Placentalia

Placentalia ("Placentals") is one of the three extant subdivisions of the class of animals Mammalia; the other two are Monotremata and Marsupialia. The Placentals are partly distinguishable from other mammals in that the fetus is carried in the uterus of its mother to a relatively late stage of development. It is somewhat of a misnomer since marsupials also nourish their fetuses via a placenta,[4] though for a relatively briefer period, giving birth to less developed young who are then kept for a period in the mother’s pouch.

Placental mammals
Temporal range: Paleocene-Holocene 66–0 Ma
Suspected, but still not confirmed, early Cretaceous origin[1][2][3]
Eutheria
Placentals of each super-order.
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Eutheria
Infraclass: Placentalia
Owen, 1837
Subgroups

Anatomical features

Placental mammals are anatomically distinguished from other mammals by:

  • a sufficiently wide opening at the bottom of the pelvis to allow the birth of a large baby relative to the size of the mother.[5]
  • the absence of epipubic bones extending forward from the pelvis, which are found in all other mammals.[6] (Their function in non-placental mammals is to stiffen the body during locomotion,[7] but in placentals they would inhibit the expansion of the abdomen during pregnancy.)[8]
  • the rearmost bones of the foot fit into a socket formed by the ends of the tibia and fibula, forming a complete mortise and tenon upper ankle joint.[9]
  • the presence of a malleolus at the bottom of the fibula.[9]

Subdivisions

Analysis of retroposon presence/absence patterns has provided a rapid, unequivocal means for revealing the evolutionary history of organisms: this has resulted in a revision in the classification of placentals.[10] There are now thought to be three major subdivisions or lineages of placental mammals: Boreoeutheria, Xenarthra, and Afrotheria, all of which diverged from common ancestors.

The living orders of placental mammals in the three groups are:[11]

The exact relationships among these three lineages is currently a subject of debate, and three different hypotheses have been proposed with respect to which group is basal or diverged first from other placentals. These hypotheses are Atlantogenata (basal Boreoeutheria), Epitheria (basal Xenarthra), and Exafroplacentalia (basal Afrotheria).[12] Estimates for the divergence times among these three placental groups range from 105 to 120 million years ago (MYA), depending on the type of DNA (e.g. nuclear or mitochondrial)[13] and varying interpretations of paleogeographic data.[12]

Placentalia
Atlantogenata

Afrotheria

Xenarthra

Boreoeutheria
Euarchontoglires

Euarchonta

Glires

Laurasiatheria

Eulipotyphla

Scrotifera

Chiroptera

Ferungulata
Euungulata

Artiodactyla

Perissodactyla

Ferae

Pholidota

Carnivora

Cladogram based on Amrine-Madsen, H. et al. (2003)[14] and Asher, R.J. et al. (2009)[15]

Evolution

True placental mammals (the crown group including all modern placentals) arose from stem-group members of the clade Eutheria, which had existed since at least the Middle Jurassic period, about 170 MYA). These early eutherians were small, nocturnal insect eaters, with adaptations for life in trees.[9]

True placentals may have originated in the Late Cretaceous around 90 MYA, but the earliest undisputed fossils are from the early Paleocene, 66 MYA, following the Cretaceous–Paleogene extinction event. The species Protungulatum donnae was thought to be a stem-ungulate [16] known 1 meter above the Cretaceous-Paleogene boundary in the geological stratum that marks the Cretaceous–Paleogene extinction event [17] and Purgatorius, previously considered a stem-primate, appears no more than 300,000 years after the K-Pg boundary;[18] both species, however, are now considered non-placental eutherians.[19] The rapid appearance of placentals after the mass extinction at the end of the Cretaceous suggests that the group had already originated and undergone an initial diversification in the Late Cretaceous, as suggested by molecular clocks.[3] The lineages leading to Xenarthra and Afrotheria probably originated around 90 MYA, and Boreoeutheria underwent an initial diversification around 70-80 MYA,[3] producing the lineages that eventually would lead to modern primates, rodents, insectivores, artiodactyls, and carnivorans.

However, modern members of the placental orders originated in the Paleogene around 66 to 23 MYA, following the Cretaceous–Paleogene extinction event. The evolution of crown orders such modern primates, rodents, and carnivores appears to be part of an adaptive radiation[20] that took place as mammals quickly evolved to take advantage of ecological niches that were left open when most dinosaurs and other animals disappeared following the Chicxulub asteroid impact. As they occupied new niches, mammals rapidly increased in body size, and began to take over the large herbivore and large carnivore niches that had been left open by the decimation of the dinosaurs. Mammals also exploited niches that the dinosaurs had never touched: for example, bats evolved flight and echolocation, allowing them to be highly effective nocturnal, aerial insectivores; and whales first occupied freshwater lakes and rivers and then moved into the oceans. Primates, meanwhile, acquired specialized grasping hands and feet which allowed them to grasp branches, and large eyes with keener vision which allowed them to forage in the dark.

The evolution of land placentals followed different pathways on different continents since they cannot easily cross large bodies of water. An exception is smaller placentals such as rodents and primates, who left Laurasia and colonized Africa and then South America via rafting.

In Africa, the Afrotheria underwent a major adaptive radiation, which led to elephants, elephant shrews, tenrecs, golden moles, aardvarks, and manatees. In South America a similar event occurred, with radiation of the Xenarthra, which led to modern sloths, anteaters, and armadillos, as well as the extinct ground sloths and glyptodonts. Expansion in Laurasia was dominated by Boreoeutheria, which includes primates and rodents, insectivores, carnivores, perissodactyls and artiodactyls. These groups expanded beyond a single continent when land bridges formed linking Africa to Eurasia and South America to North America.

References

  1. ^ Springer, M. S.; Murphy, W. J.; Eizirik, E.; O'Brien, S. J. (2003). "Placental mammal diversification and the Cretaceous–Tertiary boundary". Proceedings of the National Academy of Sciences of the United States of America. 100 (3): 1056–1061. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136.
  2. ^ Nishihara, H.; Maruyama, S.; Okada, N. (2009). "Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals". Proceedings of the National Academy of Sciences of the United States of America. 106 (13): 5235–5240. doi:10.1073/pnas.0809297106. PMC 2655268. PMID 19286970.
  3. ^ a b c dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R.J.; Donoghue, P.C.J.; Yang, Z. (2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings of the Royal Society B. 279 (1742): 3491–3500. doi:10.1098/rspb.2012.0683. PMC 3396900. PMID 22628470.
  4. ^ Renfree, M.B. (March 2010). "Review: Marsupials: placental mammals with a difference". Placenta. 31 Supplement: S21–6. doi:10.1016/j.placenta.2009.12.023. PMID 20079531.
  5. ^ Weil, A. (April 2002). "Mammalian evolution: Upwards and onwards". Nature. 416 (6883): 798–799. doi:10.1038/416798a. PMID 11976661.
  6. ^ Reilly, S.M. & White, T.D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals". Science. 299 (5605): 400–402. doi:10.1126/science.1074905. PMID 12532019.
  7. ^ Reilly, S.M. & White, T.D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals". Science. 299 (5605): 400–402. doi:10.1126/science.1074905. PMID 12532019.
  8. ^ Novacek, M.J., Rougier, G.W, Wible, J.R., McKenna, M.C, Dashzeveg, D., and Horovitz, I. (October 1997). "Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia". Nature. 389 (6650): 483–486. doi:10.1038/39020. PMID 9333234.CS1 maint: multiple names: authors list (link)
  9. ^ a b c Ji, Q., Luo, Z-X., Yuan, C-X., Wible, J.R., Zhang, J-P. and Georgi, J.A. (April 2002). "The earliest known eutherian mammal". Nature. 416 (6883): 816–822. doi:10.1038/416816a. PMID 11976675.CS1 maint: multiple names: authors list (link)
  10. ^ Kriegs, Jan Ole; Churakov, Gennady; Kiefmann, Martin; Jordan, Ursula; Brosius, Jürgen; Schmitz, Jürgen (2006). "Retroposed Elements as Archives for the Evolutionary History of Placental Mammals". PLoS Biology. 4 (4): e91. doi:10.1371/journal.pbio.0040091. PMC 1395351. PMID 16515367.
  11. ^ Archibald JD, Averianov AO, Ekdale EG (November 2001). "Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals". Nature. 414 (6859): 62–5. doi:10.1038/35102048. PMID 11689942.
  12. ^ a b Nishihara, H.; Maruyama, S.; Okada, N. (2009). "Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals". Proceedings of the National Academy of Sciences. 106 (13): 5235–5240. doi:10.1073/pnas.0809297106. PMC 2655268. PMID 19286970.
  13. ^ Springer, Mark S.; Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J. (2003). "Placental mammal diversification and the Cretaceous–Tertiary boundary". Proceedings of the National Academy of Sciences. 100 (3): 1056–1061. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136.
  14. ^ Amrine-Madsen, H.; Koepfli, K.-P.; Wayne, R. K.; Springer, M. S. (2003). "A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships". Molecular Phylogenetics and Evolution. 28 (2): 225–240. doi:10.1016/s1055-7903(03)00118-0. PMID 12878460.
  15. ^ Asher, R. J.; Bennett, N.; Lehmann, T. (2009). "The new framework for understanding placental mammal evolution". BioEssays. 31 (8): 853–864. doi:10.1002/bies.200900053. PMID 19582725.
  16. ^ O'Leary, Maureen A.; Bloch, Jonathan I.; Flynn, John J.; Gaudin, Timothy J.; Giallombardo, Andres; Giannini, Norberto P.; Goldberg, Suzann L.; Kraatz, Brian P.; Luo, Zhe-Xi; Meng, Jin; Ni, Michael J.; Novacek, Fernando A.; Perini, Zachary S.; Randall, Guillermo; Rougier, Eric J.; Sargis, Mary T.; Silcox, Nancy b.; Simmons, Micelle; Spaulding, Paul M.; Velazco, Marcelo; Weksler, John r.; Wible, Andrea L.; Cirranello, A. L. (8 February 2013). "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals". Science. 339 (6120): 662–667. doi:10.1126/science.1229237. hdl:11336/7302. PMID 23393258.
  17. ^ Archibald, J.D., 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Sciences 122, 286.
  18. ^ Fox, R.C.; Scott, C.S. (2011). "A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada". Journal of Paleontology. 85 (3): 537–548. doi:10.1666/10-059.1.
  19. ^ Halliday, Thomas J. D. (2015). "Resolving the relationships of Paleocene placental mammals" (PDF). Biological Reviews. 92: 521–550. doi:10.1111/brv.12242. PMID 28075073.
  20. ^ Alroy, J (1999). "The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation". Systematic Biology. 48 (1): 107–118. doi:10.1080/106351599260472. PMID 12078635.
Altacreodus

Altacreodus is a genus of basal, placental eutherians. Fossils have been found in North America, where they first appeared during the Late Cretaceous; they died out prior to the start of the Paleocene.

The type species is "Cimolestes" magnus but was renamed to Altacreodus magnus in 2015.

Cladotheria

Cladotheria is a group (legion) of mammals that includes the ancestor of Dryolestoidea, Peramuridae and Zatheria (living therians plus all of its ancestors).

Epitheria

Epitherians comprise all the placental mammals except the Xenarthra. They are primarily characterized by having a stirrup-shaped stapes in the middle ear, which allows for passage of a blood vessel. This is in contrast to the column-shaped stapes found in marsupials, monotremes, and xenarthrans. They are also characterized by having a shorter fibula relative to the tibia.

Epitheria — like Xenarthra and Afrotheria — originated after the K-Pg boundary 66 million years ago, with the placental diversification occurring within the first hundred thousand years after the K-Pg event and the first modern placental orders began appearing 2–3 million years later. Epitheres are one of the most successful groups of animals.

The monophyly of Epitheria has been challenged by molecular phylogenetic studies. While preliminary analysis of a set of retroposons shared by both Afrotheria, and Boreoeutheria (presence/absence data) supported the Epitheria clade, more extensive analysis of such transposable element insertions around the time of the divergence of Xenarthra, Afrotheria, and Boreoeutheria strongly support the hypothesis of a near-concomitant origin (trifurcation) of these three superorders of mammals.Another analysis suggests that the root of this clade lies between the Atlantogenata and Boreoeutheria.

Eutheria

Eutheria (; from Greek εὐ-, eu- "good" or "right" and θηρίον, thēríon "beast" hence "true beasts") is one of two mammalian clades with extant members that diverged in the Early Cretaceous or perhaps the Late Jurassic. Except for the North American Virginia opossum, which is a metatherian, all post-Miocene mammals indigenous to Europe, Africa, Asia, and North America north of Mexico are eutherians. Extant eutherians, their last common ancestor, and all extinct descendants of that ancestor are members of Placentalia.

Eutherians are distinguished from noneutherians by various phenotypic traits of the feet, ankles, jaws and teeth. All extant eutherians lack epipubic bones, which are present in all other living mammals (marsupials and monotremes). This allows for expansion of the abdomen during pregnancy.The oldest-known eutherian species is Juramaia sinensis, dated at 161 million years ago from the Jurassic in China.Eutheria was named in 1872 by Theodore Gill; in 1880 Thomas Henry Huxley defined it to encompass a more broadly defined group than Placentalia.

Exafroplacentalia

Exafroplacentalia or Notolegia is a clade of placental mammals proposed in 2001 on the basis of molecular research.Exafroplacentalia places Xenarthra as a sister group to the Boreoeutheria (comprising Laurasiatheria and Euarchontoglires), thus making Afrotheria a primitive group of placental mammals (the group name roughly means "those which are not African placentals").

Holotheria

Holotheria are a diverse group of mammals that are descendants of the last common ancestor of Kuehneotherium and Theria (the group that includes marsupials and placental mammals).

Leptictida

Leptictida (leptos iktis "small/slender weasel") is a possibly invalid extinct order of placental mammals. Their classification is contentious: according to cladistic studies, they may be (distantly) related to Euarchontoglires (rodents, primates and their relatives), although they are more recently regarded as the first branch to split from basal eutherians. One recent large-scale cladistic analysis of eutherian mammals favored lepictidans as close to the placental crown-clade; and several other recent analyses that included data from Cretaceous non-eutherian mammals found Leptictis to belong to the superorder Afrotheria.The most recent phylogenetic studies recover it as actually a paraphyletic assemblage leading to Placentalia.

Mammaliaformes

Mammaliaformes ("mammal-shaped") is a clade that contains the crown group mammals and their closest extinct relatives; the group radiated from earlier probainognathian cynodonts. It is defined as the clade originating from the most recent common ancestor of Morganucodonta and the crown group mammals; the latter is the clade originating with the most recent common ancestor of extant Monotremata, Marsupialia, and Placentalia. Besides Morganucodonta and the crown group mammals, Mammaliaformes includes Docodonta and Hadrocodium as well as the Triassic Tikitherium, the earliest known member of the group.Mammaliaformes is a term of phylogenetic nomenclature. In contrast, the assignment of organisms to Mammalia has traditionally been founded on traits and, on this basis, Mammalia is slightly more inclusive than Mammaliaformes. In particular, trait-based taxonomy generally includes Adelobasileus and Sinoconodon in Mammalia, though they fall outside the Mammaliaformes definition. These genera are included in the broader clade Mammaliamorpha, defined phylogenetically as the clade originating with the last common ancestor of Tritylodontidae and the crown group mammals. This wider group includes some families that trait-based taxonomy does not include in Mammalia, in particular Tritylodontidae and Brasilodontidae.

Animals in the Mammaliaformes clade are often called mammaliaforms, without the e. Sometimes, the spelling mammaliforms is used. The origin of crown-group mammals extends back to the Jurassic, with extensive findings in the Late Jurassic outcrops of Portugal and China.

Montanalestes

Montanalestes is an extinct mammal known from the Cretaceous in North America.

Preptotheria

Preptotheria is a superorder of placental mammals proposed by McKenna & Bell in their classification of mammals.

Prototheria

Prototheria (; from Greek πρώτος, prōtos, first, + θήρ, thēr, wild animal) is the subclass to which the orders Monotremata, Morganucodonta, Docodonta, Triconodonta and Multituberculata formerly belong.

Most of the animals in this group are extinct. The egg-laying monotremes are known from fossils of the Cretaceous and Cenozoic periods; they are represented today by the platypus and several species of echidna.

The names Prototheria, Metatheria, and Eutheria (meaning "first beasts", "changed beasts", and "true beasts", respectively) refer to the three mammalian groupings of which we have living representatives. Each of the three may be defined as a total clade containing a living crown-group (respectively the Monotremata, Marsupialia and Placentalia) plus any fossil species which are more closely related to that crown-group than to any other living animals.

The threefold division of living mammals into monotremes, marsupials and placentals was already well established when Thomas Huxley proposed the names Metatheria and Eutheria to incorporate the two latter groups in 1880. Initially treated as subclasses, Metatheria and Eutheria are by convention now grouped as infraclasses of the subclass Theria, and in more recent proposals have been demoted further (to cohorts or even magnorders), as cladistic reappraisals of the relationships between living and fossil mammals have suggested that the Theria itself should be reduced in rank.Prototheria, on the other hand, was generally recognised as a subclass until quite recently, on the basis of a hypothesis which defined the group by two supposed synapomorphies: (1) formation of the side wall of the braincase from a bone called the anterior lamina, contrasting with the alisphenoid in therians; and (2) a linear alignment of molar cusps, contrasting with a triangular arrangement in therians. These characters appeared to unite monotremes with a range of Mesozoic fossil orders (Morganucodonta, Docodonta, Triconodonta and Multituberculata) in a broader clade for which the name Prototheria was retained, and of which monotremes were thought to be only the last surviving branch.The evidence which was held to support this grouping is now universally discounted. In the first place, examination of embryos has revealed that the development of the braincase wall is essentially identical in therians and in 'prototherians': the anterior lamina simply fuses with the alisphenoid in therians, and therefore the 'prototherian' condition of the braincase wall is primitive for all mammals while the therian condition can be derived from it. Additionally, the linear alignment of molar cusps is also primitive for all mammals. Therefore, neither of these states can supply a uniquely shared derived character which would support a 'prototherian' grouping of orders in contradistinction to Theria.In a further reappraisal, the molars of embryonic and fossil monotremes (living monotreme adults are toothless) appear to demonstrate an ancestral pattern of cusps which is similar to the triangular arrangement observed in therians. Some peculiarities of this dentition support an alternative grouping of monotremes with certain recently discovered fossil forms into a proposed new clade known as the Australosphenida, and also suggest that the triangular array of cusps may have evolved independently in australosphenidans and therians.The Australosphenida hypothesis remains controversial, and some taxonomists (e.g. McKenna & Bell 1997) prefer to maintain the name Prototheria as a fitting contrast to the other group of living mammals, the Theria. In theory, the Prototheria is taxonomically redundant, since Monotremata is currently the only order which can still be confidently included, but its retention might be justified if new fossil evidence, or a re-examination of known fossils, enables extinct relatives of the monotremes to be identified and placed within a wider grouping.

Protungulatum

Protungulatum ('first ungulate') is an extinct genus of mammal first found in the Bug Creek Anthills in northeastern Montana. The Bug Creek Anthills were initially believed to be Late Cretaceous (latest Maastrichtian) because of the presence of the remains of non-avian dinosaurs and common Cretaceous mammals, but these were later shown to have been reworked from Late Cretaceous strata, and consequently the Bug Creek Anthills are currently believed to be Early Paleocene (Puercan) in age. Remains from the Ravenscrag Formation of Saskatchewan, Canada have been assigned to P. donnae. These remains may also be Cretaceous in age, but the age of the Ravenscrag Formation is not entirely certain. In 2011, remains of a new species of Protungulatum, P. coombsi, from the Hell Creek Formation, which is definitely Late Cretaceous (Maastrichtian) in age, proved that Protungulatum was present in both the Cretaceous and the Paleocene. It was initially assigned to the order condylarthra, a group of archaic "ungulates", that is now known to be polyphyletic. According to Archibald et al. (2011), Protungulatum is not even definitely a placental mammal. Some studies have found it to be close to Cetartiodactyla, but the most recent analysis holds it to be a non-placental eutherian.The date of divergence of Protungulatum and Placentalia is approximately 75 Ma.

Theria

Theria (; Greek: θηρίον theríon, wild beast) is a subclass of mammals amongst the Theriiformes (the sister taxon to Yinotheria). Theria includes the eutherians (including the placental mammals) and the metatherians (including the marsupials).

Theriiformes

Theriiformes is a subclass of mammals. The term was coined in 1997 by McKenna & Bell in their classification of mammals. In the strict sense, it is defined as all mammals more closely related to therians than to monotremes.

Trechnotheria

Trechnotheria is a group of mammals that includes the therians and some fossil mammals from the Mesozoic Era. In the Jurassic through Cretaceous periods, the group was endemic to what would be Asia and Africa.Trechnotheria has been assigned various ranks, but was originally called a "superlegion" by the original author.

One reference has defined the Trechnotheria as the clade comprising the last common ancestor of Zhangheotherium and living therian mammals, and all its descendants.

Tribosphenida

Tribosphenida is a group (infralegion) of mammals that includes the ancestor of Hypomylos, Aegialodontia and Theria (the last common ancestor of marsupials and placentals plus all of its descendants). Its current definition is more or less synonymous with Boreosphenida.

Trituberculata

Trituberculata is an extinct group of animals existing in the fossil record from about 215 – 85 MYA. It contains the ancestors of Placentalia and Marsupialia; all modern mammals except Monotremata are descended from trituberculates. It is named for the three tubercles (cusps) of the molar teeth (not to be confused with Triconodonta). The clade Trituberculata is not always regarded as a valid one, and they probably don't form a monophyletic group. Instead, some of them may be "true" basal mammals (although not always closest related to each other), while others (such as the symmetrodonts) may fall just outside the therian crown group.

Zalambdalestidae

Zalambdalestidae is a clade of Asian eutherians occurring during the Late Cretaceous. Once classified as Glires, features like epipubic bones and various cranial elements have identified these animals as outside of Placentalia, representing thus a specialised clade of non-placental eutherians without any living descendants, and potentially rather different from modern placentals in at least reproductive anatomy.

Zatheria

Zatheria is a group (sublegion) of mammals that includes the common ancestor of Arguimuridae, Vincelestidae, Peramuridae and Tribosphenida (living therians plus all of its ancestors).

Extant mammal orders
Yinotheria
Theria

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.