at Sudbury is very small, the large amount of nickel ore processed makes rhodium recovery cost effective. However, the annual world production in 2003 of this element is only 7 or 8 tons and there are very few rhodium minerals.[16]

Palladium

Palladium is preferentially hosted in sulphide minerals, primarily in pyrrhotite.[7] Palladium is found as a free metal and alloyed with platinum and gold with platinum group metals in placer deposits of the Ural Mountains of Eurasia, Australia, Ethiopia, South and North America. However it is commercially produced from nickel-copper deposits found in South Africa and Ontario, Canada. The huge volume of nickel-copper ore processed makes this extraction profitable in spite of its low concentration in these ores.[16]

Production

PtMetalExtraction II
Process flow diagram for the separation of the platinum group metals.

The production of individual platinum group metals normally starts from residues of the production of other metals with a mixture of several of those metals. Purification typically starts with the anode residues of gold, copper, or nickel production. Thus, the extraction process is very energy intensive with environmental consequences. Classical purification methods exploit differences in chemical reactivity and solubility of several compounds of the metals under extraction.[6] These approaches have yielded to new technologies that utilize solvent extraction.

Separation begins with dissolution of the sample. If aqua regia is used, the chloride complexes are produced. Depending on the details of the process, which are often trade secrets, the individual PGMs are obtained as the following compounds: the poorly soluble (NH4)2IrCl6 and (NH4)2PtCl6, PdCl2(NH3)2, the volatile OsO4 and RuO4, and [RhCl(NH3)5]Cl2.[9]

Production in nuclear reactors

Significant quantities of the three light platinum group metals—ruthenium, rhodium and palladium—are formed as fission products in nuclear reactors.[17] With escalating prices and increasing global demand, reactor-produced noble metals are emerging as an alternative source. Various reports are available on the possibility of recovering fission noble metals from spent nuclear fuel.[18][19][20]

See also

Notes

  1. ^ a b c Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; et al. (2002). "Platinum group metals and compounds". Ullmann's Encyclopedia of Industrial Chemistry. Wiley. doi:10.1002/14356007.a21_075.
  2. ^ Harris, D. C.; Cabri L. J. (1991). "Nomenclature of platinum-group-element alloys; review and revision". The Canadian Mineralogist. 29 (2): 231–237.
  3. ^ Rollinson, Hugh (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical. ISBN 0-582-06701-4.
  4. ^ a b c Weeks, M. E. (1968). Discovery of the Elements (7 ed.). Journal of Chemical Education. pp. 385–407. ISBN 0-8486-8579-2. OCLC 23991202.
  5. ^ Woods, Ian (2004). The Elements: Platinum. Benchmark Books. ISBN 978-0-7614-1550-3.
  6. ^ a b Hunt, L. B.; Lever, F. M. (1969). "Platinum Metals: A Survey of Productive Resources to industrial Uses" (PDF). Platinum Metals Review. 13 (4): 126–138. Retrieved 2009-10-02.
  7. ^ a b Walter L. Pohl, Economic Geology Principles and Practice 2011
  8. ^ Walter L. Pohl, Economic Geology Principles and Practice 2011, P 230
  9. ^ a b Bernardis, F. L.; Grant, R. A.; Sherrington, D. C. "A review of methods of separation of the platinum-group metals through their chloro-complexes" Reactive and Functional Polymers 2005, Vol. 65,, p. 205-217. doi:10.1016/j.reactfunctpolym.2005.05.011
  10. ^ "Mineral Profile: Platinum". British Geological Survey. September 2009. Retrieved 6 February 2018.
  11. ^ "Search Minerals By Chemistry - Platinum". www.mindat.org. Retrieved 2018-02-08.
  12. ^ Feick, Kathy. "Platinum | Earth Sciences Museum | University of Waterloo". University of Waterloo. Retrieved 6 February 2018.
  13. ^ Xiao, Z.; Laplante, A. R. (2004). "Characterizing and recovering the platinum group minerals—a review". Minerals Engineering. 17 (9–10): 961–979. doi:10.1016/j.mineng.2004.04.001.
  14. ^ a b c d "Platinum–Group Metals" (PDF). U.S. Geological Survey, Mineral Commodity Summaries. January 2007. Retrieved 2008-09-09.
  15. ^ Emsley, J. (2003). "Iridium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, England, UK: Oxford University Press. pp. 201–204. ISBN 0-19-850340-7.
  16. ^ a b Chevalier, Patrick. "Mineral Yearbook: Platinum Group Metals" (PDF). Natural Resources Canada. Archived from the original (PDF) on 2010-02-13. Retrieved 2008-10-17.
  17. ^ R. J. Newman, F. J. Smith (1970). "Platinum Metals from Nuclear Fission – an evaluation of their possible use by the industry" (PDF). Platinum Metals Review. 14 (3): 88.
  18. ^ Zdenek Kolarik, Edouard V. Renard (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel; PART I: general considerations and basic chemistry" (PDF). Platinum Metals Review. 47 (2): 74.
  19. ^ Kolarik, Zdenek; Renard, Edouard V. (2005). "Potential Applications of Fission Platinoids in Industry" (PDF). Platinum Metals Review. 49 (2): 79. doi:10.1595/147106705X35263.
  20. ^ Zdenek Kolarik, Edouard V. Renard (2003). "Recovery of Value Fission Platinoids from Spent Nuclear Fuel; PART II: Separation process" (PDF). Platinum Metals Review. 47 (3): 123.

External links

Bushveld Igneous Complex

The Bushveld Igneous Complex (BIC) is the largest layered igneous intrusion within the Earth's crust. It has been tilted and eroded forming the outcrops around what appears to be the edge of a great geological basin: the Transvaal Basin. It is approximately 2 billion years old and is divided into four different limbs: the northern, southern, eastern, and western limbs. The Bushveld Complex comprises the Rustenburg Layered suite, the Lebowa Granites and the Rooiberg Felsics, that are overlain by the Karoo sediments. The site was first discovered around 1897 by Gustaaf Molengraaff.Located in South Africa, the BIC contains some of the richest ore deposits on Earth. The complex contains the world's largest reserves of platinum-group metals (PGMs) or platinum group elements (PGEs)—platinum, palladium, osmium, iridium, rhodium, and ruthenium along with vast quantities of iron, tin, chromium, titanium and vanadium. These are used in, but not limited to, jewellery, automobiles and electronics. Gabbro or norite is also quarried from parts of the complex and rendered into dimension stone. There have been more than 20 mine operations. There have been studies of potential uranium deposits. The complex is well known for its chromitite reef deposits, particularly the Merensky reef and the UG-2 reef. It represents about 75 percent of the world’s platinum and about 50 percent of the world's palladium resources. In this respect, the Bushveld complex is unique and one of most economically significant mineral deposit complex in the world.

Colonization of the asteroids

The asteroids have long been suggested as possible sites for human colonization. This idea is popular in science fiction. Asteroid mining, a proposed industrial process in which asteroids are mined for valuable materials, especially platinum group metals, may be automated or require a crew to remain at the target asteroid.

Iridium

Iridium is a chemical element with the symbol Ir and atomic number 77. A very hard, brittle, silvery-white transition metal of the platinum group, iridium is the second-densest metal (after osmium) with a density of 22.56 g/cm3 as defined by experimental X-ray crystallography. At room temperature and standard atmospheric pressure, iridium has a density of 22.65 g/cm3, 0.04 g/cm3 higher than osmium measured the same way. It is the most corrosion-resistant metal, even at temperatures as high as 2000 °C. Although only certain molten salts and halogens are corrosive to solid iridium, finely divided iridium dust is much more reactive and can be flammable.

Iridium was discovered in 1803 among insoluble impurities in natural platinum. Smithson Tennant, the primary discoverer, named iridium for the Greek goddess Iris, personification of the rainbow, because of the striking and diverse colors of its salts. Iridium is one of the rarest elements in Earth's crust, with annual production and consumption of only three tonnes. 191Ir and 193Ir are the only two naturally occurring isotopes of iridium, as well as the only stable isotopes; the latter is the more abundant.

The most important iridium compounds in use are the salts and acids it forms with chlorine, though iridium also forms a number of organometallic compounds used in industrial catalysis, and in research. Iridium metal is employed when high corrosion resistance at high temperatures is needed, as in high-performance spark plugs, crucibles for recrystallization of semiconductors at high temperatures, and electrodes for the production of chlorine in the chloralkali process. Iridium radioisotopes are used in some radioisotope thermoelectric generators.

Iridium is found in meteorites in much higher abundance than in the Earth's crust. For this reason, the unusually high abundance of iridium in the clay layer at the Cretaceous–Paleogene boundary gave rise to the Alvarez hypothesis that the impact of a massive extraterrestrial object caused the extinction of dinosaurs and many other species 66 million years ago. Similarly, an iridium anomaly in core samples from the Pacific Ocean suggested the Eltanin impact of about 2.5 million years ago.

It is thought that the total amount of iridium in the planet Earth is much higher than that observed in crustal rocks, but as with other platinum-group metals, the high density and tendency of iridium to bond with iron caused most iridium to descend below the crust when the planet was young and still molten.

List of countries by palladium production

This article summarizes the world palladium production by country.

In 2015, the world production of palladium totaled 208,000 kilograms—up 8% from 193,000 kg in 2014.

London Platinum and Palladium Market

The London Platinum and Palladium Market (LPPM) is an over-the-counter trading centre for platinum and palladium and a commodity trading association. London has always been a centre for the research in and development of most of the platinum group metals. Trade was established in the early 20th century, typically by existing dealers of gold and silver. The LPPM has been involved in fixing the world market prices of platinum and palladium since 1989.

Merensky Reef

The Merensky Reef is a layer of igneous rock in the Bushveld Igneous Complex (BIC) in the North West, Limpopo, Gauteng and Mpumalanga provinces of South Africa which together with an underlying layer, the Upper Group 2 Reef (UG2), contains most of the world's known reserves of platinum group metals (PGMs) or platinum group elements (PGEs)—platinum, palladium, rhodium, ruthenium, iridium and osmium. The Reef is 46 cm thick and bounded by thin chromite seams or stringers. The composition consists predominantly of cumulate rocks, including leuconorite, anorthosite, chromitite, and melanorite.

Metal ammine complex

In coordination chemistry, metal ammine complexes are metal complexes containing at least one ammonia (NH3) ligand. "Ammine" is spelled this way due to historical reasons; in contrast, alkyl or aryl bearing ligands are spelt with a single "m". Almost all metal ions bind ammonia as a ligand, but the most prevalent examples of ammine complexes are for Cr(III), Co(III), Ni(II), Cu(II) as well as several platinum group metals.

Names for sets of chemical elements

There are currently 118 known chemical elements exhibiting a large number of different physical and chemical properties. Amongst this diversity, scientists have found it useful to use names for various sets of elements, that illustrate similar properties, or their trends of properties. Many of these sets are formally recognized by the standards body IUPAC.The following collective names are recommended by IUPAC:

Alkali metals – The metals of group 1: Li, Na, K, Rb, Cs, Fr.

Alkaline earth metals – The metals of group 2: Be, Mg, Ca, Sr, Ba, Ra.

Pnictogens – The elements of group 15: N, P, As, Sb, Bi. (Mc had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.)

Chalcogens – The elements of group 16: O, S, Se, Te, Po. (Lv had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.)

Halogens – The elements of group 17: F, Cl, Br, I, At. (Ts had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.)

Noble gases – The elements of group 18: He, Ne, Ar, Kr, Xe, Rn. (Og had not yet been named when the 2005 IUPAC Red Book was published, and its chemical properties are not yet experimentally known.)

Lanthanoids – Elements 57–71: La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu.

Actinoids – Elements 89–103: Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr.

Rare-earth metals – Sc, Y, plus the lanthanoids.

Transition elements – Elements in groups 3 to 11 or 3 to 12.Another common classification is by degree of metallic – metalloidal – nonmetallic behaviour and characteristics. There is no general agreement on the name to use for these sets: in this English Wikipedia, the name used is "category". Very often these categories are marked by a background color in the periodic table. Category names used here, without any claim to universality, are:

Alkali metals, alkaline earth metals, and noble gases: Same as the IUPAC system above.

Transition elements are instead referred to as transition metals.

Lanthanoids and actinoids are instead referred to as lanthanides and actinides respectively.

Rare-earth elements, pnictogens, chalcogens, and halogens are not used as category names, but the latter three are valid as group (column) names.

Additional element category names used:

Post-transition metals – The metals of groups 12–17: Zn, Cd, Hg, Al, Ga, In, Tl, Sn, Pb, Bi, Po. The period 7 elements Nh, Fl, Mc, Lv, and Ts are additionally predicted to be post-transition metals.

Metalloids – Elements with properties intermediate between metals and non-metals: B, Si, Ge, As, Sb, Te, At.

Reactive nonmetals – Nonmetals that are chemically active (as opposed to noble gases): H, C, N, P, O, S, Se, F, Cl, Br, I

Superactinides – Hypothetical series of elements 121 to 157, which includes a predicted "g-block" of the periodic table.Many other names for sets of elements are in common use, and yet others have been used throughout history. These sets usually do not aim to cover the whole periodic table (as for example period does). Some examples:

Precious metals – Variously-defined group of non-radioactive metals of high economical value.

Coinage metals – Various metals used to mint coins, primarily the group 11 elements Cu, Ag, and Au.

Platinum group – Ru, Rh, Pd, Os, Ir, Pt.

Noble metal – Variously-defined group of metals that are generally resistant to corrosion. Usually includes Ag, Au, and the platinum-group metals.

Heavy metals – Variously-defined group of metals, on the base of their density, atomic number, or toxicity.

Native metals – Metals that occur pure in nature, including the noble metals and others such as Sn and Pb.

Earth metal – Old historic term, usually referred to the metals of groups 3 and 13, although sometimes others such as beryllium and chromium are included as well.

Transuranium elements – Elements with atomic number greater than 92.

Transactinide elements – Elements after the actinides (atomic number greater than 103).

Transplutonium elements – Elements with atomic number greater than 94.

Minor actinides – Actinides found in significant quantities in nuclear fuel, other than U and Pu: Np, Am, Cm.

Heavy atom – term used in computational chemistry to refer to any element other than hydrogen and helium.

Native metal

A native metal is any metal that is found pure in its metallic form in nature. Metals that can be found as native deposits singly or in alloys include aluminium, antimony, arsenic, bismuth, cadmium, chromium, cobalt, indium, iron, manganese, molybdenum, nickel, niobium, rhenium, selenium, tantalum, tellurium, tin, titanium, tungsten, vanadium, and zinc, as well as two groups of metals: the gold group, and the platinum group. The gold group consists of gold, copper, lead, aluminium, mercury, and silver. The platinum group consists of platinum, iridium, osmium, palladium, rhodium, and ruthenium. Amongst the alloys found in native state have been brass, bronze, pewter, German silver, osmiridium, electrum, white gold, and silver-mercury and gold-mercury amalgam.

Only gold, silver, copper and the platinum metals occur in nature in large amounts. Over geological time scales, very few metals can resist natural weathering processes like oxidation, which is why generally only the less reactive metals such as gold and platinum are found as native metals. The others usually occur as isolated pockets where a natural chemical process reduces a common compound or ore of the metal, leaving the pure metal behind as small flakes or inclusions.

Non-metallic elements occurring in the native state include carbon and sulfur. Silicon, a semi-metal, has been found in the native state on rare occasions as small inclusions in gold.Native metals were prehistoric man's only access to metal, since the process of extracting metals from their ores, smelting, is thought to have been discovered around 6500 BC. However, they could be found only in relatively small amounts, so they could not be used extensively. So while copper and iron were known well before the copper age and Iron Age, they would not have a large impact on humankind until the technology to smelt them from their ores, and thus mass-produce them appeared.

Osmium

Osmium (from Greek ὀσμή osme, "smell") is a chemical element with the symbol Os and atomic number 76. It is a hard, brittle, bluish-white transition metal in the platinum group that is found as a trace element in alloys, mostly in platinum ores. Osmium is the densest naturally occurring element, with an experimentally measured (using x-ray crystallography) density of 22.59 g/cm3. Manufacturers use its alloys with platinum, iridium, and other platinum-group metals to make fountain pen nib tipping, electrical contacts, and in other applications that require extreme durability and hardness. The element's abundance in the Earth's crust is among the rarest.

Palladium

Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form a group of elements referred to as the platinum group metals (PGMs). These have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

More than half the supply of palladium and its congener platinum is used in catalytic converters, which convert as much as 90% of the harmful gases in automobile exhaust (hydrocarbons, carbon monoxide, and nitrogen dioxide) into less noxious substances (nitrogen, carbon dioxide and water vapor). Palladium is also used in electronics, dentistry, medicine, hydrogen purification, chemical applications, groundwater treatment, and jewelry. Palladium is a key component of fuel cells, which react hydrogen with oxygen to produce electricity, heat, and water.

Ore deposits of palladium and other PGMs are rare. The most extensive deposits have been found in the norite belt of the Bushveld Igneous Complex covering the Transvaal Basin in South Africa; the Stillwater Complex in Montana, United States; the Sudbury Basin and Thunder Bay District of Ontario, Canada; the Norilsk Complex in Russia and most recently, the northern part of the Visayas islands in the Philippines. Recycling is also a source, mostly from scrapped catalytic converters. The numerous applications and limited supply sources result in considerable investment interest.

Period 5 element

A period 5 element is one of the chemical elements in the fifth row (or period) of the periodic table of the elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The fifth period contains 18 elements, beginning with rubidium and ending with xenon. As a rule, period 5 elements fill their 5s shells first, then their 4d, and 5p shells, in that order; however, there are exceptions, such as rhodium.

Platinum

Platinum is a chemical element with the symbol Pt and atomic number 78. It is a dense, malleable, ductile, highly unreactive, precious, silverish-white transition metal. Its name is derived from the Spanish term platino, meaning "little silver".Platinum is a member of the platinum group of elements and group 10 of the periodic table of elements. It has six naturally occurring isotopes. It is one of the rarer elements in Earth's crust, with an average abundance of approximately 5 μg/kg. It occurs in some nickel and copper ores along with some native deposits, mostly in South Africa, which accounts for 80% of the world production. Because of its scarcity in Earth's crust, only a few hundred tonnes are produced annually, and given its important uses, it is highly valuable and is a major precious metal commodity.Platinum is one of the least reactive metals. It has remarkable resistance to corrosion, even at high temperatures, and is therefore considered a noble metal. Consequently, platinum is often found chemically uncombined as native platinum. Because it occurs naturally in the alluvial sands of various rivers, it was first used by pre-Columbian South American natives to produce artifacts. It was referenced in European writings as early as 16th century, but it was not until Antonio de Ulloa published a report on a new metal of Colombian origin in 1748 that it began to be investigated by scientists.

Platinum is used in catalytic converters, laboratory equipment, electrical contacts and electrodes, platinum resistance thermometers, dentistry equipment, and jewelry. Being a heavy metal, it leads to health problems upon exposure to its salts; but due to its corrosion resistance, metallic platinum has not been linked to adverse health effects. Compounds containing platinum, such as cisplatin, oxaliplatin and carboplatin, are applied in chemotherapy against certain types of cancer.As of 2018, the value of platinum is $833.00 per ounce.

Platinum Metals Review

Platinum Metals Review, renamed in 2014 as Johnson Matthey Technology Review, is a quarterly, peer-reviewed scientific journal publishing reports on scientific research on the platinum group metals and related industrial developments.

Precious metal

A precious metal is a rare, naturally occurring metallic chemical element of high economic value.

Chemically, the precious metals tend to be less reactive than most elements (see noble metal). They are usually ductile and have a high lustre. Historically, precious metals were important as currency but are now regarded mainly as investment and industrial commodities. Gold, silver, platinum, and palladium each have an ISO 4217 currency code.

The best known precious metals are the coinage metals, which are gold and silver. Although both have industrial uses, they are better known for their uses in art, jewelry, and coinage. Other precious metals include the platinum group metals: ruthenium, rhodium, palladium, osmium, iridium, and platinum, of which platinum is the most widely traded.

The demand for precious metals is driven not only by their practical use but also by their role as investments and a store of value. Historically, precious metals have commanded much higher prices than common industrial metals.

Retipping

Retipping refers to the repair and application of iridium tipping material to fountain pen nibs.

Iridium is one of the five platinum group metals. When platinum is mined, it is usually found with one or more of its five sister metals, called the platinum group metals: palladium, osmium, rhodium, ruthenium, and iridium.John Holland tipped fountain pens with iridium in 1880.

Rhodium

Rhodium is a chemical element with the symbol Rh and atomic number 45. It is a rare, silvery-white, hard, corrosion-resistant, and chemically inert transition metal. It is a noble metal and a member of the platinum group. It has only one naturally occurring isotope, 103Rh. Naturally occurring rhodium is usually found as the free metal, alloyed with similar metals, and rarely as a chemical compound in minerals such as bowieite and rhodplumsite. It is one of the rarest and most valuable precious metals.

Rhodium is found in platinum or nickel ores together with the other members of the platinum group metals. It was discovered in 1803 by William Hyde Wollaston in one such ore, and named for the rose color of one of its chlorine compounds, produced after it reacted with the powerful acid mixture aqua regia.

The element's major use (approximately 80% of world rhodium production) is as one of the catalysts in the three-way catalytic converters in automobiles. Because rhodium metal is inert against corrosion and most aggressive chemicals, and because of its rarity, rhodium is usually alloyed with platinum or palladium and applied in high-temperature and corrosion-resistive coatings. White gold is often plated with a thin rhodium layer to improve its appearance while sterling silver is often rhodium-plated for tarnish resistance. Rhodium is sometimes used to cure silicones, a two part silicone where one part contains a silicon hydride and the other containing a vinyl terminated silicone are mxied. One of these liquids contains a rhodium complex.Rhodium detectors are used in nuclear reactors to measure the neutron flux level. Other uses of rhodium include asymmetric hydrogenation used to form drug precursors and the processes for the production of roundup and acetic acid.

Ruthenium

Ruthenium is a chemical element with the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Like the other metals of the platinum group, ruthenium is inert to most other chemicals. Russian-born scientist of Baltic-German ancestry Karl Ernst Claus discovered the element in 1844 at Kazan State University and named it after the Latin name of his homeland, Ruthenia. Ruthenium is usually found as a minor component of platinum ores; the annual production has risen from about 19 tonnes in 2009 to some 35.5 tonnes in 2017. Most ruthenium produced is used in wear-resistant electrical contacts and thick-film resistors. A minor application for ruthenium is in platinum alloys and as a chemistry catalyst. A new application of ruthenium is as the capping layer for extreme ultraviolet photomasks. Ruthenium is generally found in ores with the other platinum group metals in the Ural Mountains and in North and South America. Small but commercially important quantities are also found in pentlandite extracted from Sudbury, Ontario and in pyroxenite deposits in South Africa.

Periodic table forms
Sets of elements
Elements
History
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.