Physical oceanography

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

Physical oceanography is one of several sub-domains into which oceanography is divided. Others include biological, chemical and geological oceanography.

Physical oceanography may be subdivided into descriptive and dynamical physical oceanography.[1]

Descriptive physical oceanography seeks to research the ocean through observations and complex numerical models, which describe the fluid motions as precisely as possible.

Dynamical physical oceanography focuses primarily upon the processes that govern the motion of fluids with emphasis upon theoretical research and numerical models. These are part of the large field of Geophysical Fluid Dynamics (GFD) that is shared together with meteorology. GFD is a sub field of Fluid dynamics describing flows occurring on spatial and temporal scales that are greatly influenced by the Coriolis force.

AYool topography 15min
World ocean bathymetry.

Physical setting

External image
Space and time scales of physical oceanographic processes.[2]
Atlantic-trench
Perspective view of the sea floor of the Atlantic Ocean and the Caribbean Sea. The purple sea floor at the center of the view is the Puerto Rico Trench.

Roughly 97% of the planet's water is in its oceans, and the oceans are the source of the vast majority of water vapor that condenses in the atmosphere and falls as rain or snow on the continents.[3][4] The tremendous heat capacity of the oceans moderates the planet's climate, and its absorption of various gases affects the composition of the atmosphere.[4] The ocean's influence extends even to the composition of volcanic rocks through seafloor metamorphism, as well as to that of volcanic gases and magmas created at subduction zones.[4]

The oceans are far deeper than the continents are tall; examination of the Earth's hypsographic curve shows that the average elevation of Earth's landmasses is only 840 metres (2,760 ft), while the ocean's average depth is 3,800 metres (12,500 ft). Though this apparent discrepancy is great, for both land and sea, the respective extremes such as mountains and trenches are rare.[3]

Area, volume plus mean and maximum depths of oceans (excluding adjacent seas)
Body Area (106km²) Volume (106km³) Mean depth (m) Maximum (m)
Pacific Ocean 165.2 707.6 4282 -11033
Atlantic Ocean 82.4 323.6 3926 -8605
Indian Ocean 73.4 291.0 3963 -8047
Southern Ocean 20.3 -7235
Arctic Ocean 14.1 1038
Caribbean Sea 2.8 -7686

Temperature, salinity and density

WOA09 sea-surf DEN AYool
WOA surface density.

Because the vast majority of the world ocean's volume is deep water, the mean temperature of seawater is low; roughly 75% of the ocean's volume has a temperature from 0° – 5 °C (Pinet 1996). The same percentage falls in a salinity range between 34–35 ppt (3.4–3.5%) (Pinet 1996). There is still quite a bit of variation, however. Surface temperatures can range from below freezing near the poles to 35 °C in restricted tropical seas, while salinity can vary from 10 to 41 ppt (1.0–4.1%).[5]

The vertical structure of the temperature can be divided into three basic layers, a surface mixed layer, where gradients are low, a thermocline where gradients are high, and a poorly stratified abyss.

In terms of temperature, the ocean's layers are highly latitude-dependent; the thermocline is pronounced in the tropics, but nonexistent in polar waters (Marshak 2001). The halocline usually lies near the surface, where evaporation raises salinity in the tropics, or meltwater dilutes it in polar regions.[5] These variations of salinity and temperature with depth change the density of the seawater, creating the pycnocline.[3]

Circulation

Thermohaline Circulation 2
Density-driven thermohaline circulation

Energy for the ocean circulation (and for the atmospheric circulation) comes from solar radiation and gravitational energy from the sun and moon.[6] The amount of sunlight absorbed at the surface varies strongly with latitude, being greater at the equator than at the poles, and this engenders fluid motion in both the atmosphere and ocean that acts to redistribute heat from the equator towards the poles, thereby reducing the temperature gradients that would exist in the absence of fluid motion. Perhaps three quarters of this heat is carried in the atmosphere; the rest is carried in the ocean.

The atmosphere is heated from below, which leads to convection, the largest expression of which is the Hadley circulation. By contrast the ocean is heated from above, which tends to suppress convection. Instead ocean deep water is formed in polar regions where cold salty waters sink in fairly restricted areas. This is the beginning of the thermohaline circulation.

Oceanic currents are largely driven by the surface wind stress; hence the large-scale atmospheric circulation is important to understanding the ocean circulation. The Hadley circulation leads to Easterly winds in the tropics and Westerlies in mid-latitudes. This leads to slow equatorward flow throughout most of a subtropical ocean basin (the Sverdrup balance). The return flow occurs in an intense, narrow, poleward western boundary current. Like the atmosphere, the ocean is far wider than it is deep, and hence horizontal motion is in general much faster than vertical motion. In the southern hemisphere there is a continuous belt of ocean, and hence the mid-latitude westerlies force the strong Antarctic Circumpolar Current. In the northern hemisphere the land masses prevent this and the ocean circulation is broken into smaller gyres in the Atlantic and Pacific basins.

Coriolis effect

The Coriolis effect results in a deflection of fluid flows (to the right in the Northern Hemisphere and left in the Southern Hemisphere). This has profound effects on the flow of the oceans. In particular it means the flow goes around high and low pressure systems, permitting them to persist for long periods of time. As a result, tiny variations in pressure can produce measurable currents. A slope of one part in one million in sea surface height, for example, will result in a current of 10 cm/s at mid-latitudes. The fact that the Coriolis effect is largest at the poles and weak at the equator results in sharp, relatively steady western boundary currents which are absent on eastern boundaries. Also see secondary circulation effects.

Ekman transport

Ekman transport results in the net transport of surface water 90 degrees to the right of the wind in the Northern Hemisphere, and 90 degrees to the left of the wind in the Southern Hemisphere. As the wind blows across the surface of the ocean, it "grabs" onto a thin layer of the surface water. In turn, that thin sheet of water transfers motion energy to the thin layer of water under it, and so on. However, because of the Coriolis Effect, the direction of travel of the layers of water slowly move farther and farther to the right as they get deeper in the Northern Hemisphere, and to the left in the Southern Hemisphere. In most cases, the very bottom layer of water affected by the wind is at a depth of 100 m – 150 m and is traveling about 180 degrees, completely opposite of the direction that the wind is blowing. Overall, the net transport of water would be 90 degrees from the original direction of the wind.

Langmuir circulation

Langmuir circulation results in the occurrence of thin, visible stripes, called windrows on the surface of the ocean parallel to the direction that the wind is blowing. If the wind is blowing with more than 3 m s−1, it can create parallel windrows alternating upwelling and downwelling about 5–300 m apart. These windrows are created by adjacent ovular water cells (extending to about 6 m (20 ft) deep) alternating rotating clockwise and counterclockwise. In the convergence zones debris, foam and seaweed accumulates, while at the divergence zones plankton are caught and carried to the surface. If there are many plankton in the divergence zone fish are often attracted to feed on them.

Ocean–atmosphere interface

Isabel 091503bm
Hurricane Isabel east of the Bahamas on 15 September 2003

At the ocean-atmosphere interface, the ocean and atmosphere exchange fluxes of heat, moisture and momentum.

Heat

The important heat terms at the surface are the sensible heat flux, the latent heat flux, the incoming solar radiation and the balance of long-wave (infrared) radiation. In general, the tropical oceans will tend to show a net gain of heat, and the polar oceans a net loss, the result of a net transfer of energy polewards in the oceans.

The oceans' large heat capacity moderates the climate of areas adjacent to the oceans, leading to a maritime climate at such locations. This can be a result of heat storage in summer and release in winter; or of transport of heat from warmer locations: a particularly notable example of this is Western Europe, which is heated at least in part by the north atlantic drift.

Momentum

Surface winds tend to be of order meters per second; ocean currents of order centimeters per second. Hence from the point of view of the atmosphere, the ocean can be considered effectively stationary; from the point of view of the ocean, the atmosphere imposes a significant wind stress on its surface, and this forces large-scale currents in the ocean.

Through the wind stress, the wind generates ocean surface waves; the longer waves have a phase velocity tending towards the wind speed. Momentum of the surface winds is transferred into the energy flux by the ocean surface waves. The increased roughness of the ocean surface, by the presence of the waves, changes the wind near the surface.

Moisture

The ocean can gain moisture from rainfall, or lose it through evaporation. Evaporative loss leaves the ocean saltier; the Mediterranean and Persian Gulf for example have strong evaporative loss; the resulting plume of dense salty water may be traced through the Straits of Gibraltar into the Atlantic Ocean. At one time, it was believed that evaporation/precipitation was a major driver of ocean currents; it is now known to be only a very minor factor.

Planetary waves

Kelvin Waves

A Kelvin wave is any progressive wave that is channeled between two boundaries or opposing forces (usually between the Coriolis force and a coastline or the equator). There are two types, coastal and equatorial. Kelvin waves are gravity driven and non-dispersive. This means that Kelvin waves can retain their shape and direction over long periods of time. They are usually created by a sudden shift in the wind, such as the change of the trade winds at the beginning of the El Niño-Southern Oscillation.

Coastal Kelvin waves follow shorelines and will always propagate in a counterclockwise direction in the Northern hemisphere (with the shoreline to the right of the direction of travel) and clockwise in the Southern hemisphere.

Equatorial Kelvin waves propagate to the east in the Northern and Southern hemispheres, using the equator as a guide.

Kelvin waves are known to have very high speeds, typically around 2–3 meters per second. They have wavelengths of thousands of kilometers and amplitudes in the tens of meters.

Rossby Waves

Rossby waves, or planetary waves are huge, slow waves generated in the troposphere by temperature differences between the ocean and the continents. Their major restoring force is the change in Coriolis force with latitude. Their wave amplitudes are usually in the tens of meters and very large wavelengths. They are usually found at low or mid latitudes.

There are two types of Rossby waves, barotropic and baroclinic. Barotropic Rossby waves have the highest speeds and do not vary vertically. Baroclinic Rossby waves are much slower.

The special identifying feature of Rossby waves is that the phase velocity of each individual wave always has a westward component, but the group velocity can be in any direction. Usually the shorter Rossby waves have an eastward group velocity and the longer ones have a westward group velocity.

Climate variability

El-nino
December 1997 chart of ocean surface temperature anomaly [°C] during the last strong El Niño

The interaction of ocean circulation, which serves as a type of heat pump, and biological effects such as the concentration of carbon dioxide can result in global climate changes on a time scale of decades. Known climate oscillations resulting from these interactions, include the Pacific decadal oscillation, North Atlantic oscillation, and Arctic oscillation. The oceanic process of thermohaline circulation is a significant component of heat redistribution across the globe, and changes in this circulation can have major impacts upon the climate.

La Niña–El Niño

and

Antarctic circumpolar wave

This is a coupled ocean/atmosphere wave that circles the Southern Ocean about every eight years. Since it is a wave-2 phenomenon (there are two peaks and two troughs in a latitude circle) at each fixed point in space a signal with a period of four years is seen. The wave moves eastward in the direction of the Antarctic Circumpolar Current.

Ocean currents

Among the most important ocean currents are the:

Antarctic circumpolar

The ocean body surrounding the Antarctic is currently the only continuous body of water where there is a wide latitude band of open water. It interconnects the Atlantic, Pacific and Indian oceans, and provide an uninterrupted stretch for the prevailing westerly winds to significantly increase wave amplitudes. It is generally accepted that these prevailing winds are primarily responsible for the circumpolar current transport. This current is now thought to vary with time, possibly in an oscillatory manner.

Deep ocean

In the Norwegian Sea evaporative cooling is predominant, and the sinking water mass, the North Atlantic Deep Water (NADW), fills the basin and spills southwards through crevasses in the submarine sills that connect Greenland, Iceland and Britain. It then flows along the western boundary of the Atlantic with some part of the flow moving eastward along the equator and then poleward into the ocean basins. The NADW is entrained into the Circumpolar Current, and can be traced into the Indian and Pacific basins. Flow from the Arctic Ocean Basin into the Pacific, however, is blocked by the narrow shallows of the Bering Strait.

Also see marine geology about that explores the geology of the ocean floor including plate tectonics that create deep ocean trenches.

Western boundary

An idealised subtropical ocean basin forced by winds circling around a high pressure (anticyclonic) systems such as the Azores-Bermuda high develops a gyre circulation with slow steady flows towards the equator in the interior. As discussed by Henry Stommel, these flows are balanced in the region of the western boundary, where a thin fast polewards flow called a western boundary current develops. Flow in the real ocean is more complex, but the Gulf stream, Agulhas and Kuroshio are examples of such currents. They are narrow (approximately 100 km across) and fast (approximately 1.5 m/s).

Equatorwards western boundary currents occur in tropical and polar locations, e.g. the East Greenland and Labrador currents, in the Atlantic and the Oyashio. They are forced by winds circulation around low pressure (cyclonic).

Gulf stream

The Gulf Stream, together with its northern extension, North Atlantic Current, is a powerful, warm, and swift Atlantic Ocean current that originates in the Gulf of Mexico, exits through the Strait of Florida, and follows the eastern coastlines of the United States and Newfoundland to the northeast before crossing the Atlantic Ocean.

Kuroshio

The Kuroshio Current is an ocean current found in the western Pacific Ocean off the east coast of Taiwan and flowing northeastward past Japan, where it merges with the easterly drift of the North Pacific Current. It is analogous to the Gulf Stream in the Atlantic Ocean, transporting warm, tropical water northward towards the polar region.

Heat flux

Heat storage

Ocean heat flux is a turbulent and complex system[7] which utilizes atmospheric measurement techniques such as eddy covariance to measure the rate of heat transfer expressed in the unit of joules or watts per second. Heat flux is the difference in temperature between two points through which the heat passes. Most of the Earth's heat storage is within its seas with smaller fractions of the heat transfer in processes such as evaporation, radiation, diffusion, or absorption into the sea floor. The majority of the ocean heat flux is through advection or the movement of the ocean's currents. For example, the majority of the warm water movement in the south Atlantic is thought to have originated in the Indian Ocean.[8] Another example of advection is the nonequatorial Pacific heating which results from subsurface processes related to atmospheric anticlines.[9] Recent warming observations of Antarctic Bottom Water in the Southern Ocean is of concern to ocean scientists because bottom water changes will effect currents, nutrients, and biota elsewhere.[10] The international awareness of global warming has focused scientific research on this topic since the 1988 creation of the Intergovernmental Panel on Climate Change. Improved ocean observation, instrumentation, theory, and funding has increased scientific reporting on regional and global issues related to heat.[11]

Sea level change

Tide gauges and satellite altimetry suggest an increase in sea level of 1.5–3 mm/yr over the past 100 years.

The IPCC predicts that by 2081-2100, global warming will lead to a sea level rise of 260 to 820 mm.[12]

Rapid variations

Tides

Wpdms nasa topo bay of fundy - en
The Bay of Fundy is a bay located on the Atlantic coast of North America, on the northeast end of the Gulf of Maine between the provinces of New Brunswick and Nova Scotia.

The rise and fall of the oceans due to tidal effects is a key influence upon the coastal areas. Ocean tides on the planet Earth are created by the gravitational effects of the Sun and Moon. The tides produced by these two bodies are roughly comparable in magnitude, but the orbital motion of the Moon results in tidal patterns that vary over the course of a month.

The ebb and flow of the tides produce a cyclical current along the coast, and the strength of this current can be quite dramatic along narrow estuaries. Incoming tides can also produce a tidal bore along a river or narrow bay as the water flow against the current results in a wave on the surface.

Tide and Current (Wyban 1992) clearly illustrates the impact of these natural cycles on the lifestyle and livelihood of Native Hawaiians tending coastal fishponds. Aia ke ola ka hana meaning . . . Life is in labor.

Tidal resonance occurs in the Bay of Fundy since the time it takes for a large wave to travel from the mouth of the bay to the opposite end, then reflect and travel back to the mouth of the bay coincides with the tidal rhythm producing the world's highest tides.

As the surface tide oscillates over topography, such as submerged seamounts or ridges, it generates internal waves at the tidal frequency, which are known as internal tides.

Tsunamis

A series of surface waves can be generated due to large-scale displacement of the ocean water. These can be caused by sub-marine landslides, seafloor deformations due to earthquakes, or the impact of a large meteorite.

The waves can travel with a velocity of up to several hundred km/hour across the ocean surface, but in mid-ocean they are barely detectable with wavelengths spanning hundreds of kilometers.

Tsunamis, originally called tidal waves, were renamed because they are not related to the tides. They are regarded as shallow-water waves, or waves in water with a depth less than 1/20 their wavelength. Tsunamis have very large periods, high speeds, and great wave heights.

The primary impact of these waves is along the coastal shoreline, as large amounts of ocean water are cyclically propelled inland and then drawn out to sea. This can result in significant modifications to the coastline regions where the waves strike with sufficient energy.

The tsunami that occurred in Lituya Bay, Alaska on July 9, 1958 was 520 m (1,710 ft) high and is the biggest tsunami ever measured, almost 90 m (300 ft) taller than the Sears Tower in Chicago and about 110 m (360 ft) taller than the former World Trade Center in New York.[13]

Surface waves

The wind generates ocean surface waves, which have a large impact on offshore structures, ships, coastal erosion and sedimentation, as well as harbours. After their generation by the wind, ocean surface waves can travel (as swell) over long distances.

See also

References

  1. ^ D., Talley, Lynne; L., Pickard, George; J., Emery, William; (Oceanographer), Swift, James H. Descriptive physical oceanography : an introduction. ISBN 9780750645522. OCLC 784140610.
  2. ^ Physical Oceanography Archived 2012-07-17 at Archive.today Oregon State University.
  3. ^ a b c Pinet, Paul R. (1996). Invitation to Oceanography (3rd ed.). St. Paul, MN: West Publishing Co. ISBN 0-7637-2136-0.
  4. ^ a b c Hamblin, W. Kenneth; Christiansen, Eric H. (1998). Earth's Dynamic Systems (8th ed.). Upper Saddle River: Prentice-Hall. ISBN 0-13-018371-7.
  5. ^ a b Marshak, Stephen (2001). Earth: Portrait of a Planet. New York: W.W. Norton & Company. ISBN 0-393-97423-5.
  6. ^ Munk, W. and Wunsch, C., 1998: Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I, 45, pp. 1977--2010.
  7. ^ Talley, Lynne D. "Reading-Advection, transports, budgets". SIO 210: Introduction to Physical Oceanography. (Fall 2013). San Diego: Scripps Institute of Oceanography. University of California San Diego. Retrieved August 30, 2014. http://www-pord.ucsd.edu/~ltalley/sio210/transports/
  8. ^ Macdonald, Alison M.(1995). Oceanic fluxes of mass, heat, and freshwater : a global estimate and perspective. Falmouth, Mass.: Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution. p. 12. WHOI Theses. Retrieved August 30, 2014. http://hdl.handle.net/1912/5620
  9. ^ Su, Jingzhi; Li, Tim; et al. (Jun 2014). "The Initiation and Developing Mechanisms of Central Pacific El Niños." Journal of Climate 27(12):4473-4485. DOI: 10.1175/JCLI-D-13-00640.1
  10. ^ Goldman, Jana. (March 20, 2012). Amount of coldest Antarctic water near ocean floor decreasing for decades. NOAA. Retrieved 30 August 2014. http://www.noaanews.noaa.gov/stories2012/20120320_antarcticbottomwater.html
  11. ^ WorldCat. "MyWorldCat list-OceanHeat". Retrieved Aug 30, 2014. https://www.worldcat.org/profiles/greycloud/lists/3461529
  12. ^ Stocker, Thomas F. (2013). Technical Summary In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. p. 90.
  13. ^ "Tsuanmi Threats". Archived from the original on 2008-07-26. Retrieved 2008-06-28.

Further reading

  • Gill, Adrian E. (1982). Atmosphere-Ocean Dynamics. San Diego: Academic Press. ISBN 0-12-283520-4.
  • Samelson, R. M. (2011) The Theory of Large-Scale Ocean Circulation. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511736605.
  • Maury, Matthew F. (1855). The Physical Geography of the Seas and Its Meteorology.
  • Stewart, Robert H. (2007). Introduction to Physical Oceanography (PDF). College Station: Texas A&M University. OCLC 169907785.
  • Wyban, Carol Araki (1992). Tide and Current: Fishponds of Hawaiʻi. Honolulu: University of Hawaiʻi Press. ISBN 0-8248-1396-0.

External links

Accretion (coastal management)

Accretion is the process of coastal sediment returning to the visible portion of a beach or foreshore following a submersion event. A sustainable beach or foreshore often goes through a cycle of submersion during rough weather then accretion during calmer periods. If a coastline is not in a healthy sustainable state, then erosion can be more serious and accretion does not fully restore the original volume of the visible beach or foreshore leading to permanent beach loss.

Antarctic bottom water

The Antarctic bottom water (AABW) is a type of water mass in the Southern Ocean surrounding Antarctica with temperatures ranging from −0.8 to 2 °C (35 °F), salinities from 34.6 to 34.7 psu. Being the densest water mass of the oceans, AABW is found to occupy the depth range below 4000 m of all ocean basins that have a connection to the Southern Ocean at that level.The major significance of Antarctic bottom water is that it is the coldest bottom water, giving it a significant influence on the movement of the world's oceans. Antarctic bottom water also has a high oxygen content relative to the rest of the oceans' deep waters. This is due to the oxidation of deteriorating organic content in the rest of the deep oceans. Antarctic bottom water has thus been considered the ventilation of the deep ocean.

Guyot

In marine geology, a guyot (pronounced ), also known as a tablemount, is an isolated underwater volcanic mountain (seamount) with a flat top more than 200 m (660 ft) below the surface of the sea. The diameters of these flat summits can exceed 10 km (6.2 mi). Guyots are most commonly found in the Pacific Ocean, but they have been identified in all the oceans except the Arctic Ocean.

Halothermal circulation

See Thermohaline Circulation.

The term halothermal circulation refers to the part of the large-scale ocean circulation that is driven by global density gradients created by surface heat and evaporation.

The adjective halothermal derives from halo- referring to salt content and -thermal referring to temperature, factors which together determine the density of sea water. Halothermal circulation is driven primarily by salinity changes and secondarily by temperature changes (as opposed to the thermohaline mode in modern oceans). The generation of high salinity surface waters at low latitudes, which were therefore of higher density and thus sank, is thought to have been the dominant ocean circulation driver during greenhouse climates such as the Cretaceous. Similar dynamics operate today in the Mediterranean.

The formation of bottom waters by halothermal dynamics is considered to be one to two orders of magnitude weaker than in thermohaline systems.

Hydrothermal circulation

Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, water, and θέρμη, heat ). Hydrothermal circulation occurs most often in the vicinity of sources of heat within the Earth's crust. In general, this occurs near volcanic activity, but can occur in the deep crust related to the intrusion of granite, or as the result of orogeny or metamorphism.

Langmuir circulation

In physical oceanography, Langmuir circulation consists of a series of shallow, slow, counter-rotating vortices at the ocean's surface aligned with the wind.

These circulations are developed when wind blows steadily over the sea surface.

Irving Langmuir discovered this phenomenon after observing windrows of seaweed in the Sargasso Sea in 1927.

Langmuir circulations circulate within the mixed layer; however, it is not yet so clear how strongly they can cause mixing at the base of the mixed layer.

Modular Ocean Model

The Modular Ocean Model (MOM) is a three-dimensional ocean circulation model designed primarily for studying the ocean climate system. The model is developed and supported primarily by researchers at the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) in Princeton, NJ, USA.

Mooring (oceanography)

A mooring in oceanography is a collection of devices connected to a wire and anchored on the sea floor. It is the Eulerian way of measuring ocean currents, since a mooring is stationary at a fixed location. In contrast to that, the Lagrangian way measures the motion of an oceanographic drifter, the Lagrangian drifter.

Neritic zone

The neritic zone is the relatively shallow part of the ocean above the drop-off of the continental shelf, approximately 200 meters (660 ft) in depth.

From the point of view of marine biology it forms a relatively stable and well-illuminated environment for marine life, from plankton up to large fish and corals, while physical oceanography sees it as where the oceanic system interacts with the coast.

Ocean bank

An ocean bank, sometimes referred to as a fishing bank or simply bank, is a part of the seabed which is shallow compared to its surrounding area, such as a shoal or the top of an underwater hill. Somewhat like continental slopes, ocean banks slopes can upwell as tidal and other flows intercept them, resulting sometimes in nutrient rich currents. Because of this, some large banks, such as Dogger Bank and the Grand Banks of Newfoundland, are among the richest fishing grounds in the world.

There are some banks that were reported in the 19th century by navigators, such as Wachusett Reef, whose existence is doubtful.

Ocean current

An ocean current is a continuous, directed movement of sea water generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents are primarily horizontal water movements.

Ocean currents flow for great distances, and together, create the global conveyor belt which plays a dominant role in determining the climate of many of the Earth’s regions. More specifically, ocean currents influence the temperature of the regions through which they travel. For example, warm currents traveling along more temperate coasts increase the temperature of the area by warming the sea breezes that blow over them. Perhaps the most striking example is the Gulf Stream, which makes northwest Europe much more temperate than any other region at the same latitude. Another example is Lima, Peru, where the climate is cooler, being sub-tropical, than the tropical latitudes in which the area is located, due to the effect of the Humboldt Current.

Oceanic basin

In hydrology, an oceanic basin may be anywhere on Earth that is covered by seawater but geologically ocean basins are large geologic basins that are below sea level. Geologically, there are other undersea geomorphological features such as the continental shelves, the deep ocean trenches, and the undersea mountain ranges (for example, the mid-Atlantic ridge and the Emperor Seamounts) which are not considered to be part of the ocean basins; while hydrologically, oceanic basins include the flanking continental shelves and shallow, epeiric seas.

Oceanic zone

The oceanic zone is typically defined as the area of the ocean lying beyond the continental shelf, but operationally is often referred to as beginning where the water depths drop to below 100 meters (328 feet), seaward from the coast to the open ocean.

It is the region of open sea beyond the edge of the continental shelf and includes 65% of the ocean’s completely open water. The oceanic zone has a wide array of undersea terrain, including crevices that are often deeper than Mt. Everest is tall, as well as deep-sea volcanoes and ocean basins. While it is often difficult for life to sustain itself in this type of environment, some species do thrive in the oceanic zone.

There are four ocean zones. The sunlight zone, twilight zone, midnight zone, and abyssal zone.

Significant wave height

In physical oceanography, the significant wave height (SWH or Hs)

is defined traditionally as the mean wave height (trough to crest) of the highest third of the waves (H1/3). Nowadays it is usually defined as four times the standard deviation of the surface elevation – or equivalently as four times the square root of the zeroth-order moment (area) of the wave spectrum. The symbol Hm0 is usually used for that latter definition. The significant wave height may thus refer to Hm0 or H1/3; the difference in magnitude between the two definitions is only a few percent.

Surf zone

As ocean surface waves come closer to shore they break, forming the foamy, bubbly surface called surf. The region of breaking waves defines the surf zone. After breaking in the surf zone, the waves (now reduced in height) continue to move in, and they run up onto the sloping front of the beach, forming an uprush of water called swash. The water then runs back again as backswash. The nearshore zone where wave water comes onto the beach is the surf zone. The water in the surf zone, or breaker zone, is shallow, usually between 5 and 10 m (16 and 33 ft) deep; this causes the waves to be unstable.

Tideline

A tideline refers to where two currents in the ocean converge. Driftwood, floating seaweed, foam, and other floating debris may accumulate, forming sinuous lines called tidelines (although they generally have nothing to do with the tide).

There are four mechanisms that can cause tidelines to form:

Where one body of water is sinking beneath or riding over top of the surface layer of another body of water (somewhat similar in mechanics to subduction of the earth plates at continental margins). These types of tidelines are often found where rivers enter the ocean.

Along the margins of back-eddies.

Convergence zones associated with internal gravity waves.

Along adjacent cells formed by wind currents.

Undertow (water waves)

In physical oceanography, undertow is the under-current that is moving offshore when waves are approaching the shore. Undertow is a natural and universal feature for almost any large body of water: it is a return flow compensating for the onshore-directed average transport of water by the waves in the zone above the wave troughs. The undertow's flow velocities are generally strongest in the surf zone, where the water is shallow and the waves are high due to shoaling.In popular usage, the word "undertow" is often misapplied to rip currents. An undertow occurs everywhere underneath shore-approaching waves, whereas rip currents are localized narrow offshore currents occurring at certain locations along the coast. Unlike undertow, rip currents are strong at the surface.

Wave base

The wave base, in physical oceanography, is the maximum depth at which a water wave's passage causes significant water motion. For water depths deeper than the wave base, bottom sediments and the seafloor are no longer stirred by the wave motion above.

Wave–current interaction

In fluid dynamics, wave–current interaction is the interaction between surface gravity waves and a mean flow. The interaction implies an exchange of energy, so after the start of the interaction both the waves and the mean flow are affected.

For depth-integrated and phase-averaged flows, the quantity of primary importance for the dynamics of the interaction is the wave radiation stress tensor.

Wave–current interaction is also one of the possible mechanisms for the occurrence of rogue waves, such as in the Agulhas Current. When a wave group encounters an opposing current, the waves in the group may pile up on top of each other which will propagate into a rogue wave.

Physical oceanography
Waves
Circulation
Tides
Landforms
Plate
tectonics
Ocean zones
Sea level
Acoustics
Satellites
Related

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.